

•
Table of
Contents

• Index

Inside Network Perimeter Security

By Stephen Northcutt, Lenny Zeltser, Scott Winters, Karen Kent, Ronald W. Ritchey

Publisher: Sams Publishing

Pub Date: March 04, 2005

ISBN: 0-672-32737-6

Pages: 768

Security professionals and administrators now have
access to one of the most valuable resources for
learning best practices for network perimeter security.
Inside Network Perimeter Security, Second Edition is
your guide to preventing network intrusions and
defending against any intrusions that do manage to slip
through your perimeter. This acclaimed resource has
been updated to reflect changes in the security
landscape, both in terms of vulnerabilities and defensive
tools. Coverage also includes intrusion prevention
systems and wireless security. You will work your way
through fortifying the perimeter, designing a secure
network, and maintaining and monitoring the security of
the network. Additionally, discussion of tools such as
firewalls, virtual private networks, routers and intrusion
detection systems make Inside Network Perimeter
Security, Second Edition a valuable resource for both
security professionals and GIAC Certified Firewall
Analyst certification exam candidates.

•
Table of
Contents

• Index

Inside Network Perimeter Security

By Stephen Northcutt, Lenny Zeltser, Scott Winters, Karen Kent, Ronald W. Ritchey

Publisher: Sams Publishing

Pub Date: March 04, 2005

ISBN: 0-672-32737-6

Pages: 768

Security professionals and administrators now have
access to one of the most valuable resources for
learning best practices for network perimeter security.
Inside Network Perimeter Security, Second Edition is
your guide to preventing network intrusions and
defending against any intrusions that do manage to slip
through your perimeter. This acclaimed resource has
been updated to reflect changes in the security
landscape, both in terms of vulnerabilities and defensive
tools. Coverage also includes intrusion prevention
systems and wireless security. You will work your way
through fortifying the perimeter, designing a secure
network, and maintaining and monitoring the security of
the network. Additionally, discussion of tools such as
firewalls, virtual private networks, routers and intrusion
detection systems make Inside Network Perimeter
Security, Second Edition a valuable resource for both
security professionals and GIAC Certified Firewall
Analyst certification exam candidates.

Copyright
Copyright © 2005 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages resulting
from the use of the information contained herein.

Library of Congress Catalog Card Number: 2004096804

Printed in the United States of America

First Printing: March 2005

08 07 06 05 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an "as is" basis.

Bulk Sales

Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Credits

Acquisitions Editor

Linda Bump Harrison

Development Editor

Songlin Qiu

Managing Editor

Charlotte Clapp

Project Editor

George E. Nedeff

Copy Editor

Bart Reed

Indexer

Ken Johnson

Proofreader

Kathy Bidwell

Technical Editors

Todd Chapman

Anton Chuvakin

Dan Goldberg

John Spangler

Publishing Coordinator

Vanessa Evans

Book Designer

Gary Adair

Page Layout

Kelly Maish

About the Authors
Stephen Northcutt is a graduate of Mary Washington College. Before entering the field of
computer security, he worked as a Navy helicopter search and rescue crewman,
whitewater raft guide, chef, martial arts instructor, cartographer, and network designer.
Stephen is author/coauthor of Incident Handling Step-by-Step , Intrusion Signatures and
Analysis , Inside Network Perimeter Security , 2nd Edition, IT Ethics Handbook , SANS
Security Essentials , SANS Security Leadership Essentials , and Network Intrusion Detection ,
3rd Edition . He was the original author of the Shadow Intrusion Detection System before
accepting the position of Chief for Information Warfare at the Ballistic Missile Defense
Organization. Stephen currently serves as Director of the SANS Institute.

Lenny Zeltser's work in information security draws upon experience in system
administration, software architecture, and business administration. Lenny has directed
security efforts for several organizations, co-founded a software company, and consulted
for a major financial institution. He is a senior instructor at the SANS Institute, having
written and taught a course on reverse-engineering malware. Lenny is also a coauthor of
books such as SANS Security Essentials and Malware: Fighting Malicious Code . He holds a
number of professional certifications, including CISSP and GSE, and is an incident handler
at SANS Internet Storm Center. Lenny has earned a bachelor of science in engineering
degree from the University of Pennsylvania and a master in business administration
degree from MIT. More information about Lenny's projects and interests is available at
www.zeltser.com.

Scott Winters has been working in all aspects of networking and computer security for
over 14 years. He has been an Instructor, Network Engineer, and Systems Administrator
and is currently employed as a Senior Consultant for Unisys at the Commonwealth of
Pennsylvania Enterprise Server Farm. He has SANS GIAC Firewalls and Incident Handling
certifications, as well as MCSE, CNE, Cisco CCNP, CCDP, and other industry certifications.
Other accomplishments include authoring and editing of SANS GIAC Training and
Certification course content, as well as exam content. He was a primary author of the first
edition of Inside Network Perimeter Security and a contributing author for SANS Security
Essentials with CISSP CBK . He has also been involved in the SANS GIAC Mentoring
program and has served on the SANS GCFW Advisory Board.

Karen Kent is an Associate with Booz Allen Hamilton, where she provides guidance to
Federal agencies on a broad range of information assurance concerns, including incident
handling, intrusion detection, VPNs, log monitoring, and host security. Karen has earned a
bachelor's degree in computer science from the University of Wisconsin-Parkside and a
master's degree in computer science from the University of Idaho. She holds the CISSP
certification and four SANS GIAC certifications. Karen has contributed to several books,
including Intrusion Signatures and Analysis , published numerous articles on security, and
coauthored several publications for the National Institute of Standards and Technology
(NIST), including NIST Special Publication 800-61: Computer Security Incident Handling
Guide.

Ronald W. Ritchey has an active interest in secure network design and network intrusion
techniques. He gets to exercise this interest regularly by conducting penetration testing
efforts for Booz Allen Hamilton, where he has had the opportunity to learn firsthand the
real-world impact of network vulnerabilities. He is also an active researcher in the field
with peer-reviewed publications in the area of automated network security analysis.
Ronald has authored courses on computer security that have been taught across the
country, and he periodically teaches graduate-level courses on computer security. Ronald
holds a masters degree in computer science from George Mason University and is
currently pursuing his Ph.D. in information technology at their School of Information
Technology and Engineering. His doctoral research involves automating network security
analysis.

About the Technical Editors
Todd Chapman has 10+ years of experience delivering IT services as varied as systems
management, security, networking, clustering, Perl programming, and corporate
development and training. Currently, Todd is a consultant for gedas USA, Inc., in Auburn
Hills, Michigan, where he provides security consulting services for Volkswagen/Audi of
America. For the last three years Todd has been an active member of the SANS GCFW
advisory board and has written SANS certification exam questions in a number of
disciplines. Todd's certifications include Red Hat Certified Engineer (RHCE), Microsoft
Certified Systems Engineer (MCSE), GIAC Certified Firewall Analyst (GCFW), GIAC
Certified Intrusion Analyst (GCIA), and GIAC Systems and Network Auditor (GSNA).

Anton Chuvakin, Ph.D., GCIA, GCIH, is a Security Strategist with netForensics, a security
information management company, where he is involved with designing the product,
researching potential new security features, and advancing the security roadmap. His
areas of infosec expertise include intrusion detection, UNIX security, forensics, honeypots,
and more. He is the author of the book Security Warrior (O'Reilly, January 2004) and a
contributor to "Know Your Enemy II" by the Honeynet Project (AWL, June 2004) and
"Information Security Management Handbook" (CRC, April 2004). In his spare time he
maintains his security portal www.info-secure.org website.

Dan Goldberg recently created MADJiC Consulting, Inc., to provide network design and
architecture reviews, intrusion detection and response, and vulnerability assessments in
Central Virginia. He also works on research and writing projects for the SANS Institute and
as technical director for Global Information Assurance Certification (GIAC). When not
occupied by these activities, you may find him riding a mountain bike in the Blue Ridge
Mountains.

John Spangler is a freelance Network Systems Engineer. Having over 10 years of
experience, he has worked on everything from small office systems to large enterprise and
ISP networks. John has worked as a technical editor for Cisco certification manuals.

Acknowledgments
Creating a book of this breadth and depth would not have been possible without the
support of our colleagues, families, and friends. We would like to express our humble
thanks to the individuals who helped make this book a reality.

Our acquisitions editor, Linda Harrison, and our development editor, Songlin Qiu, have
meticulously guided us through the process of creating and revising this book. They, and
the staff at Sams Publishing, have been wonderful partners in this venture.

This edition's technical editors, Todd Chapman, Anton Chuvakin, Dan Goldberg, and John
Spangler, have carefully examined each chapter's draft to ensure the accuracy of the
book's content. We thank them for the time they've devoted to the project, and for the
expertise they've loaned to this book.

We also thank our coauthors and technical editors who played a major role in creating the
previous edition of this book. Their expertise, thoughtfulness, and attention to detail have
already assisted thousands of readers in protecting their network's perimeter.

First edition contributing authors:

Brent Deterding

Mark Edmead

Dr. Neil F. Johnson

Brian O'Berry

Daniel Martin

First edition technical editors:

Bill Bauer

Sam Campbell

Clement Dupuis

Jeff Stevenson

Sergei Ledovskjj

Lastly, we thank our families and friends for their incredible patience while we worked on
this project. Their support, love, and understanding helped make this book possible.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to pass
our way.

You can email or write me directly to let me know what you did or didn't like about this
bookas well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

When you write, please be sure to include this book's title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

E-mail: networking@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
For more information about this book or another Sams Publishing title, visit our website at
www.samspublishing.com. Type the ISBN (excluding hyphens) or the title of a book in the
Search field to find the page you're looking for.

Preface
The flight from Lihue to San Francisco is about five and a half hours and allows me some
of my most productive work time. The phone doesn't ring, the dog doesn't ask to go
outside, and my personal firewall doesn't start blinking because someone is trying to scan
my computer. The flight attendant crews are starting to know me; I don't want any
airplane food, I brought my own recycled water bottle filled with water from my own
reverse osmosis filter, just let me write. I am very thankful for a bit of understanding from
the crew of United FLT 30 for the time to write this preface. If any of my words give you
insight into the current state of affairs with perimeter and internal network management,
don't attribute that to me. I rely more each day of my life on the words in James 1:5; I
am just the messenger.

I was enjoying working on the second edition of this book when a scene on the airplane
entertainment televisions caught my eye. It was a video history of United Airlines, which
started by delivering airmail in rickety old airplanes with exposed cockpits. Today,
modern, fast, sophisticated aircraft have an incredible safety record. The airline industry
has gone from an odditya great tool to entertain the crowds at county fairsto an industry
that is crucial to our way of life and economy. The airlines in the United States were
essentially grounded for about three days following the terrorist attacks of September 11,
2001. The U.S. Congress debated whether to give the airlines money; they decided
against it and United is now in chapter 11.

By exploring what has changed in the airline world, you will see both the past and the
future of our industry, information technology (IT). Like the airline industry, IT has
historically been accomplished on rickety platforms. We have benefited from rapid
advances in technology. We have seen a decline in personal service. We are headed for
continuous inspections, a defense-in-depth approach, and we are every bit as vulnerable
and at the same time crucial to the economy.

Rickety Planes

What if we flew in computers? That gives "crash" a whole new meaning, doesn't it? Well, if
we did, I am sure you would agree that we would all be dead. I would love to say
operating systems are really improving, but it isn't so. I installed XP SP2 beta, one of the
least-rickety operating systems I have worked with in a long time, on a clone of my
primary laptop a couple months ago, and it has been interesting. As soon as I submit the
remainder of my chapters for this book, I will upgrade my production box. As I write this,
the Windows update version has still not been released, and it will be very interesting to
see what breaks when the home users get upgraded. A lot of people died in the early days
of the airline industry, and as I say, if we flew in those early planes today, most of us
would be dead.

Now here is the kicker: IPS systems and intelligent switches are nothing but software
applications or ASICs that are built on these rickety operating systems. One of the primary
themes of this book is never to trust the operating system, to expect perimeter
components to fail. This book will show you techniques for failover, layering defense
components, segmenting internal networks, using instrumentation to detect anomalies,
and troubleshooting. In the early days of perimeter defense, the only choice that
information security practitioners had was to layer their perimeter software on these
rickety operating systems.

Fires in the West

For years, I was a network builder for the Department of Defense, which uses large, high-
end, fast networks. The most effective security mechanism for separation of sensitive
information was implemented with a physical solutionan airgap. If you want to protect one
network from another, just don't connect them together. Worms such as Blaster taught us
that many networks that supposedly were not connected to the Internet actually were in
one way or another, but if you audit carefully and never allow an exception, airgaps work.

The problem with an airgap is the two networks cannot interoperate, a concept directly in
contradiction with the Internet philosophy and electronic business. The past few years
have been a bad time for the U.S. West, as rain has been minimal, with fires starting
earlier and earlier each year it seems. One of the most effective tools for managing fires is
a firebreak; it isn't as powerful as an airgap (sometimes the fire will bridge it), but
segmenting the forest into zones is a powerful technique. The information technology
analog for a firebreak is to segment the internal network. This can be done with internal
intelligent Network Intrusion Prevention Switches (NIPS), with some elbow grease using
current generation switches and applying access control to VLANs, or with low-cost
appliance-type firewalls used on the internal network. It can even be done manually using
anomaly IDS to detect switch ports heating up, which is usually a signature of a worm,
and shutting down the switch. Segmenting internal networks with "firebreaks" allows us to
have the interoperability and reduce the risk of losing all our internal systems to a
destructive worm "wildfire."

This book discusses a number of perimeter and internal network designs. Some are more
focused on security, whereas others are focused on performance. Some focus on uptime
and help you to understand how to choose these designs based on your organization's
requirements.

Note

One of the reasons that early airplanes were so dangerous is that a large number
of them were hand built. Even if the planes were built in a factory, after a couple
of years, they might as well be hand built because of the number of times they
were repaired and modified.

Can you see how similar the early airplanes are to our server and desktop
operating systems? We all agree that patching to reduce the vulnerability
footprint is critical, but if no two servers are alike, exactly how do you test the
patch? Repeatable builds give an IT shop a major increase in security just like
factory-built aircraft.

So do appliance firewalls. They are factory built, plug and go. It's not guaranteed
that their OS is hardened, but you do know that the OS on the appliance is
factory built, consistent, and probably stripped of unneeded programs. These
low-cost appliances are very useful for segmenting an internal network.

Rapid Advances in Technology

Modern aircrafts have wings, fly through the air, and land on the groundand that is about
all they have in common with the first airplanes. The advances in airframe design,
materials, avionics, navigation and route selection, and airport operations make it difficult
to believe that people ever considered getting into the early airplanes.

I would love to say that modern perimeter systems are so advanced that it is
inconceivable that we ever tried to protect our systems with those early firewalls, but we
haven't made that much progress yet. However, hope prevails, and we certainly see
evidence of improvement. Perimeter defense systems have come way down in price for
any given bandwidth point; many can be upgraded by just downloading a new image.

Deep packet inspection at gigabit speed is possible right now for the well-funded
organization. Subscription models that update daily or weekly are the norm and support
an architecture of perimeter components to create hybrid systems that combine classic
perimeter defense, reporting sensors, and possibly even vulnerability assessments that
allow performing internal correlation.

This book discusses the importance of using the information collected by perimeter
devices to help defend the network. The data collected and reported by these devices fuels
the most advanced analysis capability in the worldthe Internet Storm Center (ISC).
Organizations such as ISC and Internet Security Systems's X-Force are often the first
groups to detect a new worm beginning to cause trouble on the Internet. One of the
upcoming models for security is continuous reporting, or operational readiness, and this
requires sensors all over the network to constantly report in. The technology of network
security is dynamic. It's important to have constant updates to maintain security in the
face of the ever-changing threat.

It is worth mentioning that ease of use and good security might be orthogonal. If it were
as easy to get into an airplane and fly as it is to get into a car and drive, the skies would
be a dangerous place. Appliance wireless access points often aggregate all wireless and
built-in wired ports into the same broadcast domains. Possibilities for attacks exist based
on MAC address spoofing, sniffing the internal traffic from outside the plant in the parking
lot, the use of rogue, unapproved access points bought at Best Buy and plugged into the
Net, access points with a bit more power than the FTC allows being broadcast into the
internal network from the parking lot, and failures of the authentication system. The most
common reason for aircraft crashes today is poor maintenance, and we are going to see
the same thing with wireless implementations as better security technology becomes
available.

Decline in Personal Service

More has changed on the human side of the airline equation than just the name change
from stewardesses to flight attendants . First class isn't first class, and it goes downhill
from there. The airlines seem to be testing the limits to see just how much abuse people
will takeand they wonder why they occasionally deal with passenger rage. Sadly, the IT
industry has never been big on personal service. There were exceptions, back in the glory
days of big blue. We had a bit of trouble with an IBM mainframe, and they tossed a squad
of technicians into an airplane and dropped them by parachute into our parking lot. Until
the technicians dropped on target, vice presidents would call every 15 minutes to apprise
us of the location of the plane. Okay, I am kidding, but not by much. Those of us in IT
security should take heed. I hope you understand what your CEO is thinking right now. He
gave you money for security after 9/11 because it seemed to be the right thing to do. You
still got hit by worms. He increased ITSEC to 5% of the IT budget. You still got hit by
worms. Now you are in a meeting thinking about asking the CEO for unplanned money to
implement a NIPS or HIPS solution. I strongly suggest you invest time in looking at your
requirements, making sure that you choose the best technology for your needs and that
customer service is part of the budget request so the people impacted by the active
defense layer you are thinking about implementing will have someone intelligent and
caring to call.

Nowadays, the IT industry has two primary features: bad software and worse service. One
of the advantages of this book is that the entire author team has pragmatic experience
with most of the commercial and freeware perimeter products on the market, including the
rapidly changing personal firewall market. We can't do much to help you with the bad
software, and we never intend to bash any vendoreach has its foibles. However, we can
help you in finding ways to meet your mission goals despite the flaws in the technology
we each use. We devote an entire chapter of the book to implementing defense
components, such as personal firewalls at a host level, to help you avoid some of the
common pitfalls and know what technology is available. The latest generation of Host
Intrusion Protection Systems (HIPS), which are essentially personal firewalls with
operating system shims to trap dangerous operating system interrupts, have already
proved themselves in production and are an important and valuable layer of defense.

Continuous Inspections

One of the primary reasons the aircraft industry has been able to make gigantic leaps in
improving safety is the rigorous, complete, and continuous inspections for every
component and process related to flying. This is also the most important change that we
need to make. When I teach at the SANS Institute, a security research and education
organization, I often say, "Who reads the event logs every day?" Some hands go up. I try
to memorize their faces and catch them alone at the break. Then I ask them, "What is in
the logs? What recurring problems are there?" They usually cannot answer. This book can
help you deploy sensors and scanners. An entire chapter is devoted to intrusion detection.
Even your organization's software architecture is a security perimeter component, as you
will learn in the software architecture chapter.

If you were to ask me what the growth industry in IT was, I would answer that consoles,
sensors, and agents to collect and display information would be a strong candidate.
Computer systems change rapidly. They are analogous to the barnstormer bi-planes that
flew around county fairs. When something broke, a blacksmith, automobile mechanic, or
seamstress fabricated a new part. We can add and uninstall software in a heartbeat, but
when we do, we cannot get back to the place where we were before the change. We need
to monitor for change continuously, and until we learn how to do this and rigorously
enforce change control, flying in computers will be nearly certain death.

Defense in Depth

It is a tragedy when a single passenger plane crashes, worse when a plane full of people
goes down, and an unspeakable horror when a plane is used as a weapon of terrorism.
Today, airports are transforming into examples of defense in depth . Defense in depth is a
primary focus of this book, and the concept is quite simple: Make it harder to attack at
chokepoint after chokepoint. How many security systems or defensive layers would you
have to defeat to rush through an airport race to a waiting, fueled, long-range jet,
commandeer the plane, drive it out on the tarmac to take off, and use it as a missile?
Many are obvious, such as security checkpoints, armed National Guard troops, locked
doors, and tarmac controls. If you did manage to get the plane in the air, you would also
have to defeat fighter aircraft. It isn't impossible, but it is unlikely that you could defeat
the defense in depth that is now employed at airports.

Defense in depth is present in every chapter of this book, and it's becoming easier to
implement in information technology. High-speed programmable hardware boxes, such as
UnityOne from TippingPoint, can help protect our network borders from worm outbreaks.
Technologies we have already discussed in this preface, such as next-generation
intelligent switches and HIPS, allow us to implement multiple layers for our perimeter and
internal networks, albeit at a significant cost. No matter what role you play in your
organization, it is important to read the intrusion prevention chapter and make sure the
folks in charge of the budget know what is on the horizon. As you read this book, you will
learn how to architect your network so that it is resistant to attack. As we evolve as an
information-based society, the importance of protecting intellectual property assets
continues to rise.

Core Business Sector

In less than a century, airplanes have gone from being an oddity to being vitally important
to the economy. Information technology has done the same in less time and continues to
grow in importance. We have been more than a bit lazy. I often wonder what the effect of
a worm with the infection rate of Blaster that overwrote (not deleted, overwrote) every
location on the hard drive of an infected computer four hours after infection would be. If
the Congress of the United States did not vote on a bailout package for the airline
industry, IT should not expect one. One of the primary keys to survival in business over
the next few years will be managing the flow of information so that resources are
available when they are needed with full integrity, while the confidentiality of proprietary
and sensitive information is maintained. It is a big task, so we had better get started.

Stephen Northcutt and the authoring team

Introduction
Welcome, and thank you for considering the second edition of Inside Network Perimeter
Security . This book is a unique volume because it has a consistent phrasing and style, yet
it consolidates the experience of more than a dozen information security professionals
working together as a team of writers and reviewers. Our goal was to create a practical
guide for designing, deploying, and maintaining a real-world network security perimeter.
This is a crucial topic because robust network defenses form the foundation of a reliable
and trustworthy computing infrastructure.

As Richard Clarke, the former U.S. cyber-security czar, pointed out during a keynote
address at a SANS Institute conference: "The perimeter is crumbling. Wireless
technologies, worms, and our gadget mentality are the reason." Given the porous nature
of the modern perimeter, protecting the network is not an easy task; it requires that you
get to know different types of technologies and understand how they relate to each other.
This is why we discuss key perimeter security components, such as firewalls, VPNs,
routers, as well as intrusion detection and prevention systems. We also explain how to
integrate these devices with each other to form a unified whole. There is no single gadget
that can protect our networks against all threats, which is why we focus on layered
security architectures. This concept of defense in depth is present throughout the book,
and we believe it holds a key to the practical use of the perimeter security techniques
discussed here.

Who Should Read This Book

This is an intermediate- to advanced-level book for security professionals and system and
network administrators who have a good understanding of TCP/IP and related
technologies. This book is a valuable reference for individuals who are interested in
examining best practices of perimeter defense and in expanding their knowledge of
network security tools and techniques. Because the book was developed in close
coordination with the SANS Institute, it is also an excellent supplementary resource for
those pursuing the GIAC Certified Firewall Analyst (GCFW) certification.

Why We Created This Book's Second Edition

The world of information security is evolving, as attackers develop new tools and
techniques, and as defenders create new protective mechanisms. In turn, we have
updated this book to ensure that it continues to be a useful resource for those responsible
for protecting their organizations' network resources. We have expanded the coverage of
perimeter security by adding two brand new chapters: one focusing on intrusion
prevention systems, and the other on security of wireless networks. We also carefully
went through the book's other chapters, revising them where appropriate to address
current threats, to describe advancements in defensive technologies, and to improve the
way we explain core concepts. No book is perfect; revising this book has given us the
opportunity to come a bit closer to this unattainable goal.

Overview of the Book's Contents

We would like to introduce this book from a 50,000-foot view. Part I, "The Essentials of
Network Perimeter Security," covers the first five chapters and serves as a foundation for
later chapters. The first chapter presents an overview of everything we will talk about
throughout the book. Other chapters in Part I discuss core perimeter security concepts,
such as packet filtering, stateful firewalls, proxies, and security policy.

Part II, "Fortifying the Security Perimeter," comprises Chapters 6 through 11 and
concentrates on additional components that make up a network security perimeter. Here,
we examine the role of routers, virtual private networks (VPNs), network intrusion
detection systems (IDSs), intrusion prevention systems (IPSs), and host-centric defense
mechanisms.

Good design is covered in Part III, "Designing a Secure Network Perimeter," where we
focus on integrating perimeter components into a unified defense architecture. Chapters
12 through 18 describe ways of achieving defense in depth that are appropriate for your
needs and budgets, letting you apply what you have learned about security devices and
approaches. In addition to discussing design fundamentals, we focus on topics such as
resource separation, wireless network security, software architecture, and VPN
integration. We also explain how to tune a security design to achieve optimal
performance, and we look at several sample architectures.

Part IV, "Maintaining and Monitoring Perimeter Security," which comprises Chapters 19
through 24, concludes the book by answering the famous question, "How do you know?" It
presents a discussion of understanding what the perimeter systems are telling us and of
ensuring that the perimeter operates according to its design. We examine perimeter
maintenance procedures, log analysis, and troubleshooting approaches. We also describe
techniques for assessing the strength of your defenses and explain how to conduct an
adversarial review of the network architecture. The last chapter summarizes defense-in-
depth concepts that have been described throughout the book. It is a mirror in some sense
of the first chapter, but it is used to wrap up prime concepts of the book.

We have also outfitted the book with two appendixes, where we provide sample Cisco
access list configurations and discuss fundamentals of cryptography that are relevant to
network defense. Designing, deploying, and maintaining a network security perimeter is a
challenging journey, and we hope that our approach to network defense makes your path
more comfortable.

Conventions

This book follows a few typographical and stylistic conventions:

New terms are set in italic the first time they are introduced.

Whenever possible, we reference the Common Vulnerabilities and Exposures (CVE) database to allow
you to obtain additional information about the vulnerabilitiesfor example,
http://cve.mitre.org/cgibin/cvename.cgi?name=CAN-2004-0965.

Commands, file locations, variables, and other "computer language" instructions are set in a monospace
fontfor example, GET, AllowHosts, and access-list.

We also use italic to indicate the use of a placeholder in the text. For example, in the following IOS
command, you should substitute "gateway IP" with an actual IP address: ip route 0.0.0.0 0.0.0.0
gateway IP .

When a line from command, code, or log listing is too long to fit on the page, we use the code-
continuation character to indicate that we wrapped the line that did not originally have a line break.
Here's an example:
[View full width]
Jan 28 03:15:26 [10.20.30.40] 265114: %SEC-6-IPACCESSLOGP: list 105 denied tcp 172.30.128
.12(1947) -> 10.20.1.6(80), 1 packet

We often use sidebars to describe our own experiences and to present illustrative examples. Therefore,
the text in most sidebars is worded in a first person voice. Here's an example:

At Least Lock the (Screen) Door

I once encountered a network without a screened subnet or a DMZ. The DNS server resided
on the internal network, which was a hub-based environment. When an attacker
compromised the DNS server, he installed a sniffer and was able to glean internal
passwords. If the DNS server had been on a switched screened subnet, the attacker's ability
to sniff passwords would have been greatly inhibited.

Finally, within each chapter, you will encounter several Notes and Tips:

Tip

Tips are used to highlight shortcuts, convenient techniques, or tools that can make a task
easier. Tips also sometimes provide recommendations on best practices you should follow.

Note

Notes provide additional background information about a topic being described, beyond what is

given in the chapter text. Often, notes are used to provide references to places you can find
more information about a particular topic.

Part I: The Essentials of Network
Perimeter Security

 1 Perimeter Security Fundamentals

 2 Packet Filtering

 3 Stateful Firewalls

 4 Proxy Firewalls

 5 Security Policy

Chapter 1. Perimeter Security
Fundamentals
The security of your network is evaluated daily. A rich question to ask is, "Are you the one
doing it?" The answer, hopefully, is that someone on your side is involved in assessing the
effectiveness of your defenses; however, overwhelming evidence reports that you are not
the only party probing your network's perimeter. Internet-facing systemscomputers with
IP addresses that can be reached from the Internetreceive between several and hundreds
or even thousands of attack attempts every day. Many of these are simple scans that we
know how to defend against, but others catch us by surprise, unexpectedly shifting us into
incident investigation and cleanup mode.

Does your organization have access to expertise in all aspects of perimeter security,
including networking, firewalls, intrusion detection systems (IDSs), intrusion prevention
systems (IPSs), Virtual Private Networks (VPNs), UNIX security, and Windows security? In
the pages ahead, we will show you how all these protective measures work together. Can
you definitively say how secure or insecure your network is? Does everyone in your
organization understand the policies related to information security and their implications?
One hint that they do not is the famous expression, "But we have a firewall!" If you work
in information security, you probably hear this phrase more often than you would like to,
because it seems to express the opinion of many people, both technical and nontechnical.

One of the most challenging aspects of securing modern networks, even those that already
have firewalls, is that they exhibit porous properties. Wireless connections, portable
storage devices, mobile systems, and links to partner sites offer a multitude of ways in
which data can get in and out of our networks, bypassing our border defenses. This is one
of the reasons why a single security component cannot properly defend a network.
However, many components working together can. Defense in depth , a major theme of
this chapter and this book, is the process of layering these components to capitalize on
their respective strengths. It is flexible, in that it allows us to select components based on
technical, budgetary, and organizational constraints and combine them in a way that
doesn't compromise the overall security or usability of the network.

We will begin this chapter by defining some common terms of the trade to ensure that
we're all on the same page. Then we'll discuss core components of defense in depth, to
illustrate how various aspects of the security perimeter can complement each other to
form a balanced whole. We will close with a discussion of the Nimda worm and show how
defense in depth can help protect your network against such an attack.

Terms of the Trade

We need a common frame of reference when it comes to terms used throughout the book,
because one person's definitions might not be the same as someone else's. To that end,
we'll define the perimeter, the border router, a firewall, an IDS, an IPS, a VPN, software
architecture, as well as De-Militarized Zones (DMZs) and screened subnets.

The Perimeter

What exactly is the perimeter? Some people, when they hear the term perimeter , may
conjure up an image of a small squad of soldiers spread out on the ground in a circular
formation. Others may come up with the circling-the-wagons image. Before we move on,
ask yourself, "What is a perimeter?"

In the context of this book, a perimeter is the fortified boundary of the network that might
include the following aspects:

Border routers

Firewalls

IDSs

IPSs

VPN devices

Software architecture

DMZs and screened subnets

Let's take a look at these perimeter components in closer detail.

Border Routers

Routers are the traffic cops of networks. They direct traffic into, out of, and within our
networks. The border router is the last router you control before an untrusted network
such as the Internet. Because all of an organization's Internet traffic goes through this
router, it often functions as a network's first and last line of defense through initial and
final filtering.

Firewalls

A firewall is a chokepoint device that has a set of rules specifying what traffic it will allow
or deny to pass through it. A firewall typically picks up where the border router leaves off
and makes a much more thorough pass at filtering traffic. Firewalls come in several
different types, including static packet filters, stateful firewalls, and proxies. You might
use a static packet filter such as a Cisco router to block easily identifiable "noise" on the
Internet, a stateful firewall such as a Check Point FireWall-1 to control allowed services,
or a proxy firewall such as Secure Computing's Sidewinder to control content. Although
firewalls aren't perfect, they do block what we tell them to block and allow what we tell
them to allow.

Intrusion Detection Systems

An IDS is like a burglar alarm system for your network that is used to detect and alert on
malicious events. The system might comprise many different IDS sensors placed at
strategic points in your network. Two basic types of IDS exist: network-based (NIDS),
such as Snort or Cisco Secure IDS, and host-based (HIDS), such as Tripwire or ISS
BlackICE. NIDS sensors monitor network traffic for suspicious activity. NIDS sensors often
reside on subnets that are directly connected to the firewall, as well as at critical points on
the internal network. HIDS sensors reside on and monitor individual hosts.

In general, IDS sensors watch for predefined signatures of malicious events, and they
might perform statistical and anomaly analysis. When IDS sensors detect suspicious
events, they can alert in several different ways, including email, paging, or simply logging
the occurrence. IDS sensors can usually report to a central database that correlates their
information to view the network from multiple points.

Intrusion Prevention Systems

An IPS is a system that automatically detects and thwarts computer attacks against
protected resources. In contrast to a traditional IDS, which focuses on notifying the
administrator of anomalies, an IPS strives to automatically defend the target without the
administrator's direct involvement. Such protection may involve using signature-based or
behavioral techniques to identify an attack and then blocking the malicious traffic or
system call before it causes harm. In this respect, an IPS combines the functionality of a
firewall and IDS to offer a solution that automatically blocks offending actions as soon as
it detects an attack.

As you will learn in Chapter 11, "Intrusion Prevention Systems," some IPS products exist
as standalone systems, such as TippingPoint's UnityOne device. Additionally, leading
firewall and IDS vendors are incorporating IPS functionality into their existing products.

Virtual Private Networks

A VPN is a protected network session formed across an unprotected channel such as the
Internet. Frequently, we reference a VPN in terms of the device on the perimeter that
enables the encrypted session, such as Cisco VPN Concentrator. The intended use might
be for business partners, road warriors, or telecommuters. A VPN allows an outside user to
participate on the internal network as if connected directly to it. Many organizations have
a false sense of security regarding their remote access just because they have a VPN.
However, if an attacker compromises the machine of a legitimate user, a VPN can give
that attacker an encrypted channel into your network. You might trust the security of your
perimeter, but you have little control over your telecommuters' systems connecting from
home, a hotel room, or an Internet café. Similar issues of trust and control arise with the
security of nodes connected over a VPN from your business partner's network.

Software Architecture

Software architecture refers to applications that are hosted on the organization's network,
and it defines how they are structured. For example, we might structure an e-commerce
application by splitting it into three distinct tiers:

The web front end that is responsible for how the application is presented to the user

The application code that implements the business logic of the application

The back-end databases that store underlying data for the application

Software architecture plays a significant role in the discussion of a security infrastructure
because the primary purpose of the network's perimeter is to protect the application's data
and services. When securing the application, you should ensure that the architecture of

the software and the network is harmonious.

De-Militarized Zones and Screened Subnets

We typically use the terms DMZ and screened subnet in reference to a small network
containing public services connected directly to and offered protection by the firewall or
other filtering device. A DMZ and a screened subnet are slightly different, even though
many people use the terms interchangeably. The term DMZ originated during the Korean
War when a strip of land at the 38th parallel was off-limits militarily. A DMZ is an insecure
area between secure areas. Just as the DMZ in Korea was in front of any defenses, the
DMZ, when applied to networks, is located outside the firewall. A firewall or a comparable
traffic-screening device protects a screened subnet that is directly connected to it.
Remember this: A DMZ is in front of a firewall, whereas a screened subnet is behind a
firewall. In the context of this book, we will adhere to these definitions. Note the
difference in Figure 1.1.

Figure 1.1. The DMZ is located in front of the firewall; the screened
subnet is isolated from the internal network, but it still enjoys the

protections that the firewall offers.

A screened subnet is an isolated network that is connected to a dedicated interface of a
firewall or another filtering device. The screened subnet is frequently used to segregate
servers that need to be accessible from the Internet from systems that are used solely by
the organization's internal users. The screened subnet typically hosts "public" services,
including DNS, mail, and web. We would like to think these servers are bastion hosts . A
bastion is a well-fortified position. When applied to hosts on a network, fortifying involves
hardening the operating system and applications according to best practices. As attacks
over time have shown, these servers are not always well fortified; in fact, they are

sometimes vulnerable despite being protected by a firewall. We must take extra care
fortifying these hosts because they are the target of the majority of attacks and can bring
the attacker closer to accessing even more critical internal resources.

Now that we have defined core components of the network perimeter, let's look at how
they can be applied in an architecture according to the principle of defense in depth.

Defense in Depth

A well-structured defense architecture treats security of the network like an onion. When
you peel away the outermost layer, many remain underneath it. No concept carries more
importance when discussing network security than defense in depth . Defense in depth
helps you protect network resources even if one of the security layers is compromised.
After all, no single security component can be guaranteed to withstand every attack it
might need to face.

We operate in a real world of system misconfigurations, software bugs, disgruntled
employees, and overloaded system administrators. Moreover, any practical security design
needs to accommodate business needs that might require us to open certain firewall ports,
leave additional services running on the server, or prevent us from applying the latest
security patch because it breaks a business-critical application. Treating perimeter
security components as parts of a coherent infrastructure allows us to deploy them in a
way that accounts for the weaknesses and strengths of each individual component.
Ofcourse, given the requirements of your organization, you might choose not to implement
every component discussed in this chapter. The extent to which you need to apply network
security layers depends on the needs and capabilities of your business.

After introducing defense in depth in this section, we will use it as the guiding principle
behind designs and implementations throughout this book. In fact, this topic is so
important, we will conclude the book with a chapter devoted specifically to this topic.

Crown Jewels

Think of any information that would have significant adverse affects if
compromised as your organization's crown jewels. What are your company's
crown jewels? How well protected are they?

Take the case of CD-Universe. Maxim, a Russian cracker, compromised 300,000
credit card numbers late in 1999. CD-Universe refused to pay his $100,000
ransom demand. In response, Maxim posted 25,000 numbers on a website on
Christmas Day 1999.

CD-Universe had their crown jewels compromised and undoubtedly felt the
effects in lost sales and consumer confidence. When mitigating such risks, we
must consider what our organization's crown jewels are and what protecting
them is worth when we implement defense in depth if we want to avoid similar
problems for our organizations.

Components of Defense in Depth

What exactly does defense in depth entail? The simple answer is the perimeter, the
internal network, and a human factor. Each of these comprises many components, which
are independently not enough to secure a network. The key lies in each component
complementing the others to form a complete security picture.

The Perimeter

When we think of network security, we most often think of the perimeter. As we

mentioned earlier in this chapter, the perimeter includes any or all of the following:

Static packet filter

Stateful firewall

Proxy firewall

IDS and IPS

VPN device

We have already introduced these security components to you. Now, let's take a look at
how they might work together to form a defense-in-depth infrastructure.

Static packet filters inspect basic information within every packet and are typically
implemented as routers. The border device is the first incoming and the last outgoing
layer of your network security. It contributes to defense in depth by filtering traffic before
it enters or exits your network. All too often, we only consider filtering incoming traffic,
but then we don't get the full usability of our border router.

Improperly destined traffic might be internal addresses that hit your external interface, or
vice versa, and they can be addressed with ingress and egress filtering. Border routers can
also block traffic that is considered high risk from entering your network, such as traffic
on the SANS Top 20 Vulnerabilities list (http://www.sans.org/top20). ICMP is a favorite of
attackers both for DoS attacks and reconnaissance, so blocking this protocol in whole or in
part is a common function of a border router. You may also consider blocking source-
routed packets at the border router because they can circumvent defenses. The border
router can also block out-of-band packets, such as SYN-FIN packets.

On February 9, 2000, websites such as Yahoo! and CNN were temporarily taken off the
Internet, mostly by distributed denial of service (DDoS) Smurf attacks. A Smurf attack
involves sending spoofed ICMP echo requests (ping) to the broadcast address, resulting in
a response from every host. In this case, spoofing allowed attackers to direct the large
number of responses to a victim network. Ingress and egress filtering would have blocked
the spoofed traffic and allowed them to weather the DDoS storm. Every network should
have ingress and egress filtering at the border router to permit only traffic that is destined
for the internal network to enter and traffic that is destined for the external network to
exit. We will cover filteringincluding ingress and egress filtersin Chapter 2, "Packet
Filtering."

Static packet filters, such as routers, are faster at screening traffic than stateful or proxy
firewalls. This speed comes in handy when you are under attack or when the firewall is
already under a heavy load. What if you don't have a border router under your exclusive
control? If your Internet connection is relatively small (T1 or less), then performing
filtering solely on a firewall might be sufficient.

Unlike static packet filtering devices, stateful firewalls keep track of connections in a state
table and are the most common type of firewall. A stateful firewall blocks traffic that is not
in its table of established connections. The firewall rulebase determines the source and
destination IP and port numbers permitted to establish connections. By rejecting
nonestablished, nonpermitted connections, a stateful firewall helps to block
reconnaissance packets, as well as those that may gain more extensive unauthorized
access to protected resources.

Recon Is the Name of the Game

My cable modem at home receives several scans per day. Previously with the
IPChains firewall I had in place, Nmap ACK scans would pass through and
successfully scan me. They were successful because nonstateful, static packet
filters, such as IPChains, evaluated each packet independently and did not track
state. The presence of the ACK bit made it appear that I had initiated the
connection and the ACK was the response. Without a stateful firewall in place,
reconnaissance of my machine was relatively easy.

Stateful firewalls are able to recognize and block traffic that is part of a nonestablished,
nonpermitted connection, such as attempts at reconnaissance. The ability to block
reconnaissance attempts that hit your firewall, such as the Nmap ACK scan, make stateful
firewalls a valuable part of defense in depth by adding another layer of security to your
network. An alternative, and sometimes a complement to a stateful firewall, is a proxy
firewall.

Proxy firewalls are the most advanced and least common type of firewall. Proxy firewalls
are also stateful, in that they block any nonestablished, nonpermitted connections. As with
stateful firewalls, the firewall rulebase determines the source and destination IP and port
numbers that are permitted to establish connections. Proxy firewalls offer a high level of
security because internal and external hosts never communicate directly. Rather, the
firewall acts as an intermediary between hosts. Proxy firewalls examine the entire packet
to ensure compliance with the protocol that is indicated by the destination port number.
Ensuring that only protocol-compliant traffic passes through the firewall helps defense in
depth by diminishing the possibility of malicious traffic entering or exiting your network.

Using proxy firewalls diminishes the possibility of malicious traffic entering or exiting your
network by ensuring that only protocol-compliant traffic passes through. However, what
happens if malicious traffic appears to be appropriate material and adheres to the
protocol?

An IDS represents the eyes and ears of a network by monitoring the network and hosts
from critical points for malicious activity. Typical network IDS sensor placement includes
each network segment directly connected to the firewall, as well as critical points within
the network. If malicious traffic bypasses your other defense mechanisms, an IDS should
be able to detect it, as well as communicate what it sees. This is precisely how an IDS
helps with defense in depth.

For example, a network IDS could identify and alert on the following:

DNS zone transfer requests from unauthorized hosts

Unicode attacks directed at a web server

Buffer overflow attacks

Worm propagation

There are numerous incidents where successive fast-spreading worms have brought down
large international networks. If these companies had been able to identify and isolate the
infected machines quickly each time a new worm hit, they could have kept their networks
functioning. An IDS with the correct signature would facilitate that identification. An IDS
can help identify malicious traffic that might otherwise appear normal to an untrained eye.
For example, a DNS zone transfer is a legitimate and common operation for peered DNS
servers to engage in. However, we should consider zone transfers outside of those hosts
dangerous.

An IDS contributes toward a defense-in-depth architecture by detecting and reporting

suspicious activity. This functionality can be augmented by deploying an IPS, which, in
addition to detecting attacks, attempts to automatically thwart them. Intrusion prevention
is becoming a popular term in literature describing firewall and IDS productssuch "active
response" technology gives us an opportunity to block malicious activity in situations
where the likelihood of falsely identifying an attack is low.

An IDS allows us to tune our defenses to match the current threats. Furthermore,
correlation of router, firewall, VPN, and system logs can yield some information about
suspicious activity on the network. These logs are not meant to replace the granularity
and extensiveness of IDS logs, but to augment them. Logs from non-IDS perimeter
components can help significantly when the network IDS logs are of no use, such as when
the traffic is encrypted in route to a VPN device.

VPNs protect communications over unprotected networks, such as the Internet. They
improve security by offering confidentiality, integrity, and nonrepudiation. For example, a
VPN can allow your employees working from home to connect to your servers in a
trustworthy manner even while traversing the Internet. In this scenario, the VPN will
make sure that no one can monitor the protected traffic, that no one can modify it without
being detected, and that the data really came from the expected user. VPNs are
appropriate for a wide range of applications and are often useful when dedicated private
lines are too expensive or impractical for connecting network nodes. Protecting
communications over unprotected networks helps us defend our networks with depth.

VPNs are wonderful tools or wonderful weapons, depending on who is using them. By
providing protected communications over unprotected channels, a VPN is a tool to
legitimate users. If, however, the endpoints of a VPN connection are not secure, an
attacker might be able to gain a protected channel into your internal network, giving him
an awesome weapon. In our experience, many large networks that have been severely
crippled by worms were affected by the same type culprit during every infection: a VPN
user who was working from home. Users would surf the Web using their personal
broadband connections at night before logging onto the internal network the following day
via the VPN. A worm infected their machines when they were connected to the Internet at
night. When they connected to the internal network the following day, the worm
propagated to the internal network and ran rampant.

VPNs offer significant cost savings over the previous alternative of frame relay or a private
line. We can use a VPN to protect all traffic from one network to another (network to
network), between two hosts (host to host), or from a single host to a network (host to
network). Knowing this, the way in which we configure our networks becomes increasingly
important.

All too often, security is not a primary concern to a business when putting a network in
place. A thought-out network architecture is vital to defense in depth because it
segregates resources and provides for performance and redundancy. A well-designed
infrastructure can act as a business enabler, rather a stumbling block to the organization.

We need to do the following when evaluating a network security architecture:

Determine what resources need to be protected.

Determine the risk.

Determine business requirements.

With this information, we can make educated decisions regarding our network defenses.

A solid network architecture created with security in mind will segregate resources and
provide for performance and redundancy. Segregating resources is vital to defense in
depth, and we will look at it closely in Chapter 13, "Separating Resources." We must keep
in mind that no matter how segregated a host is from a network viewpoint, its
configuration must also be hardened.

At Least Lock the (Screen) Door

I once encountered a network without a screened subnet or a DMZ. The DNS
server resided on the internal network, which was a hub-based environment.
When an attacker compromised the DNS server, he installed a sniffer and was
able to glean internal passwords. If the DNS server had been on a switched
screened subnet, the attacker's ability to sniff passwords would have been
greatly inhibited.

The Perfect Onion?

Recently I was on site with a client who was telling me all about his company's
layered security. The company had proxy firewalls, a big border router, IDSs,
VPNs, a good designyou name it. When I asked about the security of the public
DNS server, he told me that "it was fine" and that with so much security in
front, the company wasn't too worried about it. Talk about locking the door but
leaving the window open!

The organization had segregated and protected this DNS server quite well.
However, in neglecting to harden the host, the company had wasted a lot of
work on securing the rest of the perimeter. Further investigation revealed that
an attacker could have easily compromised the server, obtained a shell, and
exploited a trust relationship with the internal DNS server, leaving him inside
the network with a critical server.

We've discussed how various components of the perimeter contribute to the overall
security of our network through defense in depth. Although vital, the external perimeter is
only one piece of defense in depth. Next, we examine a piece that many organizations
neglect to properly address: the internal network.

The Internal Network

The internal network is the network that is protected by the perimeter and that contains
all the servers, workstations, and infrastructure with which a company conducts business.

So often, administrators of various types say, "We can trust our own people."
Organizations often neglect the security of the internal network because they don't
consider an internal attack a risk. An internal attack doesn't have to be a malicious
employee; it can be a careless employee as well. As organizations are learning each time
a new worm comes out, they cannot afford to overlook the security of the internal
network!

Let's shift gears for a minute. Conjure up an image of what you consider a highly skilled
attacker. Imagine him breaking into your most sensitive systems…while sitting at your
desk. What would stop him?

On the internal network, we could have the following "perimeter" devices:

Ingress and egress filtering on every router

Internal firewalls to segregate resources

IDS sensors to function as "canaries in a coal mine" and monitor the internal network

On protected systems, we can use the following:

Host-centric (personal) firewalls

Antivirus software

Operating system hardening

Configuration management

Audits

Host-centric (personal) firewalls are generally implemented as software modules that run
on individual machines, screening network traffic as it enters and leaves the system.
Many are configurable on a per-application basis, meaning that the user determines which
applications have rights to access the Internet or function as servers (accept incoming
connections). Personal firewalls help defense in depth by augmenting the perimeter on
every host.

You might ask, "Why do I need a personal firewall if I'm already behind a network firewall
at work?" A personal firewall at work can protect you from malicious programs, such as
Trojans, and other internal hosts, as is the case with malicious internal users. If you do
not have a personal firewall and connect to the Internet outside of work (such as the hotel
room while traveling or the home office when working from home), you cannot assume
that you are being protected.

Personal Firewall to the Rescue

Recently, a nontechnical co-worker asked me why a personal firewall on her
office desktop kept popping up alerts. My curiosity immediately piqued, as I
seriously doubted there was a hole in the company firewall. I discovered that
she used a dial-up connection to check her personal email, and it had created a
tunnel to her machine. She was being probed through the dial-up network for a
vulnerability her machine had. If she had not had a personal firewall in place,
an attacker could have run rampant on the internal company network.

Host-centric firewalls are wonderful pieces of software that augment the perimeter. If a
traditional firewall cannot be deployed at the network's entry point, host-centric firewalls
are cost-effective alternatives, especially if the network hosts a small number of systems.
Host-centric firewalls are also useful for mobile users who connect to a network outside of
work. Almost every network needs firewall technology of some sort, be it with static
packet filters, stateful firewalls, or proxy firewalls on the perimeter or the individual
machines. Most networks with user-level workstations also need an antivirus capability.

In many respects, antivirus software and network IDSs are similar in that they frequently
operate by examining data for signatures of known malicious intent. Antivirus software
typically looks at the data on the file system and in RAM, whereas a network IDS
examines data on the network. As vendors package antivirus, personal firewall, and IDS
technology into a single product, the line distinguishing the three becomes increasingly
vague. The role of antivirus in defense in depth is clearit protects against malicious code.

We can augment our antivirus capability on the desktop through products that couple with
perimeter components, such as firewalls and email servers. The effectiveness of antivirus
software drastically decreases if it is not regularly updated, or if it does not yet provide a
signature to identify the latest virus or worm. This is often the case with worms, which
propagate very quickly. Locking down the host's configuration becomes critically important
in the case of ineffective antivirus software.

Host hardening is the process of tightening the configuration of the host's OS and
applications with the purpose of securing any unnecessary openings on the system. This
typically involves applying relevant OS and application patches, setting file system
permissions, disabling unnecessary services, and enforcing password restrictions. If
everything else fails, host hardening is the last layer protecting an individual system. That
makes it vital to defense in depth.

Consider the nontechnical co-worker who was checking her personal email through a
hotel's dial-up connection. What if she had not installed a personal firewall or antivirus
software? If basic hardening had been performed, she would have likely presented the
attacker with a variety of vulnerabilities to exploit. It is all too easy to forget about host
hardening when multiple layers of defense are surrounding the system. The fact remains
that those defenses are not perfect, and we need that last layer. The question of how to
keep on top of host hardening naturally arises.

Configuration management is the process of establishing and maintaining a known
configuration for systems and devices that are on the network. Large companies might
have an automated means of manipulating the configuration of all hosts, whereas small
companies might perform the process manually. Defense in depth benefits from the ability
to enforce a standard configuration.

Configuration management can enforce the following:

That all Windows machines have a particular service pack installed

That all Linux machines have a specific kernel running

That all users with remote-access accounts have a personal firewall

That every machine has antivirus signatures updated daily

That all users agree to the acceptable-use policy when they log on

Some of these tasks naturally lend themselves to large-scale automation, whereas others
we can accomplish manually.

Who Is Responsible for Configuration Management?

A client recently called me in to handle a worm outbreak. My first question of
the systems administrator was whether the OS on all hosts was up to the latest
patch level. It turned out that he had not kept up with the latest patches
because every host had antivirus software that each user was to update weekly.
As you can imagine, many hosts had out-of-date antivirus signatures, which
resulted in the worm freely exploiting unpatched OS vulnerabilities. We ended
up spending at least a week eradicating worm infections and updating system
configurations to make them more resilient to such attacks.

Configuration management is the best way to establish a standard, secure configuration so
that damage from incidents is limited. It can also enable your organization to control
unauthorized software installation. Configuration management is an important piece of
defense in depth because it enforces a standard configuration. How can we verify that a
configuration is a secure one that remains unchanged?

Auditing is the process of resolving perception to reality and improving upon that. Internal
staff or external consultants can perform audits. The information that we present next was
written from a perspective of an external consultant, but it applies to either situation.
Verifying the current state of security and improving upon it is vital to defense in depth.

An audit typically progresses like this:

1. An informational meeting is held to plan the audit. At the first informational meeting,
the auditor finds out what the client wants and expects and establishes risks, costs,
cooperation, deliverables, timeframes, and authorization.

2. Fieldwork begins (implementing the audit). When the client is ready, the auditor
performs the audit in line with what we established in the planning session.

3. The initial audit report (technical report) takes place. The auditor might prefer to give
an initial audit report to the technical representatives of a client before their
management sees the final report. This provides the technical staff with an opportunity
to address some concerns before the final report goes to management. This also
ensures that the technical representatives know what their management will see and
can offer clarification on any issues.

4. The final audit report (a nontechnical report with the final technical report) takes
place. The final audit report typically contains an executive summary, the general
approach used, the specific methodology used, and the final technical report.

5. Follow-up occurs (verified recommendations are performed).

When the client is ready, the auditor may return to verify that the issues have been
resolved.

Just like you go to your doctor on a regular basis for a physical to make sure you're as
healthy as you think you are, you should check your network on a regular basis to ensure
that your perception and the reality of your defenses coincide. Consider an audit
preventative maintenance. An audit is the only tool in defense in depth to verify that
everything is as it should be.

Securing the internal network with host-centric firewalls, antivirus software, and host
hardening is not a trivial task. Configuration management and audits can help you
accomplish this. Addressing security on the external perimeter and the internal network is
not enough. Next, we will complete the defense-in-depth picture by discussing the human
factor.

The Human Factor

Frequently, we get caught up in the technical aspect of network security without
considering its nontechnical element. Tasks such as optimizing the firewall rulebase,
examining network traffic for suspicious patterns, and locking down the configuration of
systems are certainly important to network security. What we often forget is the human
end of things, such as the policies and awareness that go along with the technical
solution.

Policy determines what security measures your organization should implement. As a
result, the security policy guides your decisions when implementing security of the
network. An effective defense-in-depth infrastructure requires a comprehensive and
realistic security policy.

Hallmarks of good policy include the following:

Authority Who is responsible.

Scope Who it affects.

Expiration When it ends.

Specificity What is required.

Clarity Can everyone understand it?

The Importance of Having a Documented Security Policy

In the initial planning meeting with clients, the first thing I always ask for is
the security policy. Many times, the client gives me a quizzical look and asks
why I would need it. I try to explain that policy and security are not separate
entities, but determine one another.

If only a lawyer could read your security policy, it needs to be reevaluated.
We'll take a good, long look at this issue in Chapter 5, "Security Policy." A
caveat about policy: It only works if someone reads it.

User awareness is like driver's education. Users can reduce risk and help defense in depth
if they know and follow the security policy. Here are some of the actions you can take to
increase user awareness of your organization's security policy:

Have every user sign an acceptable-use policy annually.

Set up a security web page with policies, best practices, and news.

Send a "Security Tip of the Week" to every user.

A direct benefit of aware users comes when considering social-engineering attacks. For
example, if users know not to give their password to other people, a potential attack might
be thwarted. When users are aware of policy, there tends to be fewer incidents and
misunderstandings, and users feel more involved in security. Additionally, in the case of
policy violations, if the users are educated, it's harder for people to claim that they didn't
know they were doing something wrong.

Get It in Writing

I'm reminded of a time in my intemperate youth when I used the phrase, "I
didn't know that; it was never communicated to me," regarding an acceptable-
use policy. I've heard this same phrase repeated in a number of different
circumstances. There is not much to be said when you have a signature
affirming that a user agrees to and understands a policy. I have found a signed
policy statement to be more valuable than gold in terms of time and effort
saved.

Remember: Defense in depth hinges on the human factor of policy and user awareness.
Policy determines what security measures your organization should implement. Those
security measures should reflect policy. Defense in depth is the means to policy
implementation; it depends on it.

We've examined the components of defense in depth and how they contribute to security
of the network. Defense in depth is a flexible concept that allows you to create an
effective security infrastructure that reflects the requirements of your organization. For
example, smaller organizations might not be able to afford some of the components we
discussed, but alternatives usually exist. Regardless of the size of your organization,
policy and user awareness are necessary.

We'll wrap up this chapter by looking at a real-world case where defense in depth could
have saved an organization a lot of time, effort, and money.

Case Study: Defense in Depth in Action

The Nimda worm hit the Internet on September 18, 2001, causing a costly denial of
service (DoS) condition for many organizations. Nimda was unique in that it spread via
several distinct methods:

IIS exploits

Email

HTTP browsing

Windows file shares

The use of several distinct propagation methods made Nimda particularly vicious, because
it could infect server-server, server-client, and client-client. As a result, Nimda was able
to infect the entire range of Windows operating systems.

A large international network of 10,000 servers was brought to its knees in a matter of
hours because of Nimda. This organization discovered first-hand the cost of not heeding
the defense-in-depth concept. Defense in depth could have mitigated Nimda.

How could this company have used the perimeter to mitigate Nimda? Using routers to
preemptively block or restrict web access (HTTP) and file access (SMB) traffic in the
inbound direction could have prevented infection via the first and fourth methods. A rate-
limiting switch would have been able to dampen the effects of a DoS in the case of mass
infections. Static filters or stateful firewalls, set up to block or restrict HTTP and SMB
packets, also would have helped. Proxy firewalls, configured to block known strings within
Nimda, would be effective as well. If the company had properly segregated public services
on a screened subnet, few machines would have been facing the Internet. Given that
Nimda achieved saturation in approximately 2.5 hours, it is safe to say that most
organizations did not know of Nimda until it had penetrated their internal network. What
could have mitigated Nimda on the internal network?

The internal network could have used many of the same components that the external
perimeter had available, such as routers, firewalls, IDSs, and IPSs. Additionally, the
internal network could have contained host-centric (personal) firewalls capable of blocking
some IIS and windows file share access. The company could have attempted to use
antivirus software to mitigate Nimda, although reliable antivirus signatures for Nimda
were not available until the end of the day when this worm hit. Host hardening had the
highest potential of success in blocking Nimda by preventing infection entirely. Nimda
used an old exploit that administrators should have patched well before the worm began
spreading. Had the company applied the patch, it would have stopped all four propagation
methods. Additionally, this vulnerability was widely known, and regular audits would have
found that the organization was open to such an attack.

A robust security policy could have also helped mitigate the spread of Nimda. Given a
thought-out incident-handling procedure, sections of the network could have been isolated
to patch the vulnerabilities or contain the spread of the worm. If the company had
established a user-awareness program before the attacks, user behavior might have
prevented infection (especially via email).

Why did Nimda run rampant when so many methods were available to mitigate its spread?
Perhaps organizations had one or more important components of defense in depth missing.
Perhaps organizations had the wrong pieces of defense in depth in place by focusing
entirely on the perimeter while neglecting the internal network. Perhaps organizations
didn't follow policy. Perhaps this particular organization and countless others like it will
learn to address security before an incident rather than during or after.

Summary

This first chapter has set the stage for the book; as you can see, you must understand
defense in depth to improve the security of a networked organization. No silver bullets
exist, and no single component can properly defend a network. You can deploy many
components working together in such a way as to make attack difficult. Defense in depth
describes the process of layering these components to capitalize on their respective
strengths. It is flexible, but no single roadmap can select and deploy the various perimeter
components. Our role is to design, build, and maintain the perimeter so that the overall
security of the network is at an acceptable level, while providing an environment that
supports business operations of the organization. A defense-in-depth approach can be
used to secure an individual machine or the largest network in the world. It is a powerful
tool for defenders.

Chapter 2. Packet Filtering
Packet filtering is one of the oldest and most widely available means to control access to
networks. The concept is simple: Determine whether a packet is allowed to enter or exit
the network by comparing some basic identifying pieces of information located in the
packet's header. Packet-filtering technology can be found in operating systems, software
and hardware firewalls, and as a security feature of most routers.

The goal of this chapter is to explore the highlights and weaknesses of packet-filtering
technology and how to implement this technology successfully. We discuss the basics of
TCP/IP and how it applies to packet filtering, along with the rules of how to implement
packet filters using Cisco router access lists. We explore uses for rules that filter on
source address, such as the allowance and prohibition of traffic from given hosts and
ingress and egress filters. We also cover filters that examine destination addresses and
make decisions based on port numbers and their uses for improved control of traffic flow.
We examine the problems of the packet filter, including its weaknesses to spoofing,
fragmentation, control of return traffic, and the problems with poking an always-open hole
in your defense. Finally, we explore the power of dynamic packet filters and the ways they
can help correct many of the downfalls of static packet filtering.

TCP/IP Primer: How Packet Filtering Works

Before we go into the details of packet filtering, it is necessary to understand the
construct and technologies behind the TCP/IP protocol and its associated packets.

Note

The next several sections provide a basic overview of the TCP/IP protocol.
Advanced readers might find this review unnecessary and might prefer to skip
ahead to the section "The Cisco Router as a Packet Filter."

When systems on a network communicate, they need to speak the same language, or
protocol . One such protocol suite is TCP/IP, the primary communications language of the
Internet. To facilitate such communications, the information you send needs to be broken
down into manageable pieces called packets . Packet headers are small segments of
information that are stuck at the beginning of a packet to identify it.

The IP portion of TCP/IP stands for Internet Protocol . It is responsible for identifying the
packets (by their IP address) and for guiding them to their destination. IP packets are
directed, or routed , by the values located in their packet headers. These identifiers hold
information about where the packets came from (source address), where they are going
(destination address), as well as other information describing the type of service the
packet might support, among other things.

IP Version 6

The version of IP protocol that is most commonly used on the Internet today
and that we are referring to in this chapter is IP version 4 (IPv4). It was
created in the 1980s and has many limitations that have required expansions to
keep it valid into the twenty-first century. Those limitations include a restricted
address space, no integrated security, no integrated means to automatically
assign addresses, and the list goes on. Although technologies were created as
"band-aids" to help overcome these issues (NAT, IPSec, and DHCP), it wasn't
long before development began on a replacement version. In the 90s, IP
version 6 (IPv6) was born. It has a much larger potential address space made
up of eight 16-bit values, instead of IPv4's four 8-bit values. IPv4 addresses are
most commonly notated as decimals in the format 192.168.1.1, where the
decimal numbers are some value between 0 and 255 (2^8). IPv6 addresses are
notated as hexadecimal in the format
1234:ABCD:1A2B:4321:CDEF:C5D6:789D:F12A, where the hexadecimal
numbers are some value between 0 and FFFF (or 0 and 65535 decimal, 2^16).
Hexadecimal is used to keep the already long IPv6 addresses notation more
concise and readable. One shorthand method of IPv6 notating involves
abbreviating lists of zeroes with double colons (::). For example, the IPv6
address 1234:5678:0000:0000:0000:0000:0000:1AF4 can instead be listed as
1234:5678::1AF4. The double colons indicate that all digits between those
listed are zeroes. Other improvements that IPv6 offers are integrated
authentication and encryption methods, automatic address assignment
capabilities, improved Quality of Service (QoS) methods, and an improved

header format that moves anything but essential routing information to
extension headers, allowing for quicker processing. Despite all its advantages,
IPv6 is still not heavily implemented. As a network administrator it is important
that you are aware of IPv6 and its possible advantages for your environment,
even though you may not be required to use it for years to come. For more
information on the IPv6 standard, refer to RFC 2460.

When an IP packet arrives at a router, the router checks its destination to see whether it
knows how to get to the place where the packet wants to go. If it does, it passes the
packet to the appropriate network segment. The fact that a router passes any packet
whose destination it is aware of is called implicit permit . Unless further security measures
are added, all traffic is allowed in as well as out. For this reason, a method is required to
control the information entering and exiting the interfaces of the router.

TCP and UDP Ports

The TCP part of TCP/IP stands for Transmission Control Protocol , and it is a reliable
transport-oriented way for information to be communicated. User Datagram Protocol
(UDP) is an unreliable transport protocol that works well with programs that don't rely on
the protocol to make sure their payload gets where it's going. Both TCP and UDP use ports
to keep track of communication sessions. Certain ports are set aside as the particular ones
through which to contact a server running a given service such as HTTP (port 80), FTP
(port 21), Telnet (port 23), DNS (port 53), or SMTP (port 25). (These services and how to
secure them are discussed in more detail later.) The original RFC that documents well-
known ports is RFC 1700. However, for a more up-to-date informative list of all of TCP's
and UDP's server-side ports and the services to which they are assigned, check out this
link to the IANA website: http://www.iana.org/assignments/port-numbers. IANA is the
Internet Assigned Numbers Authoritythe good people who track the number standards for
the Internet as we know it.

When a client contacts a server, it randomly picks a source port numbered above 1023 to
go out through. Then the client contacts the server on a set port, such as port 23 for
Telnet. When the server replies, the information leaves on port 23 and returns to the
client on the random greater-than 1023 port from which it left. This port information is the
only way that a packet filter can determine the service it is filtering.

For example, you might want to filter out all Telnet traffic; you do so by blocking all traffic
directed at TCP port 23. You might also want to allow all HTTP traffic coming to port 80.
However, if someone is running a Telnet server on port 80 somewhere on your network,
and all you have for protection is the aforementioned packet filter, the traffic passes.
Packet-filtering systems don't have the intelligence to look beyond the port number to
determine what service is running at the application layer. You need to keep this in mind
when constructing filtering rules to block access to a service that you are running on an
alternative port. Sometimes, web servers run on alternative ports, such as 8000, 8080,
and the like; if you wanted to allow access to said web servers, then creating a packet-
filtering rule that allows in standard HTTP traffic on port 80 wouldn't be effective.

TCP's Three-way Handshake

To begin communicating, connection-oriented TCP uses what's known as the three-way
handshake . When Host A wants to connect to Host B to transfer data, it has to let Host B
know that it wants to connect. Host A does this by sending a packet to Host B with the
SYN (or synchronization) flag set, meaning, "I want to start a new conversation." If Host B
can and wants to converse back to Host A, it returns a packet with the SYN and ACK (or
acknowledgment) flags set, meaning, "I want to start a conversation with you, too, and I
am acknowledging that I will be a part of your conversation." Finally, Host A returns the
third part of the handshake, a packet with just the ACK flag set, meaning, "I will also take
part in your conversation, so let's start talking!" With that, data begins transferring. In a
simplified view, the two hosts are simply exchanging SYN flagged packets to say they
want to start a conversation and ACK flagged packets to say they acknowledge the receipt
of the SYN. The second host simply "piggybacks" its acknowledgment onto the same
packet that contains its initiating SYN.

Packet-filtering systems can use these flags to determine the stage of the current three-
way handshake. For example, if you didn't want to allow new connections from the
outside, you could choose to only permit traffic flagged with ACK; the packets starting a
new connection contain the SYN flag only.

The Cisco Router as a Packet Filter

The Cisco ACL is one of the most available packet filters found today. The means by which
a Cisco router filters packets is known as an access control list (ACL). An ACL serves as a
laundry list of things for the router to look at in the packet header, to decide whether the
packet should be permitted or denied access to a network segment. This is the basis of the
traffic-control features of a Cisco router.

Routers are a convenient choice for network filtering because they are already a part of
your network's infrastructure. One is located at your network's furthermost edge as well
as at the intersections of all your network segments. If you want to keep something out of
a network segment, the furthermost point is the best place to screen it. This section
covers the basic syntax and usage of the Cisco ACL and its environment, the Cisco IOS.
All examples in this chapter are illustrated through the use of Cisco ACLs (IOS version
12.1 or greater), although the theories demonstrated can be applied to any packet-
filtering system.

An Alternative Packet Filter: IPChains

Although examples in this chapter are given as Cisco access lists, other software programs
and devices use similar technology. Following is an example of IPChains, one such
program. IPChains is a packet-filtering system that comes bundled with many versions of
Linux. Though IPChains is not as popular as it once was, being superseded by IPTables,
you may still run into it or choose to deploy it as an effective packet filtering mechanism
for your server or network.

If you wanted to block HTTP traffic from anywhere to your host 200.200.200.2 and log the
matches, you would use the Cisco ACL:

access-list 111 deny tcp any host 200.200.200.2 eq 80 log

With IPChains, you would use

ipchains A input i eth1 p tcp s 0.0.0.0/0 d 200.200.200.2/32 80 -l j DENY

where A input means to place this rule on the end of the existing input chain.

i eth1 tells IPChains to apply this rule to the interface etH1, -p tells the protocol to
watch for TCP, the -s parameter sets the source address, and 0.0.0.0/0 indicates to

watch for any source address.

The /0 is the wildcard, and it means to match the specified bits exactly. Because the

wildcard is 0 in this case, it means "don't match anything exactly or allow anything." This
is equivalent to the Cisco any keyword.

The -d parameter is the destination address. In this example, it is equal to the host
address 200.200.200.2 because the /32 wildcard mask is used. It tells IPChains to match

the first 32 bits (or everything) exactly. This is equivalent to using the 0.0.0.0 wildcard or
the host keyword in Cisco ACLs.

The destination address in this case is followed by the port number of the blocked protocol
(80, for HTTP traffic). If the source port were filtered as well, it would have followed the
source address.

Finally, the -l parameter means "log this information," and j DENY stipulates that any

matching packets should be dropped and not to send any information of this back to the
sender. It is the counterpart to the Cisco deny keyword.

As you can see, although similar in function, static packet filters come in different forms.
Despite the differences in appearance and syntax, after you have a grasp of packet-
filtering concepts, your knowledge can be applied to any of these filtration systems.

The Cisco ACL

The Cisco ACL is simply a means to filter traffic that crosses your router. It has two major
syntax typesnumbered and named listsand it comes in several filtering types, including
standard, extended, and reflexive, all of which will be discussed in this chapter. Numbered
access lists are entered in the format

access-list number criteria

where number is a given range that represents the type of access list it is. The range 199

represents standard IP lists, and the range 100199 represents extended IP lists. Over
time, these basic ranges have been expanded to include 13001999 for standard and
20002699 for extended. Other access list number ranges are reserved for alternative
protocols, and so on.

The named access list uses the format

ip access-list type name

where the type code stands for standard, extended, and so on, and the name code

represents a unique name for the list. This can help make the list more identifiable. For
example, "dnsinbound" might mean more to someone than the number "113" does.

Upon entering the preceding command to start list creation, you are dropped into a
configuration mode just for that access list. Here, you can enter filtering commands in the
following format:

permit|deny criteria

Either type of ACL works well and can be used separately or together. Although standard
and extended lists can be written in either format, reflexive access lists can use only the
named format. To remove either type of ACL, reenter it preceded by the word no.

Rule Order

Many of the access lists demonstrated throughout this text are "deny" access lists that
show how to block a particular address or port. However, because of a concept called
implicit deny , dropping such a list into an otherwise empty router configuration could
cause the blocking of all traffic! Implicit deny takes place when as little as one access list
is added to an interface on a Cisco router. The router stops its standard behavior of
forwarding all routable traffic and instead begins comparing all packets received to the
newly added access list. If the traffic doesn't match the applied access list(s), it is
dropped. Adding one simple access list changes the behavior of the router entirely. Only
packets that match the added access list as permitted traffic are allowed.

When multiple rules are added, even more concerns arise. Because rules are processed
from the top down and a packet only has to pass or fail one rule to be dropped or allowed
into the network, it is imperative to put specific filters before general filters. Otherwise, a
more general rule might allow a packet access that may have been denied by another
more specific rule later in the access list. When a packet "matches" a rule, the packet is
immediately dropped (if it is a deny rule) or forwarded (if it is a permit rule) without being

tested by the rest of the access list entries.

Be careful when planning the order of access list rules. That is why a complete access list
rulebase needs to be laid out in advance and built from the ground up. Adding rules
carelessly is a sure recipe for disaster.

Note

Whenever possible, assemble your access lists following the precept "allow what
you need" rather than "deny what you don't."

Cisco IOS Basics

Before we go into detail on the syntax of Cisco access lists, it is necessary to discuss the
interface by which Cisco routers are configured. Cisco routers can be configured in one of
several ways. They can be accessed through a serial connection to the console port on the
back of the router, through a Telnet session, or via a web browser with newer models.
After you have access to the router, actually getting it into configuration mode is a
relatively easy process, as outlined here:

You receive the standard prompt (designated by the > symbol) routername>.1.

You must go into enable mode before configuration mode. Typing enable and pressing

the Enter key accomplishes this. You are prompted for a secret password. After
entering it, you are in enable mode, which is identified by the routername# prompt

(designated by the number sign [#]).

2.

To configure the router, enter terminal configuration mode by typing config t (which

is short for configure terminal) and pressing Enter. You then see the global
configuration prompt: routername(config)#. This is where you enter global

configuration commands, including access lists.

3.

You can enter interface configuration mode from the global configuration mode by
typing int s1, where int stands for interface and s1 is the interface name (in this
case, serial 1). This format is also carried into Ethernet interfaces (e0, e1, and so on)

as well as other interface types. Typing the interface command changes the prompt to
the interface configuration prompt: routername(config-if)#. From here, you can

type interface-specific commands, and this is where you can apply access lists to
individual interfaces with the access-group command.

4.

Exit any configuration level by typing the exit command. Completely exit out of

configuration mode from any sublevel by pressing Ctrl+Z. Leave enable mode by
typing disable.

5.

Effective Uses of Packet-Filtering Devices

Because packet filtering is older technology and lacks the capability to differentiate between
types of network traffic, you might be wondering why we are discussing it. What could be
the possible use for this technology in a world that is filled with hi-tech firewalls that can
track protocols using knowledge of the way they work to intelligently differentiate between
incoming and outgoing traffic streams? Good question! Why use a PC when we have
supercomputers? Sometimes a lighter-weight, less expensive means to get things done is a
major advantage. Because packet filters don't go to great depth in their analysis of traffic
streams, they are faster than other firewall technologies. This is partially due to the speed
at which the header information can be checked and partially due to the fact that packets
don't have to be "decoded" to the application level for a decision to be made on them.
Complex decisions are not necessary, simply a comparison of bits in a packet to bits in an
ACL.

Filtering Based on Source Address: The Cisco Standard ACL

One of the things that packet-filtering technology is great for is the blocking or allowing of
traffic based on the IP address of the source system. Some ways that this technology can be
usefully applied are filters blocking specific hosts (blacklisting), filters allowing specific
hosts (such as business partners), and in the implementation of ingress and egress filters.
Any of these examples can be implemented on a Cisco router by using a "standard" access
list.

The standard access list is used to specifically allow or disallow traffic from a given source
IP address only. It cannot filter based on destination or port number. Because of these
limitations, the standard access list is fast and should be preferred when the source address
is the only criteria on which you need to filter.

The syntax for a standard access list is as follows:

access-list list number 1-99 or 1300-1999 permit |deny source address mask log

Notice that when ACLs were first created, the list number had to be 199. This range was
expanded in IOS version 12.0(1) to include the numbers 13001999. The only way that the
Cisco IOS can identify the list as a standard ACL is if a list number in one of these two
ranges is used. The mask option is a required wildcard mask, which tells the router whether

this is a single host we are filtering or an entire network range. (For more information on
wildcard masks, check out the sidebar "The Cisco Wildcard Mask Explained" later in this
chapter). The log option can be appended to tell the router to specifically log any matches

of this filter. These log entries can be saved in local memory or more appropriately sent to a
remote Syslog server. For more information on router logging, see Chapter 6, "The Role of a
Router," and Chapter 20, "Network Log Analysis."

The previously listed access list notation is entered in global configuration mode and can be
applied to the interface in the interface configuration mode with the access-group

statement, as shown here:

ip access-group list number in|out

The access-group command is used to specifically apply an ACL to an interface (by its list

number) either inbound or outbound. Only one access list can be applied in one direction (in
or out) per interface. This means a maximum of two applied ACLs per interface: one inbound

and one outbound.

One of the confusing concepts of router ACLs is the way that applying filters "in" or "out"
works. This is confusing because people normally visualize "in" as traffic moving toward
their internal network and "out" as traffic moving away from their network toward outside
entities. However, this premise does not necessarily hold true when talking about the in
and out keywords in Cisco router access lists. Specifically, the keywords tell the router to

check the traffic moving toward (in) or away from (out) the interface listed.

In a simple dual-interface router, this concept is more easily illustrated. Let's assume you
have an interface called e1 (hooked to your internal network) and an external interface
called s1 (hooked up to the Internet, for example). Traffic that comes into the s1 interface
moves toward your internal network, whereas traffic that goes out of the s1 interface moves

toward the Internet.

So far this seems to be pretty logical, but now let's consider the internal e1 interface. Traffic
that comes into e1 moves away from your internal network (toward the Internet), and traffic
that goes out of e1 goes toward your internal network.

VLAN Interfaces and Direction

When determining direction, VLAN interfaces are a little more confusing than
physical router interfaces. Applying an access group "in" on a VLAN interface
means that traffic moving away from the network will be filtered, whereas "out"
means that traffic coming into the VLAN will be filtered.

Keep in mind when you apply access-group commands to your interfaces that you apply

the access list in the direction that the traffic is traveling, in regards to the router's
interface. You might be thinking, "What is the difference, then, between inbound on the s1
interface and outbound on the e1 interface? Both refer to traffic that is moving in the same

direction. Which is more appropriate to use?"

Tip

To maximize performance, filter traffic as it enters the router.

The less work the router has to do, the better. Always try to filter traffic at the first interface
it enters, or apply your filters "inbound" as much as possible.

Returning to our example, if something should be blocked (or permitted, for that matter)
coming in from the Internet, it would make the most sense to block it coming in to the s1

(outside) interface. In addition, if something should be filtered leaving your network, it
would be best to filter it inbound on the e1 (inside) interface. Basically, you should show
preference to the in keyword in your access lists. Some specific exceptions to this rule

exist, which involve certain access list types (such as reflexive ACLs) that require being
placed outbound.

These examples often list the actual prompt for a router named "router" to remind you of
the command modes that the router will be in when entering the various commands.

The following is an example of an actual filter that uses the previous syntax and
190.190.190.x as the source network's IP address that you want to deny:

router(config)#access-list 11 deny 190.190.190.0 0.0.0.255

This filter's list number is 11. It denies any packet with a source network address of
190.190.190 with any source host address. It is applied to the interface inbound, so it filters
the traffic on the way into the router's interface.

The command to apply the access list to your serial 1 interface would be

router(config-if)#ip access-group 11 in

where we are in interface configuration mode for the interface to which we are applying the
access list, inbound.

The Cisco Wildcard Mask Explained

The wildcard mask is one of the least understood portions of the Cisco ACL
syntax. Take a look at the following example:

access-list 12 permit 192.168.1.0 0.0.0.255

In this case, 0.0.0.255 represents the wildcard mask. It looks like a reverse
subnet mask and represents the portion of the listed IP address range to filter
against the traffic in question. Zeros mean, "Test this portion of the address," and
ones mean, "Ignore this portion of the address when testing."

In our example, let's say a packet comes in with a source address of
192.168.2.27. Because the first octet of the wildcard mask is a zero, the router
compares the first octet of the incoming packet to the value 192, listed in the
access list. In this case, they are the same, so the router continues to the second
octet of the wildcard mask, which is also a zero. Again, the second octet of the
value of the source address of the incoming packet is compared to the value 168.
Because they are also the same, the router continues to the third octet. Because
the wildcard mask specifies a zero in the third octet as well, it continues to test
the address, but the value of the third octet does not match, so the packet is
dropped.

For the sake of example, let's continue to look at the fourth octet, even though in
actuality the packet would have been dropped at this point. The wildcard's fourth
octet is valued at 255. In binary, this equates to 11111111. In this example, the
value 0 in the access list does not match the value 27 of the compared packet;
however, because the wildcard wants us to ignore this octet, the access list
allows the packet to pass (assuming it hadn't failed on the previous octet). The
concept might seem pretty easy with a wildcard value that deals with entire
octets, but it gets tricky when you need to deal with an address range that is
smaller than 255. The reality is that the router doesn't test octet by octet, but bit
by bit through each of the octets.

What if you want to allow traffic from systems in the address range
192.168.1.16192.168.1.31 only? The first three octets of the wildcard are easy:
0.0.0. It's the last octet that is difficult. It's time to grab your handy-dandy
binary calculator. Consider what 16 looks like in binary: 0001 0000. Now look at
31: 0001 1111. The difference between these two binary values occurs in the last
four bits. Therefore, the values between 16 and 31 are covered in the range
1000011111. To allow those values, you need to place zeros in your wildcard

mask for the portions that need to match exactly, and ones for the binary values
that change. Because the last four bits are the only bits that change in the
desired range, the wildcard mask reflects those four bits with ones. In binary, our
wildcard mask is as follows:

00000000.00000000.00000000.00001111

Translated with our binary calculator, that is 0.0.0.15.

This wildcard mask works for any range of 15 addresses you are comparing, so to
make it work for 1631, you must properly reflect the range in the IP address
portion of the access list. Your final access list looks like this:

access-list 10 permit 192.168.1.16 0.0.0.15

A wildcard mask is always contiguous zeros and ones, without interruption, as in
the example listed previously. In some cases, you need more than one ACL
statement and wildcard mask to cover a range of network addresses. For
example, if you want to block addresses in the range 232255, you need the
command

access-list 110 deny ip 192.168.1.232 0.0.0.7 any

to block the range 232239, and you also need to specify

access-list 110 deny ip 192.168.1.240 0.0.0.15 any

to block the range 240255.

Blacklisting: The Blocking of Specific Addresses

One popular use of the standard access list is the "blacklisting" of particular host networks.
This means that you can block a single host or an entire network from accessing your
network. The most popular reason for blocking a given address is mischief. If your intrusion
detection system (IDS) shows that you are being scanned constantly by a given address, or
you have found that a certain IP address seems to be constantly trying to log in to your
systems, you might simply want to block it as a preventative measure.

For example, if your intranet web server should only be offering its information to your
business locations in the continental United States, and you are getting a lot of hits from a
range of IPs in China, you might want to consider blocking those addresses.

Warning

The blocking of "spoofed" addresses can lead to a denial of service condition.
Always research IP addresses before uniformly blocking them.

The blocking of address ranges is also a popular way to "band-aid" your system against an
immediate threat. For example, if one of your servers was being attacked from a certain IP

address, you could simply block all traffic from that host or network number. As another
example, if you just found out that you had a widespread infection of a Trojan that
contacted a remote IRC server, you could block all traffic coming from that IRC server. It
would be more appropriate to block the traffic leaving your network to that destination,
however, but that would require an extended access list because standard ACLs only filter
on source address.

A sample access list to block access from an outside address range would be

router(config)#access-list 11 deny 192.168.1.0 0.0.0.255
router(config-if)# ip access-group 11 in

where the network number of the outside parties to be blocked would be 192.168.1.0255.
(Of course, this address range is part of the ranges reserved for private addressing, and it's
simply used as an example in this instance.) This access list would be applied to the
external router interface, inbound.

Spyware

Once I was perusing my logs to check for Internet connections from my network
during off-hours to see if anything peculiar was going on. I noticed some
connections that were initiated in the middle of the night from various stations,
repeatedly contacting a similar network address. I did some research on the
address and determined that the maker of a popular freeware program owned it.

After a brief inspection of one of the "beaconing" stations, I found that the
freeware program in question was loaded on the system. Being completely
paranoid (as all good security professionals are), I immediately set up a rule on
my perimeter router to block all access to the network address in question. Many
software packages search for updates regularly and do not use these automatic
"phoning home" sessions for malicious activity. However, as a firewall
administrator, I have to be in control of my network's traffic flow. Besides, I do
question why these packages need to "call out" several times a night.

Of course, my block was just a quick fix until I could unload the software at all
the "infected" stations, but if it somehow appeared again, I had no fear of the
software gaining outside access. The moral of the story: It can be a lot more
efficient to block a single network address at your perimeter router than to run
from station to station to audit software.

"Friendly Net": Allowing Specific Addresses

Another way you can use a standard access list is to permit traffic from a given IP address.
However, this is not recommended. Allowing access to an address in this manner, without
any kind of authentication, can make you a candidate for attacks and scans that use spoofed
addresses. Because we can only filter on source address with a standard ACL, any inside
device with an IP address can be accessed. Also, it's impossible to protect individual
services on those devices. If you need to set up access like this and can't do it through a
solution that requires authentication or some type of VPN, it is probably best to at least use
an access list that considers more than the source address. We'll discuss this more in the
section on extended access lists. However, this type of access may be suitable in situations
requiring less security, such as access between internal network segments. For example, if
Bob in accounting needs access to your intranet server segment, a standard ACL would be a
simple way to allow his station access.

Ingress Filtering

RFC 1918 pertains to reserved addresses. Private/reserved addresses are ranges of IP
addresses that will never be distributed for public use. This way, you can use these
addresses in internal networks without worry of accidentally picking network addresses that
might correspond with a public address you might want to access some day.

For example, imagine that you are in a world in which reserved private addresses don't
exist. You are installing a new private network for your business that will have access to the
Internet and will be running TCP/IP, so you will have to come up with a range of IP
addresses for your stations. You don't want these stations to have public addressing because
they won't be serving information to the Internet, and you will be accessing the Internet
through a proxy server. You pick a range of IP addresses at random (say,
190.190.190.0255). You configure your stations and set up Internet access.

Everything is working great until the first time you attempt to access your bank's website
and receive an error. You call the bank, and the bank says that everything is fine on its end.
You eventually come to discover that the bank is right. The bank's system you were trying
to contact has a public IP address of 190.190.190.10, the same address you have configured
for one of your own stations. Every time your web browser goes to send information to the
bank, it never even leaves your internal network. You've been asking your CAD station for a
web page, and because your CAD station doesn't run web server software, you've just been
getting an error. This example paints a clearer picture of why reserved addresses are so
important for the interrelationship of public and private TCP/IP networks.

The reserved ranges are as follows:

Class A: 10.0.0.010.255.255.255

Class B: 172.16.0.0172.31.255.255

Class C: 192.168.0.0192.168.255.255

Because these ranges are often used as internal network numbers, they are good candidates
for someone who is crafting packets or doing other malicious packet-transmitting behavior,
including denial of service. Therefore, these ranges should be blocked at the outside of your
network. In addition, the loopback address 127.0.0.1 (the default address that all IP stations
use to "address" themselves) is another candidate for being blocked, for the same reason.
While you are blocking invalid addresses, you should also block the multicast address range
224.0.0.0239.255.255.255 and the invalid address 0.0.0.0. Following is a sample access list
to accomplish this:

router(config)#access-list 11 deny 10.0.0.0 0.255.255.255
router(config)#access-list 11 deny 127.0.0.0 0.255.255.255
router(config)#access-list 11 deny 172.16.0.0 0.15.255.255
router(config)#access-list 11 deny 192.168.0.0 0.0.255.255
router(config)#access-list 11 deny 224.0.0.0 15.255.255.255
router(config)#access-list 11 deny host 0.0.0.0
router(config-if)# ip access-group 11 in

These access lists are similar to the last one, denying access to the IP address ranges listed
in an inbound direction on the applied interface. Notice the host keyword when blocking

0.0.0.0 in the previous example. When blocking a single host, instead of following the IP
address with the wildcard 0.0.0.0, you can precede the address with the keyword host.

These lists have the same "implicit deny" that any access list does. This means that
somewhere in access list number 11, a permit statement would have to exist; otherwise, all
inbound traffic would be denied! An example of an appropriate permit statement might be

one that allows the return of established traffic, like the following:

router(config)# access-list 111 permit tcp any any established

This is, however, an extended access list, which we'll talk more about later in the section
"Filtering by Port and Destination Address: The Cisco Extended ACL."

It is also advisable that you create a rule to block traffic coming into your network that
claims to have a source address matching that of your internal network, to complete your
ingress access list. Valid traffic from the outside world doesn't have to have the same
addressing as your stations. However, if this traffic is allowed to pass, it could bypass
security mechanisms that think the traffic is local. If you are using one of the standard
private address ranges, this is already done. If you're not, it would look like this:

router(config)#access-list 11 deny 201.201.201.0 0.0.0.255

Here, your network address range is 201.201.201.0255. This rule would be added to the
previous list before the line that allows return traffic.

Ingress filters are an excellent example of a means to use packet-filtering technology to its
fullest, on any network. Even if you have a stateful or proxy firewall, why not let your
perimeter router use packet filtering to strip off this unwanted traffic? Let perimeter routers
be the "bouncers" of your network, stripping off the undesirables before they even reach
other internal protection devices.

Egress Filtering

Another use of standard access lists is for egress filters. The concept behind an egress
filter is that only packets with your network's source address should be leaving your
network. This seems like a forgone conclusion, but as stated in the section on ingress
filters, Trojans and other nefarious programs might use a station on your network to send
spoofed traffic to the rest of the world. By creating an ACL that only allows your subnet's
address in from your network, you prevent this type of traffic from touching the outside
world. Of course, this won't help if the program doesn't spoof the source address, but
many such programs do to help slow the rate at which they can be traced. Such an access
list would look like this, assuming an internal network address of 192.168.100.0:

router(config)#access-list 11 permit 192.168.1.0 0.0.0.255

Implicit deny takes care of denying all other source addresses. You could use an extended
access list to tighten this down even more and limit things such as the types of traffic and
destinations your stations are allowed to access. This ACL would be applied to the inside
interface inbound, effectively on the outside edge of your router's network interface.

You might be wondering what the advantage is in implementing a rule such as this. "What
will this do for me?" you might be asking yourself. Well, it is no different from dumping
your tray at the local fast food restaurant; it's the good neighbor policy. It doesn't do
anything for you directly (other than possibly prevent you from facing outside litigation),
but if everyone did it, oh what a world we would live in. Imagine the effect on distributed
denial of service attacks that use zombies stationed on innocent people's networks. These
filters (assuming that the denial of service [DoS] zombies take advantage of some type of
packet spoofing) could help cripple such zombies.

It is also possible to set up filters that prevent traffic from leaving your network from
specified systems. For example, imagine that you have a top-secret file server that has no
Internet access. This system should only be contacted from inside stations, and it should
never contact the outside world or be contacted from the outside world. You can place an
ACL on the inside router interface, inbound. It could be a part of the same access list that
you used for your egress filter, but it would have to be placed above the egress filter
because of the importance of rule order. If the top-secret file server's IP address was
192.168.100.7, here is how the entire egress list would look:

router(config)#access-list 11 deny 192.168.100.7 0.0.0.0
router(config)#access-list 11 permit 192.168.100.0 0.0.0.255

The given host's packets would be filtered before the rule that allows all other systems on
the 192.168.100 network to enter the router. It should be noted that this will deny all
outbound traffic, so no Internet security updates or downloading of the latest virus-
definition file directly to this server.

Tracking Rejected Traffic

When creating Cisco router access lists, one of the greatest downfalls of the log keyword is that

it only records matches to the rule in question. Therefore, if the rule is a permit rule, you lose
the profoundly important information about which packets are being denied. To track the traffic
that is being filtered by an implicit deny, add a "deny any" ACL with the log keyword (as seen in
the following example) to the bottom of the list in question. Functionally, the deny any log

command does the same thing as the assumed implicit deny, but it facilitates the logging of
denied traffic. One good application of this concept is to track abnormal traffic that is being
filtered by the implicit deny at the end of an egress filter access list. Using this method allows a
means to track all outbound traffic that has a source address other than that of your network.
This is a great way to keep a handle on any strange things that might be trying to sneak out of
your network! Here is a simple example of how you would tell the router to log blocked traffic:

access-list 11 deny any log

Filtering by Port and Destination Address: The Cisco Extended ACL

Another powerful use of packet-filtering technology involves filtering on packet header
information and port numbers. These examples can be applied in the form of specific "conduits"
that allow one system to access another (extranets), allow access to a specific public access
system (web or DNS server), or allow a specific type of traffic into the network (ICMP packet-
too-big unreachables). This functionality is enabled on a Cisco router using the extended access

list.

The Cisco Extended ACL

The Cisco extended ACL offers additional features that allow more control of network traffic flow.
Instead of only being able to filter on source address, we have the additional flexibility of
destination address filtering, filtering based on protocol type, filtering on specific layer 4 port
number information, flags, and more. With this additional granularity, the effectiveness of the
Cisco router as a packet filter is greatly increased, making it viable for many security concerns.

The extended access list syntax is as follows:

[View full width]
access-list number 100-199 or 2000-2699 permit|deny protocol sourcesource-mask
 source-port destination destination-maskdestination port log|log-input options

You should recognize the first entries in the syntax from the standard access list, up to the
protocol keyword. This is where you would specify the protocol you are interested in filtering.

Possible selections are IP, TCP, UDP, and ICMP. Because TCP, UDP, and ICMP are all forms of IP-
based traffic, when you use IP as the protocol on an access list, it permits or denies any of the
other three traffic types. If we had used an extended access list to substitute for one of the
standard access lists from the previous section, IP would have been the appropriate choice
because it would have blocked all IP traffic types (UDP, TCP, and ICMP).

Remember the importance of rule order. Each incoming packet is checked by each access list in
order from top to bottom. When a packet matches the criteria in any one of the access lists, an
action is performed. If it is a permit filter, the packet is forwarded; if it is a deny filter, the
packet is dropped. No rules test the packet beyond the rule that the packet matched. Use the
following code to allow a particular packet in (let's say that its IP address is 205.205.205.1) if it

is TCP but to deny it entry if it uses any other IP protocol:

access-list 111 deny ip host 205.205.205.1 any
access-list 111 permit tcp host 205.205.205.1 any

The first rule would test true for a TCP packet of address 205.205.205.1. Because it is a "deny"
rule, the packet would be dropped. The packet would never get to be tested by the second rule.
If the two rules were reversed in order, with the TCP rule first, the filter would work correctly.

In the extended access list's syntax, the source address and mask should look familiar; the
destination address and mask follow the same format, and simply mean "where it is going"
instead of "where it is from." The keyword any can be used to represent the numerical range

0.0.0.0255.255.255.255, or all addresses.

This is the first time you see ports listed as part of an access list. As mentioned previously, ports
are an important part of TCP/IP and the access lists. The source port or destination port

entry can specify the type of traffic you want to allow or disallow. When specifying a port
number or name, you must also include an operator, such as eq (meaning equal to this port
number), gt (for any port above this number), lt (for any port less than this number), or my
favorite range (to list an entire contiguous range of port numbers; use the syntax range port1
port2 , where port1 is the first port in the range and port2 is the last).

Extended access lists are configured and applied just like standard access lists, including the
association of an access group to an interface. Many options can be added to the end of the
access list, such as log (as mentioned in the standard access list) or log-input (which also
displays the input interface and source MAC address), flags to check for, and the established

keyword.

"Friendly Net" Revisited

As mentioned previously, allowing access to a given IP address is not a favored practice. The
main reason for this is lack of control and the dangers of spoofing. Using a standard ACL to allow
access is a problem because the only thing we have control over is which IP address (or range)
can access the entire inside network. This means that not only can the host or range of hosts
specified access any station on the inside, but it also can do so on any port number. This is not
good. Extended access lists can at least help tighten up that control. We can specify the
destination host (or range) to which the host can connect, as well as the port on which they can
communicate. This way, we can allow an outside trusted host to access our web server (only) on
port 80 (only). Take a look at this example:

access-list 111 permit tcp host 100.100.100.1 gt 1023 host 200.200.200.2 eq 80 log

This example assumes that the trusted host is at address 100.100.100.1 and our target web
server is at address 200.200.200.2. We only allow traffic from the trusted host on ephemeral
ports, and only to port 80 on our web server. We add the log keyword to track traffic that is

passing this rule.

This is not secure. All this guarantees is that we have control over those specified items, helping
to lessen the ability of outsiders to exploit our defense. This ACL can be subverted in other ways.

Only allowing port 80 traffic doesn't ensure that only web traffic will transpire from the outside
host to our web server. As a matter of fact, if a flaw exists to be exploited in our web server, and
an attacker can get a Telnet program or other backdoor running on our web server on port 80,
the server might as well be wide open. If this system is on a private network and not on a
separate screened subnet, we are just a few leaps away from being fully compromised,
especially if the web server has a trust relationship with any other mission-critical servers on
our network.

Be sure to tightly harden the system if you elect to control access to its resources solely through
the use of packet filters, without further authentication. If possible, run a multiple interface
router (or packet-filtering device) or multiple levels of packet-filtering devices where you can
structure a separate subnet for public access systems.

Filtering TCP and UDP Ports and ICMP Types

Another handy function of the extended access list is the filtering of certain types of traffic. You
can control the types of traffic that leave your network, in effect enforcing your security policy.
You can allow or disallow certain types of traffic that enter your network. Denying traffic to a list
of popular Trojan program ports or to ports that programs use that conflict with your Internet
usage or security policies (IRC, Kazaa, instant messaging programs, and so on) can also be an
extra layer of defense. As stated previously, it makes more sense to only allow what you need. A
more common use of port filtering is allowing traffic types that can enter or leave your network,
like the example in the previous section. For a list of mission-critical ports that any environment
should consider defending, see Appendix A of the SANS Top 20 Vulnerabilities, available at
http://www.sans.org/top20.

Another use for this type of filtering is to allow or disallow certain informative ICMP messages
entrance to your network. ICMP is one of the most exploited of the protocols. It is being used for
reconnaissance, denial of service attacks (such as smurf), and more. It is recommended that

you block incoming echo requests (ping and Windows traceroute), block any outgoing echo
replies, and block time exceeded, for maximum security. All the ICMP traffic types can be
blocked with extended ACLs. The use of any ICMP blocking filters could affect network traffic
control.

ICMP doesn't work like the other protocols. Instead of having port numbers, it uses type and
code identifiers. It is basically set up to send error messages for protocols that can't (such as
UDP and IP) and to send informational messages (such as router error messages telling that a
host is unreachable). ICMP is used by popular end-to-end troubleshooting utilities such as ping
and traceroute. ICMP can be controlled by using Cisco access lists with special ICMP keywords or
ICMP type numbers, instead of port numbers such as TCP and UDP access lists.

To block ICMP echo requests (ICMP type 8), we could use a line in an extended access list such
as this:

router(config)#access-list 111 deny icmp any any echo-request

The main difference between this access list and others we have looked at is the keyword at the
end of the line. This keyword represents the ICMP type and code for echo requests. It means,
"deny any ICMP traffic from anywhere to anywhere with the type and code set to echo-request."

This filter would be applied on the external router interface to the Internet. Other ICMP traffic
types can be filtered in the same way using their type-of-service keywords.

A better way to handle the ICMP blocking would be to allow only the types of traffic that you
want and then deny the rest. For example, one important ICMP packet type to allow in is the
packet-too-big ICMP unreachable messages (type 3, code 4). This is because without this

message, you could have major communications issues. What if a host can't receive a packet
because it is too large for the router to handle and the router isn't allowed to return information
to the host telling it that the packet is too large? How will the sender ever find out what is wrong
and successfully communicate with the host? Luckily, in this example, Cisco has an ICMP
keyword for the packet-too-big message. This keyword could be applied as follows, permitting
the packet-too-big messages, but denying all other ICMP messages:

router(config)#access-list 111 permit icmp any any packet-too-big
router(config)#access-list 111 deny icmp any any

The filter would be applied as usual with an ip access-group 111 in command.

Problems with Packet Filters

Despite the many positive uses of packet filters, problems exist due to inherent limitations in the way
packet filters work. Spoofed and fragmented traffic can bypass the packet filter if protections aren't
properly implemented. In addition, because of the always-open nature of a "permit" static packet filter,
issues exist with opening such a "hole." Finally, allowing return traffic can be difficult using a technology
that lacks the ability to track the state of the current traffic flow. To successfully defend a network with
packet filtering, these weaknesses must be understood.

Spoofing and Source Routing

Spoofing means sending a packet that is addressed with false information, so it appears to come from
somewhere other than where it did. A packet can be addressed as if it came from an internal host on the
target network, one of the private address ranges, or even another network entirely. Of course, a packet
doesn't do this on its own; the packet has to be crafted or created with special packet-crafting software.

If your defense isn't set up correctly and the packet gets through, it's possible that an internal host could
believe the packet came from a "trusted" host that has rights to private information, and could in turn
reply to the spoofed address! You might be asking yourself, "If the packet appeared to come from a station
other than the one that sent it, where will the response go?" Well, the answer in typical TCP/IP
communication is to the real host, which wouldn't know what to do with the packet, and would drop it and
send a reset to the originator. However, if source routing is enabled, the imposter packet could carry
source-routing information that would allow it to tell the station where it needs to be sent to go home.

Source routing allows a packet to carry information that tells a router the "correct" or a better way for it to
get back to where it came from, allowing it to override the router's prescribed routing rules for the packet.
This could allow a devious user to guide return traffic wherever he wants. For this reason, it is imperative
to have source routing disabled. It is easily disabled in a Cisco router with the following command typed at
the global configuration prompt:

router(config)#no ip source-route

However, by blocking any packet that claims to have an unusable address before it can enter, we can help
remove the problem. This is where ingress filters come into play. The best place to cut off packets like
these is where they enter: on the perimeter router's interface that connects your network to the Internet.

Fragments

Many of the great fragmenting attacks were originally designed to defeat packet-filtering technology.
Originally, some packet-filtering technologies allowed all fragments to pass, which wasn't good. After this
was recognized as a security concern, many systems began checking the first fragment to verify that the
header information passed the tests set forth by the ACLs. If this initial fragment failed the test and didn't
pass through the router, the rest of the fragments could never be reformed at the other side, in theory
solving the problem.1

Because of the way packet filtering examines the header information, it could be defeated by splitting up
the packet into such small pieces that the header containing TCP or UDP port information was divided.
Because the first fragment was often the only fragment that many popular packet-filtering systems
checked and that the IP address information would pass, the entire reassembled packet would be passed.
In addition, packet filtering was discovered to be vulnerable to other fragmenting attacks, including attacks
that allowed a second fragment to overlap a seemingly harmless TCP or UDP port in the initial fragment
with deviously chosen port information.2 Many clever ways were determined that could bypass the packet
filter's inspection capabilities.

As time went by, packet-filtering product manufacturers advanced their technology, and solutions were
proposed to many of the common fragment attack methods. RFC 1858 defined methods to deter fragment
flow, including dropping initial fragments that were smaller than a defined size or dropping a second
fragment based on information found in it.3

The most important point on using a packet-filtering defense to protect your network from fragment attacks
is to verify that you have the latest firmware and security patches (or in the case of Cisco routers, the
latest IOS software). These updates reflect the changes made to defend against fragment attacks such as
those mentioned. For more complete fragment protection, some firewall technologies include methods such
as fragment reassembly before packets are ruled on, the forming of tables that track decisions regarding
initial fragments, and the basing of outcome of noninitial fragments on their predecessors. These
technologies are not inherent in packet-filtering systems, and they must be checked for when purchasing
an individual product.

Cisco access lists can disallow fragmented traffic using the following access list as the first in an ACL
series:

router(config)# access-list 111 deny ip any any fragments

This access list disallows any noninitial fragments that have matching IP address information, but it allows
non-fragments or initial fragments to continue to the next access list entry because of the fragments

keyword at the end of the ACL. The initial fragments or non-fragments are denied or allowed based on the
access lists that follow the preceding example. However, fragmented traffic is a normal part of some
environments, and a statement like the previous example would deny this normal traffic, as well as
maliciously fragmented traffic. This example would only be used in an environment that warrants the
highest security to fragmentation attacks, without fear of the loss of potential usability.

Opening a "Hole" in a Static Packet Filter

One of the great flaws of static packet filtering is that to allow a protocol into a network, you need to open
a "hole." It is referred to as a hole because no additional checking takes place of the type of traffic allowed
in or out based on more intelligent methods of detection. All you can do is open an individual port on your
protective wall; as with a bullet hole through a three-foot wall, you can't shoot anywhere else on the other
side, but you can fire straight through the existing hole repeatedly. The importance of this analogy is that
something must be on the other side at the port in question; otherwise, you won't be able to hit it.

It is recommended when opening a port using an access list of this type that you limit the target hosts as
much as possible with the access list. Then, if you have a secured server with all patches and no
vulnerabilities (found as often as elves and four leaf clovers) that you are allowing to service this port, this
isn't such a bad thing. However, if your host system is exploitable through whatever port number you have
open, it is possible that any traffic can be sent through that "hole," not just the protocol that was running
on the host inside.

Two-way Traffic and the established Keyword

When we communicate with another host, it's not just us connecting to the host, but also the host
connecting to usa two-way connection. This presents a problem when it comes to preventing unwanted
access with a packet filter. If we try to block all incoming traffic, we prevent the return connection from
hosts we are trying to contact.

How can we allow only return traffic? The original answer that Cisco came up with was the established
keyword for extended access lists. With the word established added to an access list, any traffic, other
than return traffic, is blocked, theoretically. The established keyword checks to see which flags are set on

incoming packets. Packets with the ACK flag set (or RST flag) would pass, and only response traffic of the
type specified could ever get through, right? Wrong! The combination of certain pieces of software and
sneaky, nefarious users results in what's known as a crafted packet , which is a packet that the
communicating host does not create in the normal way, but builds Frankenstein-style from software
residing on a host. Users can set any flag they want.

What happens if a packet that was crafted with malicious intent appears with the ACK flag set in an
attempt to sneak by the router's filters? The established keyword access list lets it go through, which

isn't good. The good news is that an internal system that is listening for a new connection (initiated by a
SYN packet) would not accept the ACK packet that is passed. It would be so offended by the packet that it
would send a reset back to the originator, telling it to try again.

This sounds like a good thing, but it has two flaws. First, it proves that a station exists at the address to
which the packet was sent. If a station didn't exist there, a reset packet wouldn't be returned. This
scanning technique works and is pretty stealthy as well. Second, because it is eliciting a response from a
private system, this technique might be used successfully for a denial of service attack. Internal systems
could be repeatedly hit with scores of ACK packets, causing those systems to attempt reply after reply with
RST packets. This is further accentuated by spoofing the source address on the ACK packets, so the
targeted network would be feverishly firing resets back to another innocent network. Fortunately, the
innocent network does not respond to the resets, preventing a second volley from being thrown at the
target network.

Despite the drawbacks of the established keyword, it is one of the only static means by which a Cisco

router can allow only return traffic back in to your network. The following is an example of an established
access list:

router(config)#access-list 101 permit tcp any any est log

This basic extended access list allows any TCP traffic that has the ACK bit set, meaning that it allows only
return traffic to pass. It is applied inbound on the outside router interface, and it can log matches with the
appended log keyword. It also allows RST packets to enter (by definition) to help facilitate proper TCP

communication. A more secure version of this same list would be this:

router(config)#access-list 101 permit tcp any eq 80 192.168.1.0 0.0.0.255 gt 1023 est log
router(config)#access-list 101 permit tcp any eq 23 192.168.1.0 0.0.0.255 gt 1023 est log
router(config)#access-list 101 permit tcp any eq 25 192.168.1.0 0.0.0.255 gt 1023 est log
router(config)#access-list 101 permit tcp any eq 110 192.168.1.0 0.0.0.255 gt 1023 est log

In this case, the inside network address is 192.168.1.0255. These access lists are applied inbound on the
external router interface. By writing your access list this way, you allow traffic only from approved protocol
port numbers (web traffic, Telnet, email, and so on) to your internal network addresses, and only to
ephemeral ports on your systems. However, an access list of this type still has problems. It would not
support FTP for reasons we will go over in an upcoming section, and it only handles TCP traffic.

The established Keyword and the Problem of DNS

Remember that the previous ACL did not allow UDP traffic or ICMP traffic. The established (or est)

keyword is only valid for TCP access lists. Access lists allow needed ICMP and UDP traffic, which would
have to be included along side of this established access list, to form a comprehensive filter set. Without

UDP, outside DNS is a real problem, disabling Internet functionality. This shows one of the biggest flaws of
the est keyword as an effective defense mechanism. To facilitate Internet access with the est keyword, a

UDP access list must be included, allowing any DNS return traffic. Remember that return traffic is coming
to a randomly chosen port above 1023, which means that to effectively allow any DNS responses, you need
an access list like this:

access-list 101 permit udp host 192.168.1.1 eq 53 172.16.100.0 0.0.0.255 gt 1023 log

This ACL assumes that the external DNS server's address is 192.168.1.1 and that your internal network is
172.16.100.0255. By adding this line to your existing access list 101, you allow DNS responses to your
network. However, you also leave yourself open to outside access on ports greater than 1023 from that
external DNS server. Your security red alert should be going off about now! This would be a great argument

for bringing DNS inside your perimeter; however, that DNS server would then need to be able to access
outside DNS servers for queries and zone transfers. To allow the DNS server to make outbound DNS
queries, a similar access list would need to be added to the router:

access-list 101 permit tcp any host 172.16.100.3 eq 53
access-list 101 permit udp any host 172.16.100.3 eq 53

This allows all traffic through port 53 to your inside (and hopefully well-hardened) DNS server. Ideally,
such a public access server would be on a separate screened subnet for maximum security.

Remember that neither solution provides for additional UDP or ICMP support. If access to either is needed
in your specific environment, more "holes" have to be opened.

Protocol Problems: Extended Access Lists and FTP

File Transfer Protocol (FTP) is a popular means to move files back and forth between remote systems. You
need to be careful of outside FTP access because it could allow a malicious user to pull company
information or server information (including password files) from inside servers. A user could upload files
in an attempt to fill a hard drive and crash a server, upload a Trojan, or overwrite important server
configuration files with ones that allow compromise of the server.

FTP is also one of the more complicated services to secure because of the way it works. Securing (or
blocking) an incoming connection is relatively easy, but securing outgoing FTP connections is considerably
more difficult. Let's take a look at a trace that shows standard FTP communication between a client and a
server.

First is the outgoing connection with TCP/IP's three-way handshake:

client.com.4567 > server.com.21: S 1234567890:1234567890(0)
server.com.21 > client.com.4567: S 3242456789:3242456789(0) ack 1234567890
client.com.4567 > server.com.21: . ack 1

Next is the incoming connection when establishing data channel:

server.com.20 > client.com.4568: S 3612244896:3612244896(0)
client.com.4568 > server.com.20: S 1810169911:1810169911(0) ack 3612244896
server.com.20 > client.com.4568: . ack 1

The first part of the communication is a normal three-way handshake, but when the data channel is
established, things become complicated. The server starts a connection session from a different port (TCP
20) than the one the client originally contacted (TCP 21), to a port greater than 1023 port on the client
that differs from the one the client originally used. Because the server starts the connection, it is not
considered return traffic and won't pass through extended access lists with the established keyword or

dynamic reflexive access lists. In turn, to open the router for standard FTP, you must allow any traffic with
a destination TCP port greater than 1023 and a source port of 20, which is a significant security hole.

One way to get around this problem is to use passive (PASV) FTP. PASV FTP works like standard FTP until
the data connection. Instead of connecting to the client from port 20 to a random port greater than 1023,
the FTP server tells the client (through the port that the client last used to connect to it) what greater-than
1023 port it wants to use to transfer data. With this port number, the client establishes a connection back
to the FTP server. Now let's look at a trace of our previous example's data connection, this time using PASV
FTP:

client.com.4568 > server.com.3456: S 1810169911: 1810169911(0)
server.com.3456 > client.com.4568: S 3612244896:3612244896(0) ack 1810169911

client.com.4568 > server.com.3456: . ack 1

All traffic that comes from the server is established traffic, permitting extended lists with the established

keyword to function correctly. Using PASV mode FTP requires both the FTP server and client to support
PASV mode transfers. Changing to passive FTP clients isn't a problem for most sites because most popular
FTP clients support PASV mode. Most of the major web browsers support PASV mode FTP as well; however,
this might require some minor setup, such as going to a preferences section and selecting PASV or passive
FTP mode support. Using an ACL like the following example would be one way to handle inbound return
PASV FTP traffic:

router(config)#access-list 101 permit tcp any gt 1023 192.168.1.0 0.0.0.255 gt 1023 est log

The Case of the Covert Channel

As a young security practitioner, I had the scare of my life. I randomly grabbed some log files
and started looking through them, just giving a random spot check for anything that seemed
out of the ordinary. About halfway through, I ran into a conversation between one of my
network stations with an outside, unrecognized IP address.

The ports in question were disconcerting. The inside station was using TCP port 1741, and the
outside port was much higher, in the 3000s. The higher number was an undefined port, but
with a quick check of some port listings, I found that port 1741 happened to be defined as
"Cisco net management." I wasn't familiar with this, but we were in a Cisco environment. The
terror! The 3000 range port must have been a generated port, and the outside entity was
contacting me on port 1741.

This log file caught the middle of the conversation, so I couldn't look at the beginning to verify
that my theory was sound. I needed more information, so I went to my proxy log to check
specifics on the connection. The outside entity appeared to be uploading some kind of FTP
program to the station in question. This was getting worse instead of better.

I did more research to find out whose station had the DHCP assigned address in question
during the transfer. The "malicious" IP address belonged to an FTP server. A tiny light bulb
went off in my head. I went to the user and asked if he had been doing any FTP downloads at
the time in question. He concurred. He had been downloading a new version of an FTP client.
Because we used PASV FTP, the data channel port number was not the default port 20, but a
high-numbered port determined as previously stated.

If you choose PASV FTP, be aware of false alarms regarding covert channels!

This ACL assumes that our internal network addresses are 192.168.1.0255 and that they are part of a more
complete access list allowing other, more standard traffic types. The problem with this access list is that
despite the fact that only return traffic is allowed (in theory), you must leave open all greater-than 1023
TCP ports for return access because you don't know what data channel port the FTP server you are
contacting will choose.

Although this ACL is more secure than some of the previous options, it still isn't a strong security stance.
Wouldn't it be nice if it were possible to find out what port number you were using to contact the PASV FTP
server every time, and use that information to allow the traffic back in?

Dynamic Packet Filtering and the Reflexive Access
List

Many of the problems that face static packet filtering, the Cisco standard, and extended
access lists can be alleviated by dynamic packet-filtering technology. The concept is that
filters are built on-the-fly as needed and torn down after connections are broken.

Reflexive access lists are examples of dynamic packet-filtering technology. A criterion is
set up on the outbound interface that watches defined connection types to the outside
world. When the traffic returns, it is compared to an access list that was dynamically
created as the outgoing traffic left the network.

For example, perhaps you have a client that has an IP address of 192.168.100.2 and have
set up a reflexive access list to check for TCP traffic using the Telnet port. The reflexive
access list would see the client sending the Telnet packet out the greater than 1023 port
(let's say 1072 was randomly picked) to port 23 on some IP address (let's say
100.100.100.1) of a Telnet server. The reflexive access list would then generate an
incoming access list based on this outgoing connection. It would take the outgoing
connection

Client 192.168.100.2.1072 > telnet server 100.100.100.1.23

and reverse it into an incoming access list that permits traffic from 100.100.100.1 on port
23, to client 192.168.100.2 on port 1072, like this:

permit tcp host 100.100.100.1 eq 23 192.168.100.2 eq 1072

This dynamically generated list would be deleted after the connection was ended (a
graceful FIN exchange or RST packet was sent). Because this access list type doesn't rely
on the TCP flag bits set, it works with UDP and ICMP traffic as well. For non-TCP traffic,
the connection is torn down after a timeout value expires. The timeout can be set per
access list, or it can default to the global timeout of 300 seconds. This feature allows
maximum security for return traffic because lists are created and removed for individual
communication sessions. This capability to keep track of connections makes the reflexive
access list the safest of the three access list types, but also the slowest.

Syntactically, reflexive access lists are basically a subset of extended access lists
specifically, "named" extended access lists. Named lists were created in Cisco IOS version
11.2 for two main reasons. First, large enterprises could run out of numbers for access
lists using the old method. Second, its name could explain for what purpose the list was
being used.

Sequence and the Named Access List

One of the best features of the named access list is that individual entries can
be added or deleted without the list having to be completely re-created. You
simply enter the access list configuration mode by typing

ip access-list extended name

where name is the name of the access list you want to edit. The prompt will

change to look like this:

router(config-ext-nacl)#

At this point, you can delete entries by typing an existing entry preceded by no,

or you can enter additional entries that will automatically be added to the end
of the list. The fact that entries are added to the end of the list can be an issue,
due to the problems with rule order. In previous versions of IOS, the only way
this could be corrected was by re-creating the entire list or by deleting all the
commands at the end of the list that you want the new entry to be placed
before and then re-adding them back in after adding the new entry. Anyone who
has done this knows it is a major hassle.

Now in versions 12.2(15)T and 12.3(2)T and later, the sequence feature has
been introduced. Before entering the permit or deny keyword, you can add a

sequence number, enabling the placement of a new access list entry anywhere
in an access list. To demonstrate this feature, let's look at the following access
list:

ip access-list extended test
 10 permit tcp any any
 20 permit ip any any log

In the past, a new entry would be placed after the last listed entry. However,
with the sequence feature, we can choose a value below 10 to place the entry
at the beginning of this list, between 10 and 20 to put the entry between the
two listed entries, or greater than 20 to add it to the end of the list. If an initial
sequence number is not specified when you create an entry, numbers will
automatically be assigned (starting with the number 10). The auto-numbering
then increments by 10 for each additional entry added.

We start by defining the list with ip access-list extended name , where name is the
descriptive name used to define the access list. We follow this line with permit and deny

lines, as shown next. They follow similar logic to numbered extended access lists. To
move to a reflexive access list, all we have to do is add the reflect keyword to the end,

followed by a name for the reflexive access list:

router(config)#ip access-list extended outfilter
router(config-ext-nacl)#permit tcp any any eq 80 reflect mypackets
router(config-if)#ip access-group outfilter out

Notice the way that the prompt changes after entering the initial command, which shows

that we are now entering specific information into the named access list. In the permit
line, we have the reflect keyword and the name of the reflexive access list with which

we will be keeping track of our packet's connection information. Of course, the last line
applies the list to the network interface, just like all previous examples, but now we do it
by name. You might remember from the explanation of reflexive access lists that every
connection has a dynamically created access list. These dynamic lists are created based
on an access list like the one in the previous example. However, we need a component in
the reverse direction to examine the packets when they come back in. Take a look at a
sample inbound filter:

router(config)#ip access-list extended infilter
router(config-ext-nacl)#evaluate mypackets
router(config-if)#ip access-group infilter in

This access list should look familiar, except for the second line. The evaluate line checks

the incoming packet flow versus the reflexive access list information (in this case,
mypackets) to see if it will pass the test of one of its dynamically created lists. We now

have a complete reflexive access list with all its components!

FTP Problems Revisited with the Reflexive Access List

Following is an example of a reflexive mode FTP filter that blocks incoming FTP traffic but
allows outgoing passive FTP, along with any valid TCP traffic. This is a popular use of the
reflexive access listto allow anything outbound and to allow return (or response) traffic
inbound.

router(config)#ip access-list extended filterout
router(config-ext-nacl)#permit tcp any any reflect packets
router(config-ext-nacl)#permit udp any any reflect packets
router(config-ext-nacl)#permit icmp any any reflect packets

router(config)#ip access-list extended filterin
router(config-ext-nacl)#evaluate packets

router(config-if)#ip access-group filterin in
router(config-if)#ip access-group filterout out

The filterout on this list permits all types of traffic out. Only TCP is necessary for FTP,

but the others are added to demonstrate a popular configuration selection used with
reflexive access lists, as mentioned previously. The filterin evaluates the return traffic

of the previous outbound filter, and by the implied "deny all," it drops non-return FTP
traffic (and any other non-return traffic). The last group shows the application of the
filterin inbound and filterout outbound on the appropriate internal and external ports.

Filter order isn't an issue, as the example appears here. It is possible to add other permit
and deny access lists into this filter, being careful to ensure that nothing permitting TCP
port 21 traffic comes before the rule in filterin and that the evaluate line terminates
the list. The evaluate line must always terminate the list.

You can test the effectiveness of this filter using a properly implemented PASV FTP client.
This filter, though the most secure of the FTP options you have seen so far, still only
works with PASV FTP. The only way to securely allow standard FTP outbound through a
Cisco router is by using a part of the Cisco Secure Integrated Software (formerly the
Firewall Feature Set) called context-based access control (CBAC) , which inspects traffic
and watches for inbound connections based on common behaviors of known protocols.
Therefore, if you have to do secured outbound standard FTP on a Cisco router, consider
the Cisco Secure Integrated Software.

Reflexive ACLs with UDP and ICMP Traffic: Clearing Up DNS Issues

One of the greatest advantages of reflexive ACLs over extended ACLs with the
established keyword is that reflexive access lists can handle UDP and ICMP traffic. One

place that this is helpful is with DNS traffic.

As previously mentioned, incoming UDP DNS return traffic is an issue because it can't be
tracked by the established command; therefore, a specific access list must be made to

allow DNS return traffic. With the reflexive access list, this is no longer necessary. Using
the same access list used in the "FTP Problems Revisited with the Reflexive Access List"
section, DNS return traffic is handled dynamically. Because the outgoing connection is
aware of the ephemeral port that the DNS request is using, the dynamically created ACL
can reflect (pardon the pun) that information, making a much more secure access control
list.

Trouble in Paradise: Problems with Reflexive Access Lists

Yes, just when you thought you had found the panacea of packet filtering, the disclaimer
comes about. Even reflexive access lists aren't perfect. However, due to the dynamic
nature by which they are created and deleted, they are much more difficult to pass than
other packet filters. One reset packet is all that is required to entirely remove a reflexively
generated ACL.

Another issue with reflexive access lists is that they keep no record of TCP flags, so initial
traffic could flow in without an alarm being sounded. How feasible is this? Look at the
following example:

permit tcp host 100.100.100.1 eq 23 192.168.100.2 eq 1072

This is a dynamically generated reflexive access list example from a previous section. For
someone to be able to use this access list as a conduit through to your internal network,
the following would have to transpire:

Someone would have to know that this access list exists.1.

This access list would have to be created by an internal host contacting an outside
entity.

2.

Only a host at 100.100.100.1 using port 23 could start a viable communications
channel through this access list.

3.

The only host that could be contacted would be at address 192.168.100.2.4.

The contacted host would have to be listening on the ephemeral port 1072.5.

The sending host would have to know exactly what stage of communication the
contacted host would be expecting to keep it from tearing down the dynamic access
list.

6.

This would all have to transpire before the generated access list was torn down.7.

If someone is this in-tune with your network and security structure and you don't have the
reconnaissance capabilities to recognize that this person is watching you, you might be
vulnerable on more levels than this one.

One thing can walk right through reflexive access lists: outbound traffic. If a virus or
Trojan is on the internal network and wants to contact a malicious outside entity, the
reflexive access list would let the traffic out and the return traffic from the conversation
back in. The only way to defend against this with packet filtering is by limiting outbound

access with an access list like the following (for an even stronger security stance, replace
the second any with your internal network number):

router(config)#ip access-list extended filterout
router(config-ext-nacl)#permit tcp any any eq 21 reflect packets
router(config-ext-nacl)#permit tcp any any eq 22 reflect packets
router(config-ext-nacl)#permit tcp any any eq 23 reflect packets
router(config-ext-nacl)#permit tcp any any eq 25 reflect packets
router(config-ext-nacl)#permit tcp any any eq 53 reflect packets
router(config-ext-nacl)#permit tcp any any eq 80 reflect packets
router(config-ext-nacl)#permit tcp any any eq 110 reflect packets
router(config-ext-nacl)#permit tcp any any eq 119 reflect packets
router(config-ext-nacl)#permit tcp any any eq 143 reflect packets
router(config-ext-nacl)#permit tcp any any eq 443 reflect packets
router(config-ext-nacl)#permit udp any any eq 53 reflect packets
router(config-ext-nacl)#permit icmp any any packet-too-big
router(config-ext-nacl)#deny ip any any log-input

router(config)#ip access-list extended filterin
router(config-ext-nacl)#evaluate packets

router(config-if)#ip access-group filterin in
router(config-if)#ip access-group filterout out

This way, controls exist for the types of traffic leaving the network. However, if the virus
or Trojan happens to use one of these popular traffic types, you are just as vulnerable.
This is why it is important to deploy extra layers of defense, such as virus checkers and
host firewall defenses. Despite the fact that reflexive ACLs can be a more effective means
to defend your network using dynamically generated host and port access lists, they still
have the inherent limitations of packet-filtering technology that need to be considered
before choosing them as your protection method of choice. They also put more of a burden
on your router than static ACLs, so implement them with caution.

For two complete examples of reflexive access lists, refer to Appendix A, "Cisco Access
List Sample Configurations."

Cisco IPv6 Access Lists

With the advent of IP version 6, Cisco access lists have changed. IPv6 extended access
list support started to be accommodated for in IOS versions 12.0(23)S and 12.2(13)T or
later. Previously there were limited IOS versions that supported features similar to
standard access list functionality for IPv6, only allowing filtering based on source
addressing. The IPv6 extended access lists, though similar to their IPv4 predecessors,
require slightly different commands. Because IPv6 is not backward compatible with IPv4,
new commands needed to be created for IPv6-related functions.

Access lists are still created in config mode, but the process of creating an IPv6 access list
is instead started with the following command:

Router(config)#ipv6 access-list name

Here, name is some descriptive name for the IPv6 access list. This will place you into IPv6

access-list configuration mode. The prompt will change to look like this:

Router(config-ipv6-acl)#

Now permit or deny access list statements can be added. Here is an example of a permit

statement for this access list:

 Router(config-ipv6-acl)#permit ipv6 any A2b2:A:132::1234/64 log

It follows the same format as IPv4 extended access listspermit or deny, followed by
protocol identifier. Supported keywords include ipv6 for layer 3 access lists using IPv6
addressing, along with protocol identifiers ahp, esp, tcp, udp, pcp, stcp, and icmp. This is
followed by the source and destination address in IPv6 format, and the any and host

keywords can still also be used. This version of access list can accommodate the double-
colon abbreviation, as shown in the example. One minor difference in the source and
destination address notation is the new way the subnet mask is entered. Instead of listing
out the value of the subnet mask, as was commonly done with IPv4, it is now shown as
/xxx where xxx is some number between 0 and 128. This number represents the number

of bits in the subnet mask. The entry can be ended with a trailing keyword. It can be any
of the trailing keywords used in IPv4, with the exception of keywords that only refer to
IPv4 features (tos and precedence). Also, there are several new keywords to

accommodate IPv6 features. IPv6 extension header information can be filtered with the
flow-label and routing keywords. Also, the sequence keyword allows similar

functionality to the IPv4 named access list feature of the same name. However, in IPv6
lists, the sequence keyword is added after the list instead of at the beginning:

permit tcp any any sequence 5

IPv6 extended access lists also have support for reflexive access list capability with the
use of the reflect keyword. This functionality is identical to IPv4 reflexive access lists.

IPv6 access lists are displayed using the following command:

Router# sh ipv6 access-list name

The name option can be left off to display all IPv6 access lists.

As IPv6 continues to be more and more supported throughout the Internet, understanding
IPv6 access list features will become a crucial part of securing your network environment.

Summary

Throughout this chapter, we've discussed the many ways that packet filtering can be used
as a means to secure the perimeter. We discussed the positive and negative points of
using a packet filter as the means to control traffic flow based on address and port, and
the weaknesses of the packet-filtering technology. We also discussed the improvement of
packet-filtering technology through the use of dynamic packet filters.

Despite weaknesses in the packet filter's capability to track information and understand
what it is tracking, it still has many uses that can make it a valuable part of your
perimeter defense. Filters can be utilized to screen out unwanted traffic at the perimeter,
to prevent possibly dangerous traffic from leaving your network, and even to tailor
incoming traffic that is allowed.

Packet filters can be used in conjunction with other firewalls as a layer of an intricate
defense-in-depth posture or as a standalone solution in lower-risk areas or where budgets
are tight. After all, protection of information is a balancing act between the value of the
data and the cost to protect it.

Packet-filtering technology can be a useful means to protect your network as long as you
implement it with due consideration to its strengths and weaknesses.

References

1 "Access Control Lists and IP Fragments." Cisco Systems, Inc.
http://www.cisco.com/_warp/public/105/acl_wp.html. December 2001.

2 "Access Control Lists and IP Fragments." Cisco Systems, Inc.
http://www.cisco.com/_warp/public/105/acl_wp.html. December 2001.

3 RFC 1858 "Security Considerations for IP Fragment Filtering."
http://www.ietf.org/rfc/_rfc1858.txt. October 1995.

Chapter 3. Stateful Firewalls
The focus of this chapter is on stateful firewalls, a type of firewall that attempts to track
the state of network connections when filtering packets. The stateful firewall's capabilities
are somewhat of a cross between the functions of a packet filter and the additional
application-level protocol intelligence of a proxy. Because of this additional protocol
knowledge, many of the problems encountered when trying to configure a packet-filtering
firewall for protocols that behave in nonstandard ways (as mentioned in Chapter 2,
"Packet Filtering") are bypassed.

This chapter discusses stateful filtering, stateful inspection, and deep packet inspection,
as well as state when dealing with various transport and application-level protocols. We
also demonstrate some practical examples of how several vendors implement state
tracking as well as go over examples of such firewalls.

How a Stateful Firewall Works

The stateful firewall spends most of its cycles examining packet information in Layer 4
(transport) and lower. However, it also offers more advanced inspection capabilities by
targeting vital packets for Layer 7 (application) examination, such as the packet that
initializes a connection. If the inspected packet matches an existing firewall rule that
permits it, the packet is passed and an entry is added to the state table. From that point
forward, because the packets in that particular communication session match an existing
state table entry, they are allowed access without call for further application layer
inspection. Those packets only need to have their Layer 3 and 4 information (IP address
and TCP/UDP port number) verified against the information stored in the state table to
confirm that they are indeed part of the current exchange. This method increases overall
firewall performance (versus proxy-type systems, which examine all packets) because
only initiating packets need to be unencapsulated the whole way to the application layer.

Conversely, because these firewalls use such filtering techniques, they don't consider the
application layer commands for the entire communications session, as a proxy firewall
would. This equates to an inability to really control sessions based on application-level
traffic, making it a less secure alternative to a proxy. However, because of the stateful
firewall's speed advantage and its ability to handle just about any traffic flow (as opposed
to the limited number of protocols supported by an application-level proxy), it can be an
excellent choice as the only perimeter protection device for a site or as a role player in a
more complex network environment.

Note

Using a single perimeter protection device is often a financial necessity for
smaller sites. However, despite the fact that only a single firewall is being
implemented, other defense-in-depth options such as intrusion detection systems
(IDSs), logging and monitoring servers, and host-level protection should also be
used for a more secure network implementation.

Now that we have discussed the stateful firewall, for a better understanding of its
function, let's discuss the meaning of state and how it is tracked in network
communications.

Using a Firewall as a Means of Control

An important point that should be considered when discussing perimeter
security is the concept of a firewall as a network chokepoint. A chokepoint is a
controllable, single entry point where something is funneled for greater
security. However, as the name implies, this area of limited entry also can be a
place where bandwidth is restricted. A good example of a chokepoint in the real
world is a metal detector at an airport. Imagine if the metal detector was the
size of an entire hallway in the airport, and 20 or more people could walk
through a single gate at one time. If the detector goes off, it would be difficult
for the inspectors to determine which party had triggered it and to be able to
stop that person to examine him or her further. More fine-grained traffic control
is needed in such a situation. That is why the concept of a chokepoint is
necessary in such a case; it allows one inspector to watch one party go through
one metal detector at a time. The chokepoint offers additional control of the
parties entering the airport. Like other chokepoints, this channeling of people
for additional control can also lead to slowdowns in the process; therefore, lines
often form at airport metal detectors.

Similar to an airport metal detector, a firewall offers a chokepoint for your
network segment. All traffic that enters or leaves your network needs to pass
through it for inspection. This additional control not only helps protect inbound
and outbound traffic flows but also allows a single point for examining and
logging such traffic, verifying that if a breach exists, it is recorded.

The Concept of State

One confusing concept to understand when discussing firewall and TCP/IP communications is the meaning
of state . The main reason this term is so elusive is that it can mean different things in different situations.
Basically, state is the condition of being of a given communication session. The definition of this condition
of being for a given host or session can differ greatly, depending on the application with which the parties
are communicating and the protocols the parties are using for the exchange.

Devices that track state most often store the information as a table. This state table holds entries that
represent all the communication sessions of which the device is aware. Every entry holds a laundry list of
information that uniquely identifies the communication session it represents. Such information might
include source and destination IP address information, flags, sequence and acknowledgment numbers, and
more. A state table entry is created when a connection is started out through the stateful device. Then,
when traffic returns, the device compares the packet's information to the state table information to
determine whether it is part of a currently logged communication session. If the packet is related to a
current table entry, it is allowed to pass. This is why the information held in the state table must be as
specific and detailed as possible to guarantee that attackers will not be able to construct traffic that will be
able to pass the state table test.

Firewall Clustering and Tracking State

It is possible to cluster firewalls together for redundancy, or to allow more bandwidth than a
single firewall can handle on its own. In this clustered state, any of the firewall partners could
possibly receive any part of a traffic flow. Therefore, although the initial SYN packet for a
connection might be received on firewall 1, the final ACK response might come back to firewall
2. To be able to handle traffic statefully when firewalls are clustered, a single shared state
table must be available to all the cluster members. This facilitates the complete knowledge of
all traffic that other cluster members have seen. It is often accomplished using a dedicated
communications cable between the members as a sort of direct link, solely for the sharing of
vital state information. Such a mechanism affords an efficient means for the propagation of
said state table information, allowing even the fastest communication links to operate without
the problem of an incompletely updated state table.

The only other means to implement clustered firewalls without having to share state is by
placing the firewalls in a "sandwich" between load-balancers. This way, a given traffic stream
will always hit the same firewall it was initiated through. For more information on design
choices for firewall clustering, take a look at Chapter 17, "Tuning the Design for Performance."

Transport and Network Protocols and State

Transport protocols can have their connection's state tracked in various ways. Many of the attributes that
make up a communication session, including IP address and port pairings, sequence numbers, and flags,
can all be used to fingerprint an individual connection. The combination of these pieces of information is
often held as a hash in a state table for easy comparison. The particulars depend on the vendor's individual
implementation. However, because these protocols are different, so are the ways the state of their
communications can be effectively tracked.

TCP and State

Because TCP is a connection-oriented protocol, the state of its communication sessions can be solidly

defined. Because the beginning and end of a communication session is well defined in TCP and because it
tracks the state of its connections with flags, TCP is considered a stateful protocol. TCP's connection is
tracked as being in one of 11 states, as defined in RFC 793. To truly understand the stateful tracking of
TCP, it is important to realize the many stages a TCP connection goes through, as detailed in the following
list:

CLOSED A "non-state" that exists before a connection actually begins.

LISTEN The state a host is in when waiting for a request to start a connection. This is the true starting
state of a TCP connection.

SYN-SENT The time after a host has sent out a SYN packet and is waiting for the proper SYN-ACK
reply.

SYN-RCVD The state a host is in after receiving a SYN packet and replying with its SYN-ACK reply.

ESTABLISHED The state a connection is in after its necessary ACK packet has been received. The
initiating host goes into this state after receiving a SYN-ACK, as the responding host does after
receiving the lone ACK.

During the process of establishing a TCP connection, a host goes through these states. This is all part of
the three-way handshake, as shown in Figure 3.1.

Figure 3.1. The TCP three-way handshake connection establishment consists of
five well-defined states.

The remaining 6 of the 11 TCP connection states describe the tearing down of a TCP connection. The first
state is used during an active close by the initiator and a passive close by the receiver, as shown in Figure
3.2.

FIN-WAIT-1 The state a connection is in after it has sent an initial FIN packet asking for a graceful
close of the TCP connection.

CLOSE-WAIT The state a host's connection is in after it receives an initial FIN and sends back an ACK
to acknowledge the FIN.

FIN-WAIT-2 The connection state of the host that has received the ACK response to its initial FIN, as
it waits for a final FIN from its connection partner.

LAST-ACK The state of the host that just sent the second FIN needed to gracefully close the TCP

connection back to the initiating host while it waits for an acknowledgment.

TIME-WAIT The state of the initiating host that received the final FIN and has sent an ACK to close
the connection. Because it will not receive an acknowledgment of its sent ACK from the connection
partner, it has to wait a given time period before closing (hence, the name TIME-WAIT); the other
party has sufficient time to receive the ACK packet before it leaves this state.

Note

The amount of time the TIME-WAIT state is defined to pause is equal to the Maximum
Segment Lifetime (MSL), as defined for the TCP implementation, multiplied by two. This is
why this state is also called 2MSL.

CLOSING A state that is employed when a connection uses the nonstandard simultaneous close. The
connection is in this state after receiving an initial FIN and sending an ACK. After receiving an ACK
back for its FIN, the connection will go into the TIME-WAIT state (see Figure 3.3).

Figure 3.3. The simultaneous close of a TCP connection, where both parties
close actively, consists of six states.

Figure 3.2. The active/passive closing of a normal TCP connection consists of six
states.

You can determine the state of the TCP connection by checking the flags being carried by the packets, as
alluded to by the various descriptions of the TCP states. The tracking of this flag information, in
combination with the IP address/port address information for each of the communicating parties, can paint
a pretty good picture of what is going on with the given connection. The only other pieces of the puzzle
that might be needed for clarity are the sequence and acknowledgment numbers of the packets. This way,
if packets arrive out of order, the dialog flow of the communication can be more easily discerned, and the
use of replay attacks against a device tracking state will be less likely to succeed.

Entries for TCP communication sessions in a state table are removed when the connection is closed. To
prevent connections that are improperly closed from remaining in the state table indefinitely, timers are
also used. While the three-way handshake is transpiring, the initial timeout value used is typically short
(under a minute), so network scans and the like are more quickly cleared from the state table. The value is
lengthened considerably (to as long as an hour or more) after the connection is established, because a
properly initiated session is more likely to be gracefully closed.

It would seem from what we have just covered that the state of any TCP connection is easily definable,
concrete, and objective. However, when you're tracking the overall communication session, these rules
might not always apply. What if an application that employs nonstandard communication techniques was
being used? For example, as discussed in Chapter 2, standard FTP uses an atypical communication
exchange when initializing its data channel. The states of the two individual TCP connections that make up
an FTP session can be tracked in the normal fashion. However, the state of the FTP connection obeys
different rules. For a stateful device to be able to correctly pass the traffic of an FTP session, it must be
able to take into account the way that standard FTP uses one outbound connection for the control channel
and one inbound connection for the data channel. We will cover this issue in greater detail in the
"Application-Level Traffic and State" section, later in this chapter.

UDP and State

Unlike TCP, UDP is a connectionless transport protocol. This makes the tracking of its state a much more
complicated process. In actuality, a connectionless protocol has no state; therefore, a stateful device must
track a UDP connection in a pseudo-stateful manner, keeping track of items specific to its connection only.
Because UDP has no sequence numbers or flags, the only items on which we can base a session's state are
the IP addressing and port numbers used by the source and destination hosts. Because the ephemeral
ports are at least somewhat random, and they differ for any connection coming from a given IP address,
this adds a little bit of credence to this pseudo-stateful method of session tracking. However, because the
UDP session is connectionless, it has no set method of connection teardown that announces the session's
end. Because of this lack of a defined ending, a state-tracking device will typically be set up to clear a UDP
session's state table entries after a preconfigured timeout value (usually a minute or less) is reached. This

prevents entries from filling the table.

Another point of concern with UDP traffic is that because it cannot correct communication issues on its
own, it relies entirely on ICMP as its error handler, making ICMP an important part of a UDP session to be
considered when tracking its overall state.

For example, what if during a UDP communication session a host can no longer keep up with the speed at
which it is receiving packets? UDP offers no method of letting the other party know to slow down
transmission. However, the receiving host can send an ICMP source quench message to let the sending
host know to slow down transmission of packets. However, if the firewall blocks this message because it is
not part of the normal UDP session, the host that is sending packets too quickly does not know that an
issue has come up, and it continues to send at the same speed, resulting in lost packets at the receiving
host. Stateful firewalls must consider such "related" traffic when deciding what traffic should be returned to
protected hosts.

ICMP and State

ICMP, like UDP, really isn't a stateful protocol. However, like UDP, it also has attributes that allow its
connections to be pseudo-statefully tracked. The more complicated part of tracking ICMP involves its one-
way communications. The ICMP protocol is often used to return error messages when a host or protocol
can't do so on its own, in what can be described as a "response" message. ICMP response-type messages
are precipitated by requests by other protocols (TCP, UDP). Because of this multiprotocol issue, figuring
ICMP messages into the state of an existing UDP or TCP session can be confusing to say the least. The
other, easier-to-track way in which ICMP is used is in a request/reply-type usage. The most popular
example of an application that uses this request/reply form is ping. It sends echo requests and receives
echo reply messages. Obviously, because the given stimulus in these cases produces an expected
response, the session's state becomes less complicated to track. However, instead of being tracked based
on source and destination addresses, the ICMP message can be tracked on request message type and reply
message type. This tracking method is about the only way ICMP can enter into a state table.

Another issue with ICMP is that, like UDP, it is connectionless; therefore, it must base the retention of a
state table entry on a predetermined timeout because ICMP also does not have a specific mechanism to
end its communication sessions.

Application-Level Traffic and State

We have covered in some detail the ways that state can be tracked at the transport and network protocol
levels; however, things change when you are concerned about the state of the entire session. When a
stateful device is deciding which traffic to allow into the network, application behaviors must be taken into
account to verify that all session-related traffic is properly handled. Because the application might follow
different rules for communication exchanges, it might change the way that state has to be considered for
that particular communication session. Let's look at an application that uses a standard communication
style (HTTP) and one that handles things in a nonstandard way (FTP).

HTTP and State

HTTP is the one of the main protocols used for web access, and it's the most commonly used protocol on
the Internet today. It uses TCP as its transport protocol, and its session initialization follows the standard
way that TCP connections are formed. Look at the following tcpdump trace:

[View full width]
21:55:46.1 Host.1096 > maverick.giac.org.80: S 489703169:489703169(0) win 16384 <mss1460
,nop,nop,sackOK> (DF)
21:55:46.2 maverick.giac.org.80 > Host.1096: S 3148360676:3148360676(0) ack 489703170win
 5840 <mss 1460,nop,nop,sackOK> (DF)
21:55:46.5 Host.1096 > maverick.giac.org.80: . ack 1 win 17520 (DF)

This tcpdump trace shows the three-way handshake between a contacting client named Host and the SANS
GIAC web server, Maverick. It is a standard TCP connection establishment in all aspects.

The following packet lists the first transaction after the TCP connection was established. Notice that in the
payload of the packet, the GET / HTTP/1.1 statement can be clearly made out (we truncated the output for

display purposes):

21:55:46.6 Host.1096 > maverick.giac.org.80: P 1:326(325) ack 1 win 17520 (DF)
E..m."@....6.....!...H.P.0G...+.P.Dpe$..GET./.HTTP/1.1..Accept:.image/gif,.image

This is the first HTTP command that a station issues to receive a web page from a remote source.

Let's look at the next packet, which is truncated for display purposes:

[View full width]
21:55:46.8 maverick.giac.org.80 > Host.1096: P 1:587(586) ack 326 win 6432 (DF) E..r..@.2.
.6.!.......P.H..+..0HGP.......HTTP/1.1.301.Moved.Permanently.. Date:.Wed,.06.Feb.2002.02:56
:03.GMT..Server:.Apache..Location: .http://www.sans.org/newlook/home.php..Kee

Notice that this reply packet begins to return the home page for the SANS GIAC website at
http://www.sans.org. As shown in the preceding example, protocols such as HTTP that follow a standard
TCP flow allow an easier definition of the overall session's state. Because it uses a single established
connection from the client to the server and because all requests are outbound and responses inbound, the
state of the connection doesn't differ much from what would be commonly tracked with TCP. If tracking
only the state of the TCP connection in this example, a firewall would allow the HTTP traffic to transpire as
expected. However, there is merit in also tracking the application-level commands being communicated.
We cover this topic more in the section "Problems with Application-Level Inspection," later in this chapter.
Next, we look at how this scenario changes when dealing with applications that use a nonstandard
communication flow, such as standard FTP traffic.

File Transfer Protocol and State

File Transfer Protocol (FTP) is a popular means to move files between systems, especially across the
Internet. FTP in its standard form, however, behaves quite differently from most other TCP protocols. This
strange two-way connection establishment also brings up some issues with the tracking of state of the
entire connection. Would a firewall that only tracks the state of the TCP connections on a system be able to
pass standard FTP traffic? As seen in Chapter 2, the answer is no. A firewall cannot know to allow in the
SYN packet that establishes an FTP data channel if it doesn't take into account the behavior of FTP. For a
stateful firewall to be able to truly facilitate all types of TCP connections, it must have some knowledge of
the application protocols being run, especially those that behave in nonstandard ways.

When the application-level examination capabilities of a stateful inspection system are being used, a
complicated transaction like that used by a standard FTP connection can be dissected and handled in an
effective and secure manner.

The stateful firewall begins by examining all outbound traffic and paying special attention to certain types
of sessions. As we know from Chapter 2, an FTP control session can be established without difficulty; it is
the inbound data-channel initialization that is problematic. Therefore, when a stateful firewall sees that a
client is initializing an outbound FTP control session (using TCP port 21), it knows to expect the server
being contacted to initiate an inbound data channel on TCP port 20 back to the client. The firewall can
dynamically allow an inbound connection from the IP address of the server on port 20 to the address of the
client. However, for utmost security, the firewall should also specify the port on which the client will be
contacted for this exchange.

The firewall discovers on which port the client is contacted through the use of application inspection.
Despite the fact that every other piece of information we have needed thus far in this exchange has been
Layer 4 or lower, the port number used by the server initializing the data channel is actually sent to it in
an FTP port command from the client. Therefore, by inspecting the traffic flow between client and server,

the firewall also picks up the port information needed for inbound data channel connection. This process is
illustrated in Figure 3.4.

Figure 3.4. The stateful firewall examines the FTP port command to determine the

destination port for the establishment of the FTP data channel.

Multimedia Protocols and the Stateful Firewall

Multimedia protocols work similarly to FTP through a stateful firewalljust with more connections and
complexity. The widespread use of multimedia communication types, such as H.323, Real Time Streaming
Protocol (RTSP), CUSeeME, Microsoft's NetShow, and more, have demanded a secure means to allow such
traffic to pass into the networks of the world.

All these protocols rely on at least one TCP control channel to communicate commands and one or more
channels for multimedia data streams running on TCP or UDP. The control channels are monitored by the
stateful firewall to receive the IP addresses and port numbers used for the multimedia streams. This
address information is then used to open secure conduits to facilitate the media streams' entrance into the
network, as shown in Figure 3.5.

Figure 3.5. The stateful firewall tracks the multimedia protocol's communication
channel to facilitate the passing of incoming media streams.

Note

Stateful firewalls now allow the use of multistream multimedia applications, such as H.323, in
conjunction with Port Address Translation (PAT). In the not-so-distant past, this was a long-time
problem with multistream protocols because the multiple ports used per connection could easily
conflict with the PAT translation's port dispersal.

Problems with Application-Level Inspection

Despite the fact that many stateful firewalls by definition can examine application layer traffic, holes in
their implementation prevent stateful firewalls from being a replacement for proxy firewalls in
environments that need the utmost in application-level control. The main problems with the stateful
examination of application-level traffic involve the abbreviated examination of application-level traffic and
the lack of thoroughness of this examination, including the firewall's inability to track the content of said
application flow.

To provide better performance, many stateful firewalls abbreviate examinations by performing only an
application-level examination of the packet that initiates a communication session, which means that all
subsequent packets are tracked through the state table using Layer 4 information and lower. This is an
efficient way to track communications, but it lacks the ability to consider the full application dialog of a
session. In turn, any deviant application-level behavior after the initial packet might be missed, and there
are no checks to verify that proper application commands are being used throughout the communication
session.

However, because the state table entry will record at least the source and destination IP address and port
information, whatever exploit was applied would have to involve those two communicating parties and
transpire over the same port numbers. Also, the connection that established the state table entry would not
be properly terminated, or the entry would be instantly cleared. Finally, whatever activity transpired would
have to take place in the time left on the timeout of the state table entry in question. Making such an
exploit work would take a determined attacker or involve an accomplice on the inside.

Another issue with the way stateful inspection firewalls handle application-level traffic is that they
typically watch traffic more so for triggers than for a full understanding of the communication dialog;
therefore, they lack full application support. As an example, a stateful device might be monitoring an FTP
session for the port command, but it might let other non-FTP traffic pass through the FTP port as normal.

Such is the nature of a stateful firewall; it is most often reactive and not proactive. A stateful firewall
simply filters on one particular command type on which it must act rather than considering each command
that might pass in a communication flow. Such behavior, although efficient, can leave openings for
unwanted communications types, such as those used by covert channels or those used by outbound
devious application traffic.

In the previous example, we considered that the stateful firewall watches diligently for the FTP port

command, while letting non-FTP traffic traverse without issue. For this reason, it would be possible in most
standard stateful firewall implementations to pass traffic of one protocol through a port that was being
monitored at the application level for a different protocol. For example, if you are only allowing HTTP traffic
on TCP port 80 out of your stateful firewall, an inside user could run a communication channel of some sort
(that uses a protocol other than the HTTP protocol) to an outside server listening for such communications
on port 80.

Another potential issue with a stateful firewall is its inability to monitor the content of allowed traffic. For
example, because you allow HTTP and HTTPS out through your firewall, it would be possible for an inside
user to contact an outside website service such as http://www.gotomypc.com. This website offers users the
ability to access their PC from anywhere via the web. The firewall will not prevent this access, because
their desktop will initiate a connection to the outside Gotomypc.com server via TCP port 443 using HTTPS,
which is allowed by your firewall policy. Then the user can contact the Gotomypc.com server from the
outside and it will "proxy" the user's access back to his desktop via the same TCP port 443 data flow. The
whole communication will transpire over HTTPS. The firewall won't be able to prevent this obvious security
breach because the application inspection portion of most stateful firewalls really isn't meant to consider
content. It is looking for certain trigger-application behaviors, but most often (with some exceptions) not
the lack thereof. In the case of http://www.gotomypc.com, application-level inspection has no means to
decipher that this content is inappropriate.

Note

Despite the fact that standard stateful examination capabilities of most such firewalls could not
catch deviant traffic flows such as the covert channels based on commonly open ports, many
vendors also offer content filtering or Deep Packet Inspection features on their stateful firewall
products to prevent such issues. FireWall-1 and the PIX both offer varying levels of content
filtering, for example. However, such features are often not enabled by default or need to be
purchased separately and must be configured properly to be effective.

Another popular example of traffic that sneaks out of many otherwise secure networks involves programs
such as AOL Instant Messenger, Kazaa, and other messaging and peer-to-peer file-sharing programs.
These programs have the potential to transmit through any port, and because most stateful firewalls have
at least one outbound port open, they will find their way out. Like the aforementioned "covert channel"
example, the standard stateful firewall does not differentiate this type of traffic; it allows the traffic to pass
as long as it is using one of the available ports. Content-level filtering or a true proxy firewall that
considers all application-level commands could be used to prevent such traffic.

Deep Packet Inspection

Some of the biggest problems security professionals face today are allowed through their firewalls by
design. As mentioned in the previous section, covert channels, nefarious content traversing known ports,
and even malicious code carried on known protocols are some of the most damaging security threats your
business will be exposed to. It is true that even a defense mechanism as simple as a packet filter could
block most of these threats if you blocked the port they were carried on, but the real issue is that they
travel over protocols you want to allow into your network and are required for your business! For example,
many of the most widespread worms travel over NetBIOS, HTTP, or SQL-related protocolsall of which can
be an important part of your Internet or network business. Obviously, it is not good form to allow NetBIOS
or SQL into your network from the Internet, but if an attack is launched from an email attachment received
at a user's PC, it is very likely that you might allow these protocols to traverse security zones on your
network. How can we prevent issues carried by protocols that our businesses require to function? The
answer is Deep Packet Inspection.

Deep Packet Inspection devices are concerned with the content of the packets. The term Deep Packet
Inspection is actually a marketing buzzword that was recently coined for technology that has been around
for some time; content examination is not something new. Antivirus software has been doing it at the host
and mail server level, and network IDSs have been doing it on the wire for years. However, these products

have limited visibility and capability to deal with the malicious payloads they find. A major disadvantage of
content filtering at these levels is that the worm, Trojan horse, or malicious packet has already entered
your network perimeter. Firewalls offering Deep Packet Inspection technology have the ability to detect
and drop packets at the ingress point of the network. What more appropriate place to stop malicious traffic
than at the firewall?

In the past, you have been able to use router or firewall content-filtering technologies to enter the
signature of a worm or other malicious event and block it at the exterior of your network. However, what
newer Deep Packet Inspection devices bring to the table are preloaded signatures, similar to those used by
an antivirus solution. This way, your firewall is aware of and able to detect and remove malicious content
as it arrives at your network. Also, because the packet's content is being considered at the application
layer, traffic anomalies representative of an attack or worm can also be considered and filtered even if a
specific signature isn't available for it. For example, if some attack uses a command that is considered
nonstandard for a particular protocol, the device doing Deep Packet Inspection would be able to recognize
it and drop the malicious content.

Note

The Deep Packet Inspection technology used in many popular firewall solutions is very similar to
the content examination capabilities inherent in Intrusion Prevention Systems (IPSs). However,
despite the fact that the technology is similar, the firewall-based solutions lack the volume of
signatures and the thoroughness of analysis that a true IPS offers. Firewall-based Deep Packet
Inspection could be considered "IPS-Lite." For more information on IPS, take a look at Chapter
11, "Intrusion Prevention Systems."

A Deep Packet Inspection firewall is responsible for performing many simultaneous functions. The entire
content of a packet's application layer information needs to be reviewed against a list of attack signatures
as well as for anomalous traffic behaviors. These firewalls also have to perform all the standard functions a
stateful firewall typically handles. Therefore, advanced hardware is required to perform all these processes
in a timely manner. This advanced hardware integration (typically dedicated "processors" just for this task)
is what has set Deep Packet Inspection firewalls apart from their predecessors. It enables the swift
processing and removal of anomalous traffic, with the added advantage of the stateful firewall's
perspective on the overall communication flow of the network. This offers a major edge when determining
which traffic is malicious and which is not.

Note

It is important to remember that for Deep Packet Inspection to work on SSL encrypted traffic
flows, some means to decrypt the traffic must be employed. SSL certificates must also be loaded
on the Deep Packet Inspection device and SSL flows must be decrypted, reviewed, and
reencrypted before they are sent on to their destination. This process will cause some network
latency and requires additional processing power to achieve efficient communications.

Most vendors are either already offering or are considering to offer solutions that incorporate this type of
Deep Packet Inspection technology. Major vendors, including Check Point, Cisco, and Juniper, are using
some form of Deep Packet Inspection in their products and are constantly advancing it to help handle the
new attacks that arrive at our networks on a daily basis.

As heavy-hitting worms such as SQL-Slammer, Blaster, Code-Red, and Welchia pound on our networks,
transported via protocols that we use on a regular basis, the need for devices that consider the content of
packets as well as its application become more and more urgent. Deep Packet Inspection is an excellent
method to shut down some of the most used attack vectors exploited by malicious content today.

Stateful Filtering and Stateful Inspection

The definition of stateful filtering seems to vary greatly among various product vendors and has
developed somewhat, as time has gone on. Stateful filtering can mean anything, from the ability to track
and filter traffic based on the most minute of connection details to the ability to track and inspect session
information at the application level. With this loose interpretation in mind, let's define these terms for the
purpose of this chapter.

Stateful filtering has been used to define the stateful tracking of protocol information at Layer 4 and
lower. Under this definition, stateful filtering products exhibit no knowledge of application layer protocols.
At the most basic level, such products use the tracking of the IP addresses and port numbers of the
connecting parties to track state. As mentioned previously, this is the only way that connectionless
protocols can be tracked, but at best, this is only "pseudo-stateful." What about using this same method
of stateful filtering for the tracking of the connection-oriented TCP? As mentioned previously, this method
does not in any way track the TCP flags. TCP's flags define its connection states; therefore, although this
method might be tracking some information from the various communication sessions, it is not truly
tracking the TCP connection state.

More advanced forms of stateful filtering can also track sequence and acknowledgment numbers and the
TCP packet flags. With the addition of these criteria, we can get truly stateful connection tracking for TCP,
although we still lack the ability to differentiate traffic flows at the application level.

Stateful inspection, in contrast, has come to be used as a description of the devices that track state using
all the Layer 4type information listed previously, as well as the tracking of application-level commands.
All this information can be combined to offer a relatively strong definition of the individual connection's
state. Also, because Layer 7 information is being examined, extra insight into nonstandard protocol
behaviors is available. This allows normally troublesome protocols such as FTP and H.323 to be securely
passed by the device without complication.

Note

Stateful inspection is a term originally coined by the security product manufacturer Check Point,
the maker of FireWall-1, for the way FireWall-1 handles the tracking of state information. It
comprises both the tracking of state using Layer 4 protocol information and the tracking of
application-level traffic commands.1

In both stateful filtering and stateful inspection, the tracked state information is most often recorded into
a state table that tracks the information until a connection is torn down (as with TCP) or until a
preconfigured timeout is reached (TCP, UDP, and ICMP). Every vendor has its own implementation of
these methods, and in the next several sections, we will look at some vendors' definitions of stateful
filtering/stateful inspection as used in their products.

Stateful Firewall Product Examples

As stated previously, various firewall products handle the tracking of state in many different ways. This
section lists some popular firewall products and provides explanations of how they handle state. We also
show examples of each product's state table and examine a sample configuration of a stateful firewall.

Netfilter/IPTables

Netfilter and IPTables are the two main pieces of the most recent incarnation of a firewall product that is

freely available for Linux distributions. IPTables is the construct that is used to build the firewall rule
sets. Netfilter is the bridge between the Linux kernel and the IPTables rule structure. Netfilter/IPTables is
the successor of the ipfwadm and IPChains products, with an ever-increasing list of features and
functionality. Now thanks to its connection-tracking feature, IPTables offers stateful filtering capability.2

Connection tracking records the state of a connection based mostly on protocol-specific information.
Administrators create rules specifying what protocols or specific traffic types should be tracked. When a
connection is begun using a tracked protocol, IPTables adds a state table entry for the connection in
question. This state table entry includes such information as the following:

The protocol being used for the connection

The source and destination IP addresses

The source and destination ports

A listing with source and destination IP addresses and ports reversed (to represent response traffic)

The time remaining before the rule is removed

The TCP state of the connection (for TCP only)

The connection-tracking state of the connection

Following is an example of a state table entry for IPTables:

[View full width]
tcp 6 93 SYN_SENT src=192.168.1.34 dst=172.16.2.23 sport=1054 dport=21 [UNREPLIED] src=172
.16.2.23 dst=192.168.1.34 sport=21 dport=1054 use=1

The first line starts out listing the protocol in question, followed by the protocol's numerical designation (6
for TCP). The next value, 93, represents the time remaining before the entry is automatically cleared from

the state table. Then is shown the state that the TCP connection is in. The source and destination IP
addresses follow, and then the source and destination ports are listed. Because this is an initial
connection (as demonstrated by the connection's TCP state), this line lists that IPTables sees this
connection as [UNREPLIED] and hasn't increased its timeout value yet. Next in the listing, we see a

reversal of the original source and destination address and port information to allow return traffic. After
the connection is established, the state table entry is altered, as you can see in the next example:

[View full width]
tcp 6 41294 ESTABLISHED src=192.168.1.34 dst=172.16.2.23 sport=1054 dport=21 src=172.16.2
.23 dst=192.168.1.34 sport=21 dport=1054 [ASSURED] use=1

The [UNREPLIED] marker is removed after the first return packet. Upon establishment of the connection,
the [ASSURED] marker is placed on the entry, and the timeout value (41294) is greatly increased.

Now let's consider the rules of IPTables.

Note

The following rule examples are basic and for demonstration purposes only. They do not take
into account egress filtering or the lockdown or allowance of specific services. For optimum
security, rules that specifically designate only those individual applications allowed would be
more appropriate.

To begin, we'll look at the syntax and how it works. This first sample rule is considered an output rule

because it defines which traffic can leave through the firewall (-A specifies that this rule will be appended

to already existing rules):

iptables -A OUTPUT -p tcp -m state --state NEW,ESTABLISHED -j ACCEPT

This output rule determines which outbound communication will be accepted (as specified by the j
option). This particular rule deals only with the TCP protocol, as specified by the p tcp option.

Note

IPTables and Netfilter now support IPv6. All you need is kernel version 2.4.x or above and all
necessary modules and kernel patches loaded. Then you can use the ip6tables command for
creating rules for IPv6, which supports the new 128-bit addresses. The p protocol switch

supports both ICMPv6 and IPv6. For more information on whether your system supports IPv6 or
how to set up IP6Tables, check out the Linux Documentation Project site at
http://www.tldp.org/HOWTO/Linux+IPv6-HOWTO/.

It specifies in the -state section that NEW and ESTABLISHED traffic is allowed out of our network. This
rule, as listed, allows no egress protection. All new outbound TCP traffic will be allowed because the NEW
option is specified. NEW tells the firewall to watch for packets with a lone SYN flag that are initiating a
connection and to create entries in the state table for every such occurrence. The ESTABLISHED option

allows traffic that is part of an existing session that has previously been recorded in the state table to
pass as well, which means that any standard TCP communications will be able to leave the network.

Another part of the command worth mentioning is m state. The m denotes what module should be used
for the rule in questionin this case, the standard state module that comes with IPTables. Now let's

examine the rule that will allow the return traffic for our connection back into our network:

iptables A INPUT -p tcp -m state --state ESTABLISHED -j ACCEPT

This command appears identical to the preceding one, except that it is an input rule, and only
ESTABLISHED is listed under the state section of the command. This means that only return traffic will be

allowed inbound to our network, as defined by the state table. IPTables determines whether incoming
traffic is return traffic for the connection entered into the state table by checking it against the reversed
connection information located in the state table entry. No new connections will be able to enter our
network from the outside.

Even though most of the requirements of TCP stateful tracking are available in IPTables, one exception to
this is the tracking of sequence and acknowledgment numbers, which can be added with the tcp-window-
tracking patch.3

From our previous definition of the items held in the state table, you can see that the items needed to do
a pseudo-stateful job of tracking ICMP and UDP are present. Examples of basic UDP output and input rules
would be as follows:

iptables -A OUTPUT -p udp -m state --state NEW,ESTABLISHED -j ACCEPT
iptables -A INPUT -p udp -m state --state ESTABLISHED -j ACCEPT

These rules appear identical to those specified for TCP, except for the p udp option listing.

ICMP rules look about the same:

iptables -A OUTPUT -p icmp -m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -p icmp -m state --state ESTABLISHED,RELATED -j ACCEPT

The main differences are the p icmp specification for protocol and a new entry in the --state section:
RELATED.

The RELATED option is the means by which IPTables allows traffic that is already in some way associated

with an established traffic flow to initiate a new connection in the state table and be passed through the
firewall. This related traffic might be an ICMP error message that is returned for a UDP or TCP connection
already held in the state table. It could also be the initialization of an inbound FTP data channel on TCP
port 20, after state table information had already been logged for an inside station starting a control
channel connection on TCP port 21.

As listed, our rule allows ICMP traffic inbound and outbound that is related to existing ESTABLISHED

TRaffic flows. Therefore, errors returned in response to existing TCP and UDP connections will pass.
Because the NEW option is listed for outbound traffic, requests from ICMP programs such as ping will be
able to leave our network, and the ESTABLISHED option specified for inbound traffic will allow the replies

to said traffic to return back through. However, inbound ping requests will not be allowed in because the
NEW option is not specified inbound.

The rules of conduct for defining related traffic are included in connection-tracking modules. They
facilitate the examination of application-specific commands, such as the way the ip_conntrack_ftp
module facilitates the inspection of FTP's port command to allow the secure handling of standard FTP

traffic. (For more information on how stateful firewalls handle FTP traffic, see the "File Transfer Protocol
and State" section, earlier in this chapter.) These modules can be added on as new protocols are used in
your environment.

To implement a module such as ip_conntrack_ftp to allow standard outbound FTP communications to be

properly initialized through our IPTables firewall, it first has to be loaded with a command such as the
following:

modprobe ip_conntrack_ftp

Next, a specific rule has to be created to inspect the related traffic. This can be accomplished in the case
of FTP by making an INPUT rule that allows inbound TCP port 20 traffic with the state option of RELATED.

This will allow the inbound port 20 traffic to connect if the inspection process deems it related to an
existing connection in the state table. Here is a listing of such a rule:

iptables -A INPUT -p tcp --sport 20 -m state --state ESTABLISHED,RELATED -j ACCEPT

An OUTPUT rule will be needed as well to allow response traffic to return:

iptables -A OUTPUT -p tcp --dport 20 -m state --state ESTABLISHED -j ACCEPT

Notice that the sport 20 option representing the source port in the INPUT rule has changed to the dport
20 (or destination port) option in the OUTPUT rule. This change is due to the reversal of communication

roles for outbound versus inbound traffic.

Check Point FireWall-1

The Check Point FireWall-1 (FW-1) is one of the most popular stateful firewalls in use today. It is
software based and can be loaded onto hardware server solutions of various platform types, including
Windows, Solaris, and Red Hat Linux. It is also offered as a hardware appliance solution by Nokia.
FireWall-1 uses a state table for the basic tracking of connections at the protocol level and an INSPECT
engine for more complicated rules involving application layer traffic and nonstandard protocol behavior.

When deciding whether to allow a packet to pass, FireWall-1 tests it against the following data structures,
in the order specified:

First, FireWall-1 checks to see whether a connection is already logged in the state table for this
particular incoming packet. If so, it is forwarded without further scrutiny.

Next, if the state table did not contain an entry for the packet, the packet is compared against the
security policy. If a rule allows the packet to pass, it will be forwarded on, and an entry for its
communication session will be added to the state table.

TCP traffic is handled at a protocol level, much like previously shown examples. When a communication
ensues, because the first packet of a connection will not be reflected in the state table, it is tested against
the security policy. If it is accepted based on one of the rules, it is added into the state table.

Tip

For the most complete stateful protection of TCP communication flows, be sure to use the latest
vendor-recommended version and feature pack of FireWall-1. In this text, all commands and
examples use FW-1 NG. Also, for the highest level of security protection, be sure that all
suggested hot fixes are applied.

The rules that might allow traffic to pass are either one of the implied rules set up in the FireWall-1
section of the Global Properties of SmartDashboard or are part of the rulebase created and maintained in
FireWall-1's SmartDashboard GUI interface. For an example of a rule's listing and what the
SmartDashboard interface looks like, refer to Figure 3.6.

Figure 3.6. Check Point FireWall-1 NG offers a user-friendly GUI interface called
SmartDashboard (formerly Policy Editor in previous versions) for editing its rule

set.

[View full size image]

Implied Rules

Be aware that even though FW-1's implied rules are not seen by default when you are
viewing a firewall policy, they will allow certain types of traffic through your firewall. To ease
your troubleshooting efforts, you may want to check the Log Implied Rules box in the
FireWall-1 section of Global Properties. Also, to keep yourself cognizant of the implied rules
when building your rulebase, you can check the Implied Rules option under the View menu of
SmartDashboard so these rules appear when you view your firewall policy.

As shown in Figure 3.6, designing a rule set for firewall products such as FireWall-1 can be less
demanding than some of the less user-friendly choices, such as IPTables. FireWall-1 allows you to use a
GUI interface to represent your networks and systems as objects. You can elect to allow or disallow traffic
for specific services by selecting appropriate options and referencing relevant objects. Rule order is one of
the most critical things to keep in mind when designing such a rule set. It is vital to list specific rules at
the top of the rule list before more general rules that might inadvertently apply to unwanted traffic types.

Note

For more information on building a FireWall-1 rulebase, see Lance Spitzner's paper titled
"Building Your Firewall Rulebase" at http://www.spitzner.net/rules.html.

FireWall-1 enforces timeouts for TCP connections to ensure that improperly terminated sessions that lack
the common FIN packet exchange do not remain in the state table indefinitely. The initial timeout on a
half-open connection (before the three-way handshake has been completed) is logged at 60 seconds by
default. Upon completion of the three-way handshake, this timeout is increased to 60 minutes to allow for
latency in communications. After the closing of the connection is initiated with a FIN packet, the timeout
is dropped to 50 seconds to ensure that the state table entry is more quickly cleared if the graceful FIN
exchange is not completed successfully.

Note

The 60-minute timeout setting for TCP connections, as well as the default UDP timeout, can be
adjusted in the Stateful Inspection section of the Check Point NG Global Properties dialog box,
as shown in Figure 3.7. In Check Point NG, all TCP and UDP services will use the shown timeout
values by default, or you can manually configure a specific service with its own timeout value by
clicking the Advanced button in the properties box for that particular service.

Figure 3.7. The Stateful Inspection section of the Global Properties dialog
box for FireWall-1 NG contains many settings that define how FireWall-1

handles state.

[View full size image]

FireWall-1 handles UDP traffic in much the same way that other stateful firewalls do. It uses a pseudo-
stateful method of tracking outbound UDP connections, and it allows inbound UDP packets that match one
of the currently recorded communication flows. This process is accomplished through the recording of the
IP addressing and port numbers that the communication partners use. A timer is used to remove the
session from the state table after a predetermined amount of inactivity (see Figure 3.7).

For a better understanding of FireWall-1's tracking of state, look at its state table. Listing 3.1 is the Check
Point FireWall-1 state table as decoded (it normally appears as rows of difficult-to-decipher numbers) by a
Perl script (fwtable.pl) available from Lance Spitzner's website at http://www.spitzner.net/fwtable.txt.4

Listing 3.1. A Check Point FireWall-1's State Table as Translated by fwtable.pl

Src_IP Src_Prt Dst_IP Dst_Prt IP_prot Kbuf Type Flags Timeout
192.168.1.202 1783 192.168.1.207 137 17 0 16386 ffffff00 18/40
192.168.1.202 1885 192.168.1.207 80 6 0 28673 ffffff00 43/50
192.168.1.202 1884 192.168.1.207 80 6 0 28673 ffffff00 43/50
192.168.1.202 1797 192.168.1.207 23 6 0 16385 ffffff00 35/50
192.168.1.202 1796 192.168.1.207 22 6 0 16385 ffffff00 35/50
192.168.1.202 1795 192.168.1.207 21 6 0 16385 ffffff10 35/50
192.168.1.202 1798 192.168.1.207 25 6 0 16385 ffffff00 35/50
192.168.1.202 1907 192.168.1.207 80 6 0 28673 ffffff00 43/50

IP addresses, port numbers, and even timeout values can be clearly seen in the FireWall-1 state table
represented by fwtable.pl.

Tip

Dr. Peter Bieringer has updated Lance Spitzner's fwtable script to support versions of FW-1

through NG. For a copy, check out http://www.fw-1.de/aerasec/download/fw1-tool/fw1-tool.pl.

FW-1 supports the stateful inspection of many popular protocols. These include the following TCP
protocols: H.323, FTP-BIDIR, RTSP, IIOP, SQLNET2, ENC-HTTP, Netshow, DNS_TCP, SSH2, FW1_CVP,
HTTP, FTP-Port, PNA, SMTP, FTP-PASV, FTP_BASIC, SSL_V3, Winframe, CIFS, FTP, INSPECT, CitrixICA,
and RSHELL. It also pseudo-statefully inspects the following UDP protocols: CP-DHCP-reply, SNMP Reads,
SIP, H.323 RAS, NBDatagram, DNS, CP-DHCP-request, NBName, and Freetel. FW-1 has additional
capabilities to track RPC traffic of many varieties. It has the capability to allow many nonstandard
protocols, including not only RPC, but also H.323, FTP (standard), and SQLNET2. For example, FireWall-1
statefully handles traffic based on remote procedure calls (RPCs), such as Network File System (NFS),
whose ports are randomly generated by the portmapper service. The portmapper service runs on TCP and
UDP ports 111 and handles the automatic generation of RPC programs' access ports. Because these ports
are generated randomly, it would be nearly impossible to write a secure rule that could effectively permit
such traffic. FireWall-1 solves this problem by tracking all specified portmapper traffic and actually
caching the port numbers that portmapper maps to the RPC programs in use. This way, such traffic can be
effectively tracked.

Configuring an FW-1 Service for Stateful Inspection

It should be mentioned that FW-1 does not automatically realize that it should track a service
statefully by its port. The object representing the service must be configured for the protocol
type in question. If you chose one of the predefined service objects from Check Point, this
should already be done for you. However, if you created your own service object for some
reason (different naming convention, alternate port setting, and so on), you need to manually
configure the protocol that the object represents. For example, if your company runs standard
FTP over port TCP/1021 (instead of TCP/21), it would seem that creating a TCP object and
assigning it a name and port 1021 would be enough. However, FW-1 would handle this as a
standard single-session TCP service and would not allow the return data channel to ensue. To
configure the service object for FTP protocol, edit the object, click the Advanced button, and
change the protocol type drop-down box to FTP-PORT. To make this change take place, you
will need to reinstall the policy containing the object.

A new feature of FW-1 NG is the Smart Defense component. It is available in Feature Pack 3 and higher
or can be loaded as a hotfix with Feature Pack 2. It allows advanced application layer examination (akin
to Deep Packet Inspection) for a list of known attacks, worms, and types of malicious behavior. Applying
this additional level of support to your existing FW-1 policy is as easy as switching to the SmartDefense
tab in SmartDashboard and checking the protection options you want to employ. For additional
information on the many elements of SmartDefense, check out the SmartDefense Technical White Paper
on Check Point's website
(http://www.checkpoint.com/products/downloads/smartdefense_whitepaper.pdf).

The Cisco PIX Firewall

The PIX firewall statefully inspects traffic using Cisco's Adaptive Security Algorithm (ASA). The ASA is
used to make a representative hash of each outgoing TCP and UDP packet and then store it in a state
table. When the TCP and UDP traffic return, because a representative entry is recorded in the state table,
the traffic will be allowed to pass. ICMP traffic is a different matter. Inbound ICMP traffic is denied
through the outside interface of the PIX, and a specific access list must be created to allow any such
traffic. Outbound ICMP is allowed, but it will not work by default, because the inbound responses will be
blocked, like the echo-reply response to a ping command. Here's an example of an access list that will

let ICMP traffic from a given test address cross through the PIX (as commonly used for troubleshooting
new PIX installations):

access-list ICMP-ACL permit icmp test address inside address range
access-group ICMP-ACL in interface outside

The first command creates an access list called ICMP-ACL that permits ICMP traffic from a specified test
address to our inside address range. The second line applies that ACL inbound on the outside interface.

The command that the PIX firewall uses to configure the stateful examination of traffic flows for a given
protocol is the fixup command. The fixup command starts an advanced application-specific examination

of outbound traffic of the protocol type listed to the designated port. The Cisco PIX firewall supports this
application-level examination of traffic for the following protocols through the standard fixup command:

CTIQBE, ESP-IKE, FTP, HTTP, H.323 (now supporting version 3 and 4), ICMP ERROR, ILS, MGCP, PPTP,
RSH, RTSP, SIP, SIP UDP, SKINNY (now supporting PAT), SMTP, SNMP, SQLNET, and TFTP. The fixups for
these protocols can be added or removed from a PIX configuration and reconfigured for various port
specifications. They are considered extraneous to the operations of the PIX.

The PIX also offers built-in fixup support for these protocols: RTSP, CUSEEME, DNS, SUNRPC, XDMCP,
H.323 RAS, TCP, and UDP. These integrated fixups are not seen in the PIX's configuration. They work in
the background in conjunction with the normal fixups for the advanced inspection of these particular
types of traffic. Even if a fixup is not installed for a particular TCP or UDP traffic type, the PIX will still
track the session in its state table and allow its return traffic re-admittance to the network.

Not all fixups are created equal. Each fixup tracks application layer information at different levels. This
level of inspection might vary from making sure the traffic passes through NAT successfully to the
monitoring for specific application-level commands. For example, the SMTP fixup is the most stringent of
them all. Since PIX software version 4.2, the SMTP fixup has supplied a protection feature called
"mailguard." This fixup allows only SMTP commands to pass through it successfully. Non-SMTP traffic
commands are dropped, but the PIX still returns an OK to the sender as if the information were passed.
This helps protect poorly defended mail servers from outside attacks. Other fixups, such as FTP and
H.323, allow the return of nonstandard communication traffic by monitoring the application-level
commands that control the formation of their data channels.

Because the standard fixup command allows the specifying of the port number to be examined for the

protocol, alternative configurations are supported. (This is not true for the built-in fixups.) For example, if
you need to access a web server that is running on port 8080, use the following command:

Pixprompt(config)#fixup protocol http 8080

Such a fixup command will allow the creation of state table information for the listed outbound traffic

type. Multiple fixups can be listed if more than one port number is used per protocol. The PIX's state
tables contain ASA hashes based on the source and destination addresses, port numbers, sequence
numbers, and TCP flags. Because PIX firewalls use truly random TCP sequence number generation, the
connection is kept more secure.5

When the reply returns, the PIX checks the response against the state table and information that it knows
about the behavior of the protocol in question. If the information checks out, it is allowed to pass. All
other information is dropped unless it is specifically allowed using an access list.

The table listing connection state for a Cisco PIX can be viewed using the show conn command. Such a

table can be seen in Listing 3.2.

Listing 3.2. The Output from a Cisco PIX Firewall's show conn Command

TCP out xx.yy.zz.129:5190 in 172.16.1.33:1960 idle 629:25:50 Bytes 6737 flags UIO
TCP out xx.yy.zz.254:23 in 172.16.1.88:1053 idle 0:11:33 Bytes 226696 flags UIO
TCP out xx.yy.zz.254:23 in 172.16.1.76:1146 idle 256:09:15 Bytes 78482 flags UIO
TCP out xx.yy.zz.254:23 in 172.16.1.100:1660 idle 145:21:19 Bytes 9657 flags UIO
TCP out xx.yy.zz.254:23 in 172.16.1.100:1564 idle 641:51:05 Bytes 132891 flags UIO
UDP out xx.yy.zz.12:137 in 172.16.1.12:137 idle 0:00:03 flags

Notice that standard IP address and port information is tracked, along with the time that entries will
remain in the table. Also notice on the last entry for a UDP connection that no flags are listed. Despite the
fact that this output shows current connections and can give you a good idea of what information is in
your PIX's state table, this is not a true dump of the state table because it lacks the information provided
by the stored ASA hash. You will notice, for example, that sequence numbers are not listed in this output.

To learn more about the way the PIX firewall operates and to better understand the configuration of a
stateful firewall, we will look at a PIX firewall configuration using software version 6.3(4). The
configuration will only include those items that have to do with passing standard protocol information.

First, in the PIX configuration listing are commands that define the interfaces:

nameif ethernet0 outside security0
nameif ethernet1 inside security100

This is a simple configuration with only two interfaces: an inside interface and an outside interface.
Notice the security levels (shown as security0 and security100). By default, all traffic can flow from a

higher security numbered interface to a lower one on a PIX, but none can flow from a lower interface to a
higher one. By default, this PIX cannot receive inbound traffic connections, but it can send anything out.
These default behaviors can be adjusted by using NAT and access lists.

To allow an inbound connection, two criteria must be met:

A static NAT mapping must be configured to allow the inbound traffic flow to bypass NAT translation,
assuming that NAT is used in your environment. If it is not, this criterion can be ignored.

An access list must be made to allow the type of traffic in question. For highest security, inbound
traffic should only be allowed when using a firewall with a DMZ port; public servers can be placed on
their own screened subnet.

Because NAT will not be an issue, you only need to add an access list to disallow outbound connections.
This prevents the traffic types that you want to disallow. You can also create an egress filter to verify that
only authentic local traffic is leaving your network.

Note

This configuration as listed does not include support for egress protection. For optimum security,
egress protection of some sort is suggested. For more information on egress filters, see Chapter
2.

The nameif interface commands are followed by the backbone of the PIX configuration: the fixup

commands (as mentioned earlier in the section). These commands list the protocols and their associated
port numbers that the PIX will inspect. Listed next are some popular choices:

fixup protocol ftp 21
fixup protocol http 80
fixup protocol h323 1720
fixup protocol rsh 514
fixup protocol smtp 25
fixup protocol sqlnet 1521
fixup protocol sip 5060

The next lines of this listing show the IP addresses and subnet masks assigned to both the inside and
outside ports. These are displayed here as a point of reference for the NAT-related commands to follow:

ip address outside 192.168.2.178 255.255.255.240
ip address inside 172.16.1.10 255.255.0.0

In the next portion of the listing, we create two address pools of outside addresses for our NAT pool,
reflected by the first line, (outside) 2, and for PAT, (outside) 1. If we were only using PAT, the first

line would not be necessary.

global (outside) 2 192.168.2.180-192.168.2.190 netmask 255.255.255.240
global (outside) 1 192.168.2.179

Next, we define the inside addresses for pool 2 and pool 1. The first statement lists the pool of inside
addresses that will be NAT address translated. All other IP addresses will be forced to use PAT.

nat (inside) 2 172.16.1.96 255.255.255.248 0 0
nat (inside) 1 0.0.0.0 0.0.0.0 0 0

The second line demonstrates a wildcard so that any IP address (other than those listed on the previous
line) will be PAT translated. We know that this is a PAT translation command because it maps to the
previous global (outside) 1 command, which only has one public address.

PIX firewalls allow return traffic in conjunction with the NAT statement. The NAT and state tables combine
to let the firewall know which traffic is returning as part of an already started conversation.

The next statements are the defaults of a PIX configuration and were not added in this example. However,
they are displayed to show the default timeouts for the NAT translation table (xlate), the connection
listings (state table, conn), and user authentication traffic listings (uauth):

[View full width]
timeout xlate 3:00:00
timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 rpc 0:10:00 h323 0:05:00 sip 0:30:00
 sip_media 0:02:00
timeout uauth 0:05:00 absolute

Note

When you're troubleshooting broken connections through a PIX firewall, one good step is to raise
the xlate timeout. If out-of-state traffic is seen getting dropped in the firewall logs, the conn

timeout values may need adjusted.

These timeouts can be adjusted at any time by simply retyping the preceding commands with new
timeout values.

The PIX Device Manager (PDM) has simplified PIX firewall management. The PDM is a GUI interface that's
used to edit most of the PIX firewall's settings. It allows the editing of firewall access rules, NAT
translation settings, host and network objects, and general firewall configuration changes. It also has a
Monitoring section (see Figure 3.8) that allows the viewing of statistical information about the PIX and its
performance as well as provides the ability to generate attractive exportable graphs.

Figure 3.8. The PIX Device Manager's Monitoring tab allows the generation of
aesthetically pleasing graphs that can be exported.

[View full size image]

To use the PDM, you simply have to add the appropriate PDM image to your PIX. This is done by copying
the PDM file to the PIX's flash memory with the following command:

copy tftp://ipaddress /pdmfilename flash:pdm.

Here, ipaddress is the IP of the TFTP server holding the PDM image you are copying, and pdmfilename is

the name of the PDM file. If there is already a PDM file on your PIX, it will be erased. Your PIX will need
to be configured to allow HTTP access from any clients needing to do PDM administration. This is done as
follows:

Pix(config)#http 10.0.0.1 255.255.255.255 inside

Here, 10.0.0.1 is the station you want to manage the PIX with. This is followed by a 24-bit mask so that it
is the only station allowed to make contact. This could be any legal IP address mask allowing access from
one to an entire network segment of addresses. Finally, the statement is ended with the name of the
interface you want to manage the PIX throughpreferably the inside interface!

Now all you have to do is type HTTPS://10.0.0.100 into the URL line of any web browser (where

10.0.0.100 is the IP address of the interface you specified in the HTTP access line). Be sure to specify
HTTPS in your web browser! Trying to access the PIX via HTTP is disallowed and will return a "Page
cannot be displayed" message. If your configuration was successful, you should be prompted to accept a
certificate and then receive a pop-up window asking for authentication information. You can use any
username and password you already have configured in your PIX for management, or if none are
configured you can leave the Username box blank and type the PIX's enable password in the password
box. You should be greeted with the PDM's home startup screen, as shown in Figure 3.9.

Figure 3.9. The PDM home page shows many useful pieces of information about
your PIX, including version, license, and status information.

[View full size image]

If you click the Configuration button, you will be taken to the area in the PDM where most of the
important firewall rule and NAT management takes place. The Access Rules tab (see Figure 3.10) is where
the firewall rules configured in your PIX can be viewed and edited.

Figure 3.10. The Configuration section of the PDM allows viewing and editing of
the access rules that make up the firewall policy.

[View full size image]

Note

The first time you access the PDM, the configuration screen information may not be populated. If
so, go to the File menu and choose Refresh PDM with the Running Configuration on the Firewall.
You will be prompted that the PDM needs to query the PIX for the first time to get the
information it needs to populate the PDM tabs. Thereafter, all information should appear as
expected.

If no specific rules have been added to the PIX, the Access Rules tab will appear, as shown in Figure 3.10,
with the implicit permit rule for outbound traffic.

The Translation Rules tab shows the NAT configuration for the PIX firewall, per interface (see Figure
3.11). When the radio button Translation Rules is enabled, all NAT commands specified in the PIX and
their associated global commands are displayed. Clicking the Manage Pools button allows you to edit the
NAT pools for the given interface.

Figure 3.11. The PDM Translation Rules screen shows all NAT information for the
PIX.

[View full size image]

If the radio button Translation Exemption Rules is selected, the configuration of any NAT 0 commands in
the PIX are displayed.

The Hosts/Networks tab is where objects can be viewed and edited for use in the PDM. These objects will
be used to populate the access rules when creating a firewall policy.

Finally, you can perform many basic PIX administration tasks on the System Properties tab, including
interface configuration, DHCP server and client configuration, logging and AAA settings, various
management settings, and more. The PDM is an excellent tool to ease the administrative burden of the
firewall for a PIX noviceor even a seasoned professional.

Now that 10Gb networking is being incorporated into the enterprise and Internet connection speeds are
getting faster, the speed with which a firewall can statefully process information is becoming increasingly
important. An exciting addition to the PIX line is the FireWall Services Module (FWSM). This is a full PIX

firewall on a card that fits into an available slot in the 6500 series Cisco enterprise switches. It supports
most of the features of the standard PIX but takes advantage of the port density and speed of the 6500.
The bandwidth for connectivity is supplied by the backplane of the 6500 (which by default supports
32Gbps), letting the FWSM support an astounding throughput of up to 5.5Gbps! If that's not enough
throughput for you, up to three more FWSMs can be added to the 6500 series chassis for a combined
throughput of 20Gbps. The FWSM uses the VLAN interfaces of the 6500 for ingress and egress of traffic.
In turn, the FWSM can support as many as 250 virtual interfaces!

Note

Be sure to use an up-to-date version of the FWSM code. Major vulnerabilities that could cause a
DoS condition were announced in late 2003 (documented as CSCeb16356 and CSCeb88419).
Both problems have been corrected in software version 1.1.3.

Virtual firewalls can be configured, allowing management of separate policies by different groups of
administrators. The FWSM supports active-passive and active-active configurations as well as
management via the PDM. When considering a means to protect intra-VLAN communication on a 6500
series switch or considering a solution in an enterprise environment that requires the maximum in
throughput, you would be remiss not to take into account the power and flexibility of the FWSM.

High-Speed NetScreen Firewall Appliance

As network bandwidth requirements grow higher and content gets richer, the need for faster
firewalls becomes greater. That is the focus of the Juniper Networks NetScreen firewall, which
is an appliance-based stateful firewall that is particularly well-regarded due to its fast
performance. Using specialized microchips called Application-Specific Integrated Circuits
(ASICs), rather than relying solely on a central microprocessor, NetScreen is able to achieve
very high throughput, especially on its carrier-class model. ASICs that are designed to
perform a particular task are much more efficient and much faster then a processor running
code to do the same task.

The core functions that NetScreen offers are typical for what you would expect of a stateful
firewall aimed at the enterprise market. Along with the standard access control features,
NetScreen also includes basic QoS capabilities, and integrated high speed VPN support (6
Gb/s throughput with 3DES as of this writing). NetScreen is also able to screen for and block
some of the more popular network attacks such as the Ping of Death, Land and Teardrop
attacks, as well as port scans and various types of network floods. Despite all of these
features, the filtering and logging capabilities of the NetScreen still leave some room for
improvement. Never-the-less, the NetScreen firewall's performance is demonstrative of ASIC-
based firewall appliances becoming an integral part of network access control.

Summary

The firewall provides a secured method of controlling what information moves in to or out
of a defined ingress/egress point of your network. This concept of a network "chokepoint"
allows increased control and a single target for the monitoring and logging of network
traffic. This extra control does come at a price: an overall cost in performance.

The stateful firewall adds intelligence to the packet-filtering method of network
communication control. Stateful filtering has been popularly used to define the filtering of
the state of packet flows based on information from Layers 4 and below. This definition is
ambiguous because the amount of protocol information that is considered in the filtering
can deviate among vendor implementations. Items such as source and destination IP
addresses and port numbers, sequence and acknowledgment numbers, as well as flags and
other Layer 4 information can all be considered.

Stateful inspection also monitors Layer 4 information (just like stateful filtering) and adds
application-level examination to provide insight into the communication session. This
offers a secure means to handle nonstandard TCP/IP traffic flows. Stateful inspection
offers a much more secure environment than a "dumb" packet filter as well as
performance advantages over a proxy firewall, making it an excellent compromise
between the two technologies. However, the same features that give stateful application
inspection a performance advantage over a proxy firewall also make it less secure in
environments where all aspects of application-level communication must be considered.

In any case, the stateful firewall is an excellent fit as a single perimeter security solution
for smaller environments. It performs well as a role player in larger or more complex
environments where multiple firewall technologies are implemented. Clearly, the stateful
firewall is a solid choice and a strong performer in the current network landscape. In the
next chapter, we examine a way to filter network traffic by taking advantage of
application-level restraints that can be implemented using proxy firewalls.

References

1 Check Point. "Stateful Inspection Technology Tech Note."
http://www.checkpoint.com/products/security/whitepapers/firewall-
1_statefulinspection.pdf. March 2002.

2 Netfilter/IPTables Documentation. "What Is Netfilter?"
http://www.iptables.org/documentation. March 2002.

3 Fabrice Marie . "Netfilter Extensions HOWTO."
http://netfilter.samba.org/documentation/HOWTO//netfilter-extensions-HOWTO.html.
March 2002.

4 Lance Spitzner . "Understanding the FW-1 State Table." November 29, 2000.
http://www.spitzner.net//fwtable.html. March 2002.

5 Cisco Systems, Inc. "Cisco's PIX Firewall Series and Stateful Firewall Security."
http://www.cisco.com/warp/public/cc/pd/fw/sqfw500/tech/nat_wp.pdf. March 2002.

Chapter 4. Proxy Firewalls
In this chapter, we introduce you to proxy techniques and how they have been used to
create proxy firewalls. Proxy firewalls serve a role similar to stateful firewalls. Both are
designed to allow or deny access between networks based on a policy. The method they
use to accomplish this is very different, though. As described in the last chapter, with a
stateful firewall, network connections flow through the firewall if they are accepted by the
policy. This type of firewall acts like a router, passing packets through that are deemed
acceptable. In contrast, a proxy firewall acts as a go-between for every network
conversation. Connections do not flow through a proxy. Instead, computers
communicating through a proxy establish a connection to the proxy instead of their
ultimate destination. The proxy then initiates a new network connection on behalf of the
request. This provides significant security benefits because it prevents any direct
connections between systems on either side of the firewall.

Proxy firewalls are often implemented as a set of small, trusted programs that each
support a particular application protocol. Each proxy agent has in-depth knowledge of the
protocol it is proxying, allowing it to perform very complete security analysis for the
supported protocol. This provides better security control than is possible with a standard
stateful firewall. However, you only receive this benefit for the protocols included with the
proxy firewall. If you must allow the use of a protocol that your proxy firewall does not
specifically support, you are reduced to using a generic proxy. Generic proxies do not have
any in-depth knowledge of the protocols they proxy, so they can only provide basic
security checks based on the information contained within the headers of the packets (IP
address, port, and so on).

This chapter describes the basics of proxy firewalls and how they may fit into your
security architecture. Although proxies are not as popular as they once were, they can still
offer value when deployed appropriately. This chapter will help you to understand how
proxies work, what their strengths and weaknesses are, and when you may want to use
them.

Fundamentals of Proxying

A proxy acts on behalf of the client or user to provide access to a network service, and it
shields each side from a direct peer-to-peer connection. Clients needing to communicate
with a destination server first establish a connection to the proxy server. The proxy then
establishes a connection to the destination server on the client's behalf. The proxy server
sends data it receives from the client to the destination server and forwards data it
receives from the destination server to the client. In the process of performing this role,
the proxy server can examine the requests to ensure they are valid and allowed by the
policy.

The proxy server is both a server and a client. It is a server to the client and a client to
the destination server. One way to keep this straight is to call the listening end of the
proxy the listener and the initiating side of the proxy the initiator . This leaves the terms
client and server for the endpoints.

Another important issue is whether the proxy is transparent to the client. Originally, all
proxy servers required clients to be aware of them. This meant that a client's software
would need to include specific code to properly use a proxy, and the client would need to
be configured to send its requests to the proxy. Client software that was not proxy aware
could not communicate through the proxy.

Two approaches were used to overcome this software burden. First, an industry standard
proxy protocol was developed. Called SOCKS, it allows client software developers to easily
add proxy support to their products. We'll be covering SOCKS in more detail later in this
chapter. The second approach was the development of transparent proxies. These products
intercept connection requests by masquerading on the fly as the destination server being
requested by the client. The transparent proxy then goes on to make the request to the
destination server for the client. Using this method, the client is fooled into thinking that
it is communicating directly with the server, while the proxy is actually handling the
communications.

The following is an example of how a typical request from an internal client to an external
server would be handled by a transparent proxy firewall:

The client requests an Internet service, such as HTTP, FTP, or Telnet.1.

The client computer starts by attempting to set up a session between the client and
the server. Assuming the Internet service being requested is TCP based, this begins
with the client sending out a SYN packet sourced from the client's IP address and
destined to the server's IP address.

2.

The proxy firewall intercepts the connection request and, if allowed by policy, replies
with a SYN-ACK packet sourced from the destination server's IP address. It is
important to mention that this does require the proxy to be on the network path
between the client and the server.

3.

Upon receipt of the proxy's SYN-ACK packet, the client finishes the three-way
handshake by sending out the final ACK packet, again destined to the server's IP
address. At this point, the client thinks it has a valid TCP connection to the external
server. In reality, it only has a connection to the proxy.

4.

The proxy is now responsible for establishing a connection to the external server. It
accomplishes this by sending out a SYN packet sourced from its own IP address and
destined to the external server. Upon receipt of the server's SYN-ACK packet, it replies
with an ACK packet to establish the connection to the external server. At this point,
the proxy has two valid TCP connections for the session: one between itself and the

5.

6.

client, and the other between itself and the server.

Requests received over the client-proxy connection will be analyzed for correctness
and policy compliance. If they are acceptable, the proxy will make a corresponding
request using its proxy-server connection. Replies received over the proxy-server
connection will also be analyzed for correctness and policy compliance and then, if
acceptable, forwarded to the client over the proxy-client connection. This will continue
until either side of the conversation terminates the connection.

6.

A traditional, nontransparent proxy would similarly handle the request. However, there
would be no need for the IP address manipulations required by the transparent proxy.
Instead, the client would know about the proxy and would be able to send the request
directly to the proxy server's IP address. In addition, because the client is proxy aware, if
there are any special proxy functions for the client to choose from, the client can include
this information in the request.

Proxy firewalls are often implemented as dual-homed bastion hosts running a set of proxy
agents. Each agent supports one or more Internet protocols. The degree to which each
agent understands the protocols it proxies determines how effective the agent can be in
managing the connection. A generic agent that supports standard TCP protocols will likely
only be able to restrict connections based on the TCP and IP headers (for example, IP
address, port, TCP state). This functionality is similar to packet filter firewalls. However, if
the protocol to be proxied is not standard, or if additional security functionality is desired,
more sophisticated agents are required.

Note

Bastion hosts are systems that are expected to come under direct network
attack, especially from the Internet. They are used to offer public services such
as web, FTP, DNS, and email. Their exposed roles require them to be carefully
hardened against attack. Chapter 9, "Host Hardening," provides a detailed
description on how you can properly protect these exposed systems.

A good protocol to use as an example is the File Transfer Protocol (FTP). Remember from
Chapter 2, "Packet Filtering," that FTP does not act like a standard TCP protocol. Instead,
FTP uses two different TCP connections to enable file transfer. One (the command
channel) is used to send instructions to the FTP server, the other (the data channel) is
used to transfer files (see Figure 4.1). This makes it impossible to support FTP with a
generic proxy. Unless the proxy agent was aware that this second TCP connection was
needed, it would not be able to accept the second connection, blocking the FTP protocol
from transferring files.

Figure 4.1. FTP requires two TCP connections to transfer files across a
network.

An agent specifically programmed to support FTP would be able to monitor the individual
FTP commands being issued over the command channel. It would be able to watch for the
command used to transfer a file and then begin listening for the TCP connection used to
transfer the file. In addition, by being protocol aware, the agent has the ability to watch
the FTP commands to detect suspicious activity.

FTP was created during the early days of the Internet, when security was not something
the designers emphasized. The FTP protocol contains several, well-known security flaws
that have been repeatedly exploited. Even today, it is not uncommon to locate FTP servers
that are not properly protected. One classic flaw is related to how the data channel is set
up between a client and a server.

When the client wants to request a file from the server, one option it has is to send a PORT
command. PORT is used to configure the server to establish a TCP connection initiated
from the server to the client. The format for the PORT command is as follows:

PORT h1, h2, h3, h4, p1, p2

The values h1 through h4 form an IP address (h1.h2.h3.h4). p1 and p2 are used to specify
the destination port using the following formula:

256 * p1 + p2

For example, if the client is at IP address 192.168.5.12, it might issue the command

PORT 192, 168, 5, 12, 4, 1

which would tell the server to transfer requested files to IP address 192.168.5.12 using
TCP port 1025. To actually cause the connection to be established, the client uses the
RETR command to request a file. At this point, the server will initiate the TCP session to

the client on TCP port 1025 and transfer the file across the resulting connection.

The vulnerability is introduced because the client can provide any IP address and port to
the PORT command. In some circumstances, this can allow an attacker to bypass firewall

restrictions. We will use the network shown in Figure 4.2 to illustrate this attack. This
network is composed of a screened subnet that contains a web server and an FTP server.
To allow customers to upload files to the company, the FTP server is set up to allow
anonymous connections. The web server is running a Telnet service to allow
administrators to access the system from the internal network. Unfortunately, the Telnet
service is susceptible to an invalid input attack that would allow anyone who connects to
the service access to the computer without authentication. The good news is that the
stateful inspection firewall is blocking all inbound network connections from the Internet
except packets destined to TCP port 80 on the web server and TCP port 21 on the FTP
server. This would prevent attackers from establishing a connection to the Telnet service
running at TCP port 23 on the web server. On the surface it seems that even with the
vulnerable Telnet service, the firewall has effectively kept the network secure. This is just
an illusion, though, as the FTP server can be leveraged to reach the web server.

Figure 4.2. Even though the firewall blocks non-HTTP access to the
web server, the FTP PORT command may allow attackers to access the

web server's Telnet service.

The following steps would allow the attacker to bypass the firewall and attack the
vulnerable web server:

1. Use a normal FTP connection to upload a file to the anonymous FTP server. This file
needs to contain the exploit commands necessary to attack the web server.

2. Using the established FTP command channel, send the command PORT
192,168,5,7,0,23. This will tell the FTP server that the next file request should be

sent to the web server using port 23 (for example, Telnet).

3. Again using the FTP command channel, send the RETR command specifying the name

of the file transferred during step 1. This will cause the FTP server to initiate a TCP
connection to the web server on port 23, then transfer the contents of the file over the
connection.

Assuming the file contains the commands or data necessary to exploit the web server's
Telnet service, the attacker will have successfully bypassed the firewall, gaining control of
the web server.

A sufficiently sophisticated FTP proxy agent would have had little difficulty blocking this
attack at step 2. When the agent receives the PORT command from the client, it could

compare the parameters of the command to see if the IP address matches the IP address
of the client. If it does not, the connection could be terminated and an alert generated.
This is one example of how protocol-aware proxy agents can prevent vulnerabilities that
would be difficult or impossible to eliminate using packet-filtering techniques.

Modern proxy firewalls provide proxy agents for a large set of Internet protocols. You can

expect the core Internet protocols, such as HTTP, FTP, SMTP, DNS, and ICMP, to be
supported by just about all the products. When selecting a proxy firewall, though, you
should look carefully at the set of protocols your network will need to pass through the
proxy. If a critical protocol is missing from the product you are considering, you may be
able fall back to a generic proxy and live with the reduction in security enforcement. If the
protocol you are trying to support is nonstandard (such as FTP), you may need to choose
between the protocol and the firewall.

Pros and Cons of Proxy Firewalls

Proxy firewalls represent a balance between security and functionality. On the one side,
well-written proxies offer security benefits that are significantly better than many other
types of firewall technologies. However, they are often slower than other products, and
they can limit what applications your network can support. In this section, we will itemize
the advantages and disadvantages you should consider when choosing to use a proxy.

Advantages of Proxy Firewalls

Proxy firewalls have several advantages over other types of firewalls:

Proxy firewalls provide comprehensive, protocol-aware security analysis for the
protocols they support. By working at the application layer, they are able to make
better security decisions than products that focus purely on packet header
information.

The topology of the internal protected network is hidden by proxy firewalls. Internal IP
addresses are shielded from the external world because proxy services do not allow
direct communications between external servers and internal computers. Although this
can also be accomplished using Network Address Translation techniques, it occurs by
default with proxy firewalls.

Network discovery is made substantially more difficult because attackers do not
receive packets created directly by their target systems. Attackers can often develop
detailed information about the types of hosts and services located on a network by
observing packet header information from the hosts. How different systems set fields
such as the Time to Live (TTL) field, window size, and TCP options can help an
attacker determine which operating system is running on a server. This technique,
known as fingerprinting , is used by an attacker to determine what kinds of exploits to
use against the client system. Proxies can prevent much of this activity because the
attacking system does not receive any packets directly created by the server.

Robust, protocol-aware logging is possible in proxy firewalls. This can make it
significantly easier to identify the methods of an attack. It also provides a valuable
backup of the logs that exist on the servers being protected by the proxy.

Proxy Firewall Log Discovers RingZero Trojan

The protocol-aware logging possible on proxy firewalls often leads to the early
discovery of new exploits. Back in the fall of 1999, the defensive community
noticed a large number of probes on ports TCP 80, 8080, and 3128. Analysts
poured over router logs, but they could not figure out what was going on.
However, Bill Royds in Canada detected similar activity on his proxy firewall.
Here is one of the log entries he captured:

[View full width]
Oct 1 06:47:02 gate gwcontrol:
 201 http[3785494487]:
 access denied for smak.mplik.ru to www.rusftpsearch.net [default
 rule] [no rules found]

Oct 1 06:47:02 gate httpd[7188]:
 121 Statistics: duration=0.15 id=w7Ii3 sent=357 rcvd=402
 srcif=hme1 src=195.58.0.243/61332 srcname=smak.mplik.ru
 dstif=hme1 dst=206.253.222.89/80 dstname=www.rusftpsearch.net
 op=GET
 arg=http://www.rusftpsearch.net/cgibin/pst.pl?
 pstmode=writeip&psthost=167.33.61.23&pstport=80
 result="403 Forbidden" proto=http (request denied by gwcontrol)

What this log entry shows is a client (smak.mplik.ru) trying to communicate
through Bill's firewall to a web server (www.rusftpsearch.net). In addition, the
web request reveals that the client was attempting to hand an IP address and
port to the pst.pl program running on the web server. The contents of this log
entry turned out to be critical in identifying a new Trojan horse program called
RingZero
(http://www.cnn.com/TECH/computing/9910/22/russian.trojan.horse.idg/).

What Bill's firewall caught was a message from a host infected by RingZero
trying to report home. RingZero attempted to locate web servers and web
proxies by scanning for hosts that have port 80, 8080, or 3128 open. When it
found a live server, it reported this by connecting to the pst.pl program on
www.rusftpsearch.net. By capturing this important application detail, Bill's
proxy firewall led to the discovery of RingZero and the development of an
effective response.

Disadvantages of Proxy Firewalls

Although proxy firewalls can provide increased security over packet-filtering firewalls,
they do have their disadvantages. Here are some of the issues you should consider prior
to fielding a proxy firewall:

Proxy firewalls are not compatible with all network protocols. A new proxy agent must
be developed for each new application or protocol to pass through the firewall. If the
proxy product you choose does not provide support for a needed protocol, you may
have to settle for a generic proxy. In some cases, even generic proxies may not work
if the protocol is nonstandard.

A reduction of performance occurs due to the additional processing requests required
for application services. There is no such thing as a free lunch. The extra overhead
implied by setting up two connections for every conversation, combined with the time
needed to validate requests at the application layer, adds up to slower performance.

In some cases, this can be balanced by choosing higher-end servers to run your
proxy. However, for some extremely high-bandwidth networks, a proxy firewall may
become a performance bottleneck.

Virtual Private Networks (VPNs) may not function through a proxy firewall. As will be
discussed further in Chapter 7, "Virtual Private Networks," VPN packet authentication
will fail if the IP address of the sender is modified during the transmission. Although
this is normally thought of as an issue with Network Address Translation, the same
issue occurs with proxy firewalls. Of course, if the VPN endpoint is the firewall, this
will not be a problem.

The configuration of proxy firewalls can be more difficult than other firewall
technologies. Especially when using older proxies, it can be difficult to properly install
and configure the set of proxies necessary for your network.

It is also worth noting that the number of proxy firewall products on the market is
decreasing. The commercial firewall industry is moving away from proxy firewalls, due
mainly to performance and compatibility concerns. Many of these vendors are dropping
their proxy product lines in exchange for stateful products that make use of Deep Packet
Inspection techniques. These techniques, which we described in Chapter 3, "Stateful
Firewalls," provide some, but not all of the benefits of proxy firewalls. Like proxy firewalls,
Deep Packet Inspection allows security tests at the application layer. However, unlike
proxies, it allows direct connections to occur between computer systems. As mentioned
earlier, this makes it easier for attackers to perform operating system and application
discovery. Deep Packet Inspection firewalls tend to be more flexible than proxies and they
can be designed to handle very high-speed networks.

So far, we've looked into the basics of proxy servers and their role in developing a firewall
solution. We've talked about how they operate and discussed some of their advantages
and disadvantages. In this next section, we will talk about some of various ways proxy
technologies are being used to secure networks.

Types of Proxies

Proxies can be used for several purposes. The classic use is as a proxy firewall located on
the perimeter between the Internet and your private network. Proxies are not limited to
this role though. Proxies can be used to accelerate web performance, provide remote
access to internal servers, and provide anonymity for network conversations. In this
section, we will highlight these other uses that can be made of proxy technology.

Web Proxies

Proxies are not just used to implement firewalls. One of their most popular uses inside a
network is increasing web performance. Web conversations make up a large percentage of
the traffic on many networks, so making the Web more efficient can have a dramatic
impact on network operations. Proxies can help by monitoring web conversations and
eliminating redundant requests. Web traffic is often characterized by frequent
transmissions of nearly identical information. Some studies have shown that as much as
half the requests for information across the Web are duplicates of other recent requests.
Caching frequently requested web pages can dramatically speed up web browsing.

Proxy servers that provide web caching are often referred to as proxy caches or web
caches . When a proxy cache is used, browsers are directed to make their HTTP requests to
the proxy cache instead of directly to the destination web server (see Figure 4.3). The
proxy then has the opportunity to determine whether it already has a copy of the
requested information or if it needs to request a copy from the destination server. If the
HTTP request is new, the proxy will make a TCP connection and HTTP request to the
destination server, returning the resulting information to the browser and also storing a
copy of the returned result for future use. Whenever any client of the proxy requests the
same information, the proxy can reply using its local copy, eliminating the need to make a
request from the destination server. This reduces network traffic as well as the load on the
web server. However, it can introduce problems.

Figure 4.3. Web caches accelerate performance by eliminating
unnecessary server requests.

Caching works best when the information being retrieved does not change rapidly.
However, some information is very time sensitive, such as stock quotes. This can cause
problems if the client receives old information from the cache, when newer, more relevant
data is available on the web server. The term for this is freshness . A file is "fresh" if the
version on the cache is the same as the version on the web server. Web servers can
specify when a file should no longer be considered fresh by placing an "Expires:" header in
the returned request. This tells any caches being used (whether proxy or browser based)
when to discard the file and request a new one. Many web servers do not provide good
expiration guidance though. Because of this, it is important during the configuration of a
proxy cache to establish good freshness policies.

Freshness policies are normally developed using several values associated with the file.
The most important, if supplied by the web server, is the "Expires:" field. This field is part
of the HTTP protocol and, if configured by the web administrator, is provided in the
server's response to a browser request. It allows the website to provide specific guidance
concerning when a file should be disregarded. When this information is not available,
though, the web proxy server will need to look at other data to make a freshness decision.
One simple method would be to set a fixed time to cache all files that lack "Expires:"
headers. The problem with this approach is that many sites with dynamic content that do
not support "Expires:" will not work correctly when cached. A better approach is to use the
age of the file to determine how long to cache. If a file is received that is seconds old, you
might not want to cache it because it is much more likely that it was dynamically
generated. A file that is weeks old, though, is much less likely to change while its copy is
held in the cache. Even with files that have not been modified for a long time, it is still a
good idea to periodically refresh the cached files, so most web proxy servers set a
maximum time a file can be considered fresh.

Another benefit that can be gained through web proxies is control over where users can
browse. Security and productivity can be increased by limiting access to non-organization-
related web browsing. It is not uncommon for viruses, worms, and other types of
malicious code to be introduced into a protected network based on files downloaded by
users from inappropriate websites. By limiting what sites users can reach, you can
decrease the chance that this will happen to your network. Placing restrictions on
browsing has also been shown to increase productivity by taking away the temptation to
spend excessive time surfing the Web. However, not all organizations will want to or be
able to place restrictions on user web behavior. Before considering web filtering, you must
examine your site's policies and procedures regarding user web access. Often your Human
Resources and Legal departments will need to be involved.

One last item to discuss with web proxies is the logging they can provide. As we showed
earlier with RingZero, proxy logging can be very useful in detecting malicious activity on
your network. With a web proxy, all the URLs that browsers request can be used for
intrusion analysis. Looking for requests that do not appear normal can be a powerful
method to discover attacks against your network. Often your proxy logs will contain the
first indications that your network is under attack. Things to look for include excessive
requests for files that do not exist on your web servers (such as those that return 404
errors). This can indicate that someone is scanning your websites looking for vulnerable
software. Also looking for excessively long URL requests, or requests that contain special
characters, can indicate that someone is attacking your site. If you do discover that
someone has successfully attacked your site, these logs can also be invaluable at
discovering what weakness led to the compromise, how extensive the damage is, and
(rarely) who is responsible.

Reverse Proxies

Firewalls are frequently thought of as devices that restrict access, not enable it. However,
proxy techniques can be used for both. If you have a need to support remote Internet
users, reverse proxies can be the answer.

Reverse proxies are used to provide controlled access for external (normally Internet-
based) users to internal servers. They act as a trusted intermediary that external users
must use to gain access to internal servers that would not normally be Internet
accessible. An external user attempting to gain access to an internal server first connects
and authenticates to the reverse proxy. Normally this is done over a Secure Sockets Layer
(SSL) connection to provide confidentiality and integrity for the session. If authentication
is successful, the proxy will check its policy to see whether the user is allowed to access
the requested server. If so, it will begin proxying the connection for the user.

The type of internal servers that can be accessed using a reverse proxy vary depending on
the sophistication of the proxy. Simple reverse proxies can only support web-based
services. These products are basically normal web proxies that have been enhanced to
support user authentication. In many cases, they are sufficient because many sites
provide a significant amount of their network content using web systems. If you are trying
to grant access to other applications that do not have a web interface, you may need to
work harder.

One approach is placing a web interface on top of the application you are trying to proxy.
Once the application is web enabled, normal reverse proxy techniques can be used to
grant remote access. An example of this is Microsoft's Outlook Web Access (OWA). OWA is
part of Microsoft Exchange and provides a web version of the Outlook mail and calendaring
application. Any clients who can make a web connection to the OWA application will be
able to use most Outlook functions. In fact, it can be difficult to recognize that you're
accessing Outlook through a browser because the interface you are interacting with inside
the browser so closely resembles the desktop version of Outlook. OWA combined with a
reverse proxy provides a secure mail and calendaring solution for remote users.

Alternatively, you can roll the web-enabling technology together with a reverse proxy.
This is the approach taken by Citrix MetaFrame. Citrix allows common desktop and server

applications to be accessed by web browsers, including applications such as Microsoft
Word and Adobe Acrobat. In fact, Citrix can proxy an entire user desktop through a
browser, giving a user experience that is highly similar to sitting in front of the actual
computer. Citrix also provides extensive management controls, including role-based
access to internal applications. Although a capable product, it is not necessarily cheap and
simple to implement. If you're considering technologies such as Citrix, make sure to
include acquisition and operational costs in your analysis. In some cases, though, Citrix-
like products can actually save you money by allowing shared access to products too
expensive to place on every user's desktop.

Anonymizing Proxies

Privacy can be an important security service but can be a hard commodity to come by on
the Internet. Almost all actions taken on a computer leave a digital trail. If you don't want
someone else following that digital trail back to you, an anonymizing proxy may be the
answer.

Anonymizing proxies work exactly like normal proxies, but are used for the purpose of
protecting your identity while you use services across the Internet. Your requests are
forwarded to the anonymizing proxy (usually over an SSL connection), which hides your
identifying details (such as IP address) by making the request on your behalf. The
destination server you are using only learns about the proxy's information and does not
learn who actually made the request. This assumes that you do not pass anything
identifying in the actual request.

Also assumed is that no one is monitoring the anonymizing proxy. If they were, they
might be able to match incoming requests to outgoing requests, breaching an important
aspect of the connection's privacy. This is especially easy to do if the proxy is not busy. If
yours is the only IP address connected to the proxy, it's not terribly hard to guess who it
is making requests through the proxy!

Various approaches have been used to solve this problem. One of the most popular is
proxy chaining . Tools such as SocksChain (http://www.ufasoft.com/socks) can be used to
build connections through multiple anonymizing proxies. An observer at the first proxy in
the chain will only see that you are sending a request to the anonymizer, but will not
learn the destination because the next hop will only be another anonymizer. In this way,
the ultimate destination of your request is hidden from any outside observers (see Figure
4.4). Another approach along the same lines is Onion routing (http://www.onion-
router.net), which combines proxy chaining with multiple layers of encryption to ensure
that a conversation cannot be followed through the proxy nodes.

Figure 4.4. Proxy chains allow private communications by hiding the
true source and destination of a packet from network eavesdroppers.

[View full size image]

If you are in need of an anonymizer service, but do not want to set your own up,
preexisting services are available on the Internet. Searching on Google for "anonymizers"
will return many sites offering this privacy service. However, caveat emptor: You should
trust that they maintain your privacy slightly less than you trust them.

A perfect case in point is the Java Anonymous Proxy (JAP). JAP is a anonymizer service
run as a joint effort of the Dresden University of Berlin, the Free University of Berlin, and
the Independent Centre for Privacy Protection, Schleswig-Holstein, Germain. It is
available at http://anon.inf.tu-dresden.de/index_en.html. Back in July of 2003, it was
discovered that they had, as a result of a court order, added code to JAP that was designed
to monitor access to certain IP addresses. Whenever a user of the service accessed one of
these forbidden sites, a message was generated recording the who, what, and when and
sent to the police. This hidden behavior was uncovered several days later by an observant
user of the service, but until this discovery was made, users of the JAP service were
getting less privacy than they thought. For the record, the current version of JAP is
supposed to be free of any tattle-tail code.

Tools for Proxying

Many available applications provide proxy capabilities. We've already mentioned some of
them while describing proxy capabilities. However, it's becoming harder to find pure proxy
products on the market. The major commercial vendors have embraced hybrid
technologies that combine proxy and stateful technologies, making it harder to identify
when proxy techniques are used in their products. Mergers and acquisitions in the field
have also added confusion to this subject. A classic example of this is the Gauntlet
firewall. Gauntlet was one of the first, and most popular, proxy firewalls. Originally
created by TIS, its technology was first acquired in 1998 by Network Associates, Inc
(NAI). NAI continued to sell the products under the Gauntlet name. In 2002 though, NAI
sold Gauntlet to Secure Computing, which already owned a competing firewall called
Sidewinder. Secure Computing then integrated both products together to create a hybrid
product. If you were to read the marketing literature for this product (which retains the
Sidewinder name), you would not see any reference to proxies. How do we know there is
any proxy technology left in it? Well, certain keywords keep popping up that can clue you
in. These include terms such as secure gateway services and application layer protocol
analysis . The bottom-line impact of all this market activity is you are going to need to ask
and to experiment to determine how commercial products protect your network.

In the rest of this section, we'll talk about some important proxy technologies. We'll start
with one of the proxies that started it all: the Firewall Toolkit. In addition, we'll cover an
important proxy-enabling technology called SOCKS. Finally, we'll cover Squid, the most
popular open source web proxy.

Firewall Toolkit (FWTK)

Firewall Toolkit was one of the first proxy firewalls. It was developed by Trusted
Information Systems (TIS) under an Advanced Research Projects Agency (ARPA) grant,
and it was first released in October of 1993. The key technology of FWTK was used to
create the first version of the Gauntlet firewall. FWTK is still available at
http://www.fwtk.org, but has not been updated for many years. In fact, version 2.1, the
last update, was released in early 1998, and there are no current plans to extend it
further. Still, it can be used to implement a useful proxy firewall, especially if you do not
need to support many protocols.

FWTK is available in source code, which is an important part of its appeal. Anyone from a
security analyst to a potential attacker can review its design to look for defects. TIS
referred to this as a crystal box design , a term coined by one of its first customers. In a
crystal box design, nothing about the design is hidden. Therefore, the security of the
system is totally dependent on the quality of the design, not any secrets buried inside the
design. Put another way, FWTK does not depend on security through obscurity.

This same approach has been followed in the cryptographic community for decades. The
belief is that if a design has not been peer-reviewed by the cryptographic community, no
one should have any confidence in its security. This might seem an arrogant point of view,
until you look at the history of proprietary cryptographic systems. To save you some
research, they have not faired very well. This is something to consider when you select
the products you will use to secure your network. It is important to remember that FWTK
is currently unsupported. This, and the fact that it does not support many modern
protocols (such as H.323), would make it a poor choice for an enterprise firewall.
However, if your network does not require protocols unsupported by FWTK, and you are
interested in learning the nuts and bolts of proxy implementation, FWTK can be an
effective product.

SOCKS

As we discussed at the beginning of this chapter, SOCKS is a proxy toolkit that enables
applications to be proxied without requiring specific proxy code to be re-created for each
client application. Many proxy products support the SOCKS protocol, allowing any SOCKS-
enabled client to make use of the proxy's services. This includes providing access to hosts
on the other side of the SOCKS server without requiring direct IP connectivity. The SOCKS
server performs authentication and authorization functions on requests, establishes proxy
connections, and relays data between hosts. A SOCKS proxy server licensed for
noncommercial use is available for free from http://www.socks.permeo.com/.

For applications to work with the SOCKS proxy server, they must be "SOCKS-ified." Most
of the work involved in doing this has been packaged into the SOCKS software
development kit (SDK). A reasonably skilled network application developer would have
little difficulty adding SOCKS functionality to an application using the SDK.

SOCKS has evolved over time and gone through several revisions. SOCKS version 4 was
the first popular version of SOCKS and is still in use. However version 5 adds important
features, including the support of UDP proxying as well as a variety of authentication
methods. The Internet Engineering Task Force (IETF) approved SOCKSv5 as the standard
(RFC 1928) generic, proxy protocol for TCP/IP-based networking applications.

SOCKS is more of an enabling technology than a product in its own right. Many client
software packages already support SOCKS. If they do, you can securely manage
connectivity, authentication, and access control to them using any SOCKS-compliant
proxy. Examples of common proxy servers that support SOCKS are Squid (described in the
following section, "Squid"), Apache's mod_proxy module, and Permeo's proxy products. If
you have an application that does not support SOCKS that you would like to add proxy
support to, using the SOCKS API is a relatively quick and effective way of adding a robust
proxy implementation to your product.

SOCKS Version 4

The SOCKSv4 protocol defines the message format and conventions to allow TCP-based
application users transparent access across a firewall. During proxy connection setup, the
SOCKS server grants access based on TCP header information, including IP addresses and
source and destination host port numbers. The SOCKS server also authorizes users using
Ident (RFC 1413) information.

SOCKS Version 5

The SOCKS version 5 protocol, also known as authenticated firewall traversal (AFT) , is an
open Internet standard (RFC 1928) for performing network proxies at the transport layer.
It resolves a few issues that SOCKS version 4 protocol did not fully address or omitted:

Strong authentication The SOCKSv5 authentication method negotiation is handled
by the SOCKSv5 client/server communication. The application client identifies the
authentication methods it can support to the SOCKSv5 server. The SOCKSv5 server, in
turn, sends a message to the client identifying the authentication method the client
should use. The authentication method is also determined based on the security policy
defined in the SOCKSv5 server configuration. If the client's supported authentication
methods fail to meet the security requirements of the proxy's policy, the SOCKSv5
server denies communication.

Address resolution proxy SOCKSv5's built-in address resolution proxy simplifies
DNS administration and facilitates IP address hiding and translation. SOCKSv5 clients
can pass the name, instead of the resolved address, to the SOCKSv5 server, and the
server resolves the address for the client.

Proxy for UDP-based applications SOCKSv5 supports UDP association by creating a
virtual proxy circuit for UDP-based application data.

There are two additional SOCKSv5-related standards to support authentication methods:

Username/password authentication for SOCKSv5 (RFC 1929)

GSS-API (Generic Security Service Application Programming Interface) authentication
for SOCKSv5 (RFC 1961)

Squid

Squid is a highly regarded open source web proxy project. It provides high-performance
proxy caching for HTTP, HTTPS, and FTP. Squid can be used in several web proxy
scenarios. Its most frequent use is to cache browser requests for a site to accelerate and
control web conversations. However, it is equally useful as a web server accelerator and
as a reverse proxy server.

Squid was designed to run under UNIX and has been successfully compiled on a broad set,
including Linux, FreeBSD, OpenBSD, Mac OS/X, Sun Solaris, IBM AIX, and HP-UX. (Note
that this is only a partial list.) It can also be compiled to run under Windows if used in
conjunction with the Cygwin (http://www.cygwin.com) and Mingw
(http://www.mingw.org) packages. Squid is available at http://www.squid-cache.org.

Summary

In this chapter, we have examined the various ways that proxy technology can be used to
secure your perimeter. We described how proxies work as well as some of their
advantages and disadvantages. We also discussed proxy caching, how it can be used to
accelerate network performance, provide secure remote access, and offer anonymity
services.

Proxies can provide unparalleled network protection. They are considered by many to be
the most secure type of firewall, providing better application layer protection than other
techniques, including excellent protection against attacker network-discovery methods.
The commercial firewall market, though, seems to be moving away from pure proxy
solutions. Their perceived inflexibility and performance limitations have relegated them to
smaller roles within many networks. That being said, keep in mind that many security
techniques and services can be employed together to complement and enhance each
other's capabilities. When used where they make the most sense, proxies can still provide
tremendous value.

Chapter 5. Security Policy
When you talk to vendors or attend a security course, they tell you to do this or that
according to your site's security policy, but they rarely attempt to explain what a security
policy is or how to write or evaluate one. This is why we have included this chapter in the
book. Firewalls and other perimeter devices are active security policyenforcement
engines. As we examine the material, we discuss the fact that organizations often have
unwritten policies. In the first half of this chapter, we explore the task of mapping policy
to perimeter architectures and translating policy to enforceable firewall rules. In the
second half of this chapter, we consider an approach to developing policy that requires
understanding authority, scope, expiration, specificity, and clarity. Developing and
implementing policy is not easy, which is why we explicitly cover the hallmarks of good
policy and bad policy.

Note

"A security policy establishes what you must do to protect information stored on
computers. A well-written policy contains sufficient definition of 'what' to do so
you can identify and measure or evaluate 'how.'"1

Firewalls Are Policy

The yin and yang of perimeter security policy can be referred to as access and control.
When you come to fully understand these, it is hard to think of an access control list (ACL)
in the same way. The point of a network is to provide access. Access pertains to
accessibilityproviding service, performance, and ease of use. Control focuses on denial of
unauthorized service or accessseparation, integrity, and safety. At one point as a
community, we thought that two basic perimeter policy models existed:

Everything is denied except that which is specifically permitted.

Everything is permitted except that which is specially denied.

That sounds good, but it is bogus. In truth, one policy exists:

Everything is denied except that which is specifically permitted or that which gets in
anyway.

Let's illustrate this with the simple case of making the access control decision on the
destination port. For example, if the destination is TCP port 27374 (the default port for
SubSeven 2.2), and 27374 isn't on the allow list, control is applied, and the packet is
dropped. Internally, what is happening? The firewall scoots to the second 16-bit field in
the TCP header and grabs the destination port to compare it to its access control policy.
What if the packet is a fragment? Only the first fragment has protocol information. Let's
say this is the runt, the last fragment of the original datagram, but it arrives first. We
aren't going to make an access control decision on 27374; it isn't there. To be sure, we
can make many decisions when dealing with a fragment:

Consult our state table to see if this is part of an existing connection.

Buffer the fragment, reassemble the datagram, and then make the access control
decision.

Let the fragment through, but engage rate limiting to minimize harm.

If outbound ICMP unreachables are disabled, let the fragment through.

Drop the fragment and make the sender retransmit.

Firewall rules look simple when we are looking at a Check Point FireWall-1 GUI, but
underneath there might be many complex decisions and assumptions. Complexity is the
enemy of enforceable, consistent policy. Sometimes the result is that we are actually
granting access when we think we are applying control. This is a case of unenforceable
policy.

Access and Security Illustrated

Several years ago, I was talking with a perimeter analyst who was responsible
for the site security policy for the Naval Space Command. He was overseeing
the installation of a new application gateway firewall, a Sidewinder from Secure
Computing. He wasn't sure what his organization should set for a security
policy, so he decided to block everything and sit by the phone to see who
called. This succeeded handily in providing security, but it fell a bit short in
providing access. To this day, when I am reviewing an architecture, I cannot
help but remember this approach.

Active Policy Enforcement

You can argue with your security officer or your boss, but you can't argue with the
firewall. The firewall is a genuine policy-enforcement engine, and like most policy
enforcers, it is none too bright. Much of this chapter is devoted to unenforceable policy.
We are going to show that sometimes the problem is the firewall's limitations, but
sometimes the firewall doesn't stand a chance. If you believe that a firewall can protect
you, by the end of this section you should have some serious doubt. Often, the firewall is
unable to enforce the site's policy; if you do not have defense in depth, you are running at
a high risk.

Unenforceable Policy

One thing you should try to be sensitive to is unenforceable policy. We will first paint the
picture clearly with nontechnical organizational examples, but then show how it is
possible to create situations in which policy is unenforceable with perimeter systems. At
one time, the U.S. Government had a policy that mandated "no personal use of
Government computers." During the time of mainframes (ancient computers that were the
size of a house with less processing power than an Intel 386), that was probably
enforceable.

Times changed. By 1985, almost all technical workers had at least one personal computer
or workstation on their desktops. The world had changed, but the policy hadn't. When
people have their own operating and file systems, the rule of no personal use is
unenforceable. Have you ever known you needed to finish that documentation, but on
your way to bring up the word processor, clicked your email icon to check your mail for a
second and neglected to get back to the document for an hour? Or brought up Google to
look up one thing, saw something else that looked interesting, and never found the
original fact? With tools like this, is "no personal use" possible? No way! That becomes an
unenforceable policypolicy that is written but cannot be enforced. Unenforceable policy,
whether unrealistic administrative policy or failed perimeter policy enforcement, is not a
good thing.

Unofficial Official Policy

I still remember working for the Defense Mapping Agency, now the National
Imagery and Mapping Agency (NIMA). Just before the Christmas holidays, we
used to load a game of Star Trek on the Digital PDP 1170s for about two days.
The game was primitive by today's standards, but these were huge graphics
terminals used to edit maps. Playing Star Trek on these computers was the
coolest thing I had ever seen. After the Christmas party, we would remove the
game and search the file system for any file that was the same size as the
game in case it had been copied and renamed.

I asked the system administrator, "Why can't we leave it on there for slow
nights when we get our work done early?" He informed me that the head of the
topography department was a powerful and authoritarian man and I really
didn't want to cross him. He created an unofficial policy that we could play Star
Trek for two days, but it had to be completely removed after the Christmas
party. This is known as an administrative control .

Administrative controls don't work. During the years I was at the Mapping
Agency, the game would pop up now and again. We would find the game and
remove it, but there was no way to actively and consistently enforce the Star
Trek policy.

The Effect of Unenforceable Policy

If you have an unenforceable administrative policy, then people are encouraged to either
ignore it or push the rules. In fact, one of the reasons that attacks are so widespread is
that many laws against them are virtually unenforceable, especially because some courts
have ruled that the reconnaissance phase, scanning, is legal. Another classic
unenforceable policy is a requirement to report all malicious code infections. After the
problem is cleaned up, the tendency is to move on with life. The security office has no
way of knowing how many infections the organization has. One Navy group went to a
central antivirus console so that infections were automatically reported by the
workstations. It went from seven reports the year before to more than 1,000 with the
console. As a general rule, any policy that does not have a method to collect information
and controls, the tools we use for enforcement, is probably unenforceable.

If You Were Told to Enforce "No Personal Use," Could You Do

It?

I was once asked this question. It would be hard to get to a 100% solution, but
I could block all incoming or outgoing traffic that wasn't to or from a .mil, .gov,
or .int (NATO) address, and that would take care of a lot. This is some serious
control!

In the case of no personal use, just like our simple example of making the access control
decision on the destination port, we have those complicated cases such as fragmentation
to deal with. Users might have the following types of questions:

What if my wife sends me an email? Is it okay to read it?

Can I check on my stocks at lunch?

The answer is, "Yes, these things are okay." The U.S. Government has retreated to a
position called "limited personal use." Limited personal use is enforceable through a
number of firewalls and other perimeter tools. One of the better examples of a limited
personal use policy can be found at http://www.opm.gov/extra/itusepolicy.htm. In
essence, this says that you can use your Government computer for personal use. Don't
ask, don't tell, and don't overdo the personal use. Don't send chain letters, fundraise, or
pass sexual, racist, or illegal files.

If you were assigned to enforce limited personal use, could you do it? Subscription-based
services that have sets of banned URLs are available. You can load a set for sites that are
banned because they have sexual content, and another set for hate speech, and so on.
These go by names such as CYBERsitter and Net Nanny and are available for desktops and
firewalls. They are known to be inflexible; they tend to apply control when they should be
allowing access. For a while, it was a common sport on the Internet to make these tools
look bad because they stopped web queries for "breast feeding" and so forth. Also,
sometimes they allow access when they should apply control, such as a URL they don't
know when the site is a bit cagey. That is why you have to pay the money for the
subscription; if you want the tool to work, you have to keep it up to date. Most K12 school
systems employ these tools on their perimeters, and there we see one of the most
extreme examples of the harmful effect of unenforceable policy. Kids become heroes by
going through an open proxy to download porn directly to the library workstations. The
good news is that progress is on the horizon, with content-aware tools such as
MIMEsweeper for Web from Clearswift, but these tools are expensive and come with their
own headaches. Are you starting to believe that complexity is the enemy of enforceable,
consistent policy?

We have gone from administrative controls, such as manually searching for banned
software, to perimeter tools that have protection-oriented security controls, such as
blocking banned URLs. In our next section, we explore the ways we can create or find
unenforceable policy in the perimeter. These problem vectors include coding errors, lack
of understanding what the policy should be, web tunneling, email attachments, disks in
briefcases, and every kind of backdoor you can imagine.

Vectors for Unenforceable Policy

If unenforceable policy is a problem because it enables people to access things that we
would prefer to control, then we want to minimize it. On the organizational, administrative
level, we can review our policies to see if they meet the criteria of good policy that we
discuss later in this chapter. On the technical side, we can use tools such as PacketX and
hping2 to throw crazy packets at the perimeter and see what gets through. What kind of
packets? Try short fragments, or TCP packets with odd code combinations or every
possible option set. This can alert us to how the assumptions and design decisions
underneath the rules we are able to write are working. In addition to a fire-walking-type
assessment, it is a good idea to ask yourself what vectors might allow unenforceable
policy to manifest itself. We are the most likely culprits. Sometimes we forget how firewall
rules are processed, or we add them willy-nilly.

Unwittingly Coding Unenforceable Policy

Have you ever heard the saying, "I know it is what I asked for, but it isn't what I
wanted!"? This happens to firewall administrators, the folks who write firewall rules, all
too often. Many times we get what we asked for, but not what we wanted, when our
firewall has complex firewall rules. After all, a seemingly simple set of rules has
underlying assumptions and rules, so a complex set of rules makes it pretty likely that a
firewall administrator might accidentally arrange the rules in such a way that the firewall
cannot enforce the policy that the administrator thinks he has defined. This is the reason
you hear recommendations such as "never have more than 20 rules." That sounds good,

but what if you live in the real world? You might need a bit more than 20 rules.

Firewall administrators become aware of unwittingly coding unenforceable firewall policy
when they run into their first case of self-inflicted denial of service. Such denial of service
often happens simply because we fail to create a match before the default deny allstyle
rule. The following are some examples of common errors you might make, with the first
example showing the incorrect way to allow HTTP and FTP traffic:

allow tcp from any to any 80
allow tcp from any to any 21
deny tcp from any to any

The classic mistake here is forgetting FTP's data channel on port 20. That is easy, and in a
three-rule set, we pick it up in seconds. In a 40-rule set, however, it might not be so
easy.

Another simple mistake you might make is to write a broad match before a deny. The
administrator intends to stop HTTP and FTP, but he writes an allow rule first and the
intended deny rules are never processed. This is easy to see in a three-rule set, but it is
much harder in a large rule set.

allow tcp from any to any
deny tcp from any to any 80
deny tcp from any to any 21

If you have a fairly large rule set, pour a cup of coffee, sit down, pay close attention to the
keyword any, and ensure that you know exactly what kind of matching your firewall has

(best fit, or the first or last rule to match wins). You are off to the races!

No Up-front Policy

The simple mistakes we just examined are why firewall books and instructors always
stress that the first thing to do is to examine your site's policy and then create the rule
set. If you just turn the firewall on and start adding rules, it is pretty easy to stuff an
allow after a deny, or vice versa. It really pays off to write a rule set from the ground up.

If you are not comfortable with the policy-first methodology we show in this book, create
your own rule set, test it, test it some more, and stick with it. However, even with good
rules that are properly organized, a policy can be subverted or made unenforceable
through those two Mack trucksized holes living at TCP ports 80 and 25.

TCP Port 80

Most of us configure our firewalls to allow outbound port 80 (HTTP, or the World Wide
Web). If you go to your favorite search engine and do a search on "tunnel port 80," you
will find enough to curl your hair. From GNU httptunnel to custom web tunnels to
emerging Internet standards, an abundance of tools and techniques is available to
encapsulate any kind of network traffic imaginable in packets that appear to be HTTP.
Applications such as instant messaging (IM) and peer-to-peer (P2P) file sharing clients
can typically use a variety of ports, including port 80, so that they can find a way out
through firewalls.

Many client applications and tunneling tools aren't just using port 80; they are actually
encoding their traffic in HTTP with get, put, POST, and markup language tags. Can the

fake or encapsulated traffic be detected? Sometimes it can, but it is pretty difficult, and
keyword searches or content inspectors are the best shot. This is a case where your
organizational policy really matters. Either you are going to allow HTTP tunneling or you

are not. Tunneling is usually for the purpose of evading the firewall, so let's say you don't.
If you do catch someone, then your organizational policy needs to state clearly that the
individual's head will be mounted on a pole outside the main entrance of the building as a
deterrent to others. Port 80 tunneling generally requires intent by someone on the inside;
email, however, is the most amazing policy destruction technology of all time.

Email

The primary policy problems with email include users sending sensitive information or
binary attachments, automated forwarding, and over-responsive email clients.

Sensitive Information

I did a project for the U.S. Military once in which I collected nothing but the
source, destination, and subject lines of outbound email for a month. I ran that
through a keyword search for sensitive technologies. I will never forget
watching the color drain from the face of a battle-tested senior officer as I
showed him the results. Fortunately, it was only a 4.4-billion-dollar-a-year
weapons program; it would be a real shame if we were talking serious money.
This organization had an unenforceable policy: "Never send sensitive
information unencrypted over the Internet." However, these merry tricksters
didn't give their users any way to encrypt; they were against Pretty Good
Privacy (PGP), and they had been implementing Public Key Infrastructure (PKI)
for about five years.

As email has become a primary means of communication, we have become more familiar
with it and less aware of the risks. As a rule of thumb, before an employee has finished
drinking his first cup of coffee, he will attach and send any file you ask for and never
remember that he did it.

Don't you just love those cute greeting card programs that people send back and forth?
Ever wonder if they might do more than whir or chirp? Malicious materials in email can be
detected by content scanners at the perimeter, especially antivirus software. (Some
organizations use two types of scanners, because one scanner may pick up a virus and the
other may miss it.) The Royal Canadian Mounted Police has the handle on binary
attachments. Whether documents or programs, the Royal Canadian Mounted Police refuses
them all and sends polite notes from its perimeter saying it doesn't accept attachments.
Most of us lean way too far in the direction of access over control when it comes to email.

Outlook is the quintessential unenforceable policy engine; if it receives an email from
some unknown party, it happily accepts the email's programming instructions. If someone
is running Outlook internally, it is probably impossible to secure the perimeter.

Let's say you are in some super-duper secure place, such as the CIA or NSA. In the
above-ground world, some wacky macro virus like Melissa variant 2,000,012 is jumping
from address book to address book, and suddenly the same behavior starts on your
classified network that is airgapped from the Internet! What happened? It's a good bet
that infected media is being passed among systems.

Lessons That Melissa Taught Us

Before Melissa and Lovebug, not everyone understood how dangerous Outlook's
behavior was. I still remember the day I saw the future and shook my head in
disbelief. A friend was testing a personal firewall. Someone had sent her an
email message with a URL. Outlook kindly retrieved the URL as soon as she
highlighted the message so she didn't have to wait for the picture of a flower to
which the URL pointed. When Outlook tried to get the flower, her ZoneAlarm
alerted. I asked myself, "If Outlook will do that, what else will it do?" Even
today as I write this, years after many crazy security flaws and Microsoft Office
macro exploits, the answer seems to be, "Anything the sender wants it to." In
this form-over-function world, I suppose organizations will continue to choose
HTML-aware, macro-extendable programs such as Outlook, but I could live with
plain, printable ASCII text in email if I had to.

Very Large, Very High-Latency Packets

When we do site security assessments, one of the things we like to do is the hurricane
backup test. The idea is simple: A class five hurricane is expected to hit the site in 35
hours. Senior management directs that they get a backup of all the data out to a safe
location in advance of the hurricane. After some initial scurrying, they start to run
backups and load backup tapes. A classic old trick is to wait till they are about loaded and
then ask, "Did you get all the data?" They usually nod yes. "What about the data on the
user's local drives?" "That's the user's responsibility," they reply. "We back up the
servers." "Ummm, and where will you be without your top salesman's contact list, or your
CIO's notes?" In general, there is hopping around and a discussion of running to Costco to
buy all the zip drives and disks they have. After some flapping, the hurricane only an hour
away, we have to leave with whatever backups we have.

The first time we did this and watched the van loaded with all the tapes head off to
discover whether cold backup sites really work, the guy standing next to me commented,
"Wow, when disks are in motion, you can think of them as very large, very high-latency
packets!" As a security analyst, this is a significant vector to defeat our perimeter's active
policy enforcement. VLVHLPs fit in shirt pockets, briefcases, any number of form factors.
One thing is certain: Every variation of sneaker netphysically moving data around on foot
or by vehiclehas the capability to evade perimeter defenses. In fact, several of us on the
team have worked in a number of secure facilities where disks are supposed to be
registered as they go in and out, and they supposedly have spot checks, but in 20 years,
we have never been stopped.

When the terrorists attacked the World Trade Center on September 11, 2001, several cold
site vans were circling the blocks as administrators raced to get the VLVHLPs out of the
trade center and surrounding buildings. We live in a time of increasing threat. If we are
responsible for business continuity, we should think in a far smaller time horizon than 35
hours.

Backdoors

Backdoors make our security policy unenforceable by evading our perimeter defenses.
Everyone knows that modems can breach perimeter defenses, especially when they are
connected to operating systems that support IP forwarding. Many countermeasures are
available for this, ranging from proactively scanning your phone lines to using digital
phone lines. Wireless adds a whole new dimension of challenge; cell phones can surf the
web, forward faxes, and connect laptops to the Internet. With 802.11 in wide use,
organizations would be wise to walk their physical perimeters looking for signals. Don't be
fooled by the box that claims they are only good for about a hundred meters. People with

amplifiers and modified antennas can get significant range. You can run these tests
yourself with a free copy of NetStumbler (http://www.netstumbler.com) and an
inexpensive wireless network card. We need to think about our perimeter as a physical
bubble drawn around our physical assets and be ready to test for breaches in a number of
ways, from physical access caused by disks moving across the perimeter to RF signal.
Access and security do not just apply to the computer or network, but to the organization
as a whole. This is why the one true firewall maxim is, "Everything is denied except that
which is specifically permitted or that which gets in anyway."

At this point, you should have a lot to think about. If you think of other vectors for
unenforceable policy, we would love to hear from you! It is important to be alert for the
situations in which policy cannot be enforced. These situations have a tendency to lead to
chaos; they encourage people to either ignore the rules or push the envelope on the rules.

How to Develop Policy

Earlier, we pointed out the risks of trying to develop firewall rules without policy. The
tendency is to do this willy-nilly, adding a rule here, modifying a rule there, until the rule
set becomes difficult to maintain. Because we are in the active policy-enforcement
business, sooner or later there will be controversy about why a certain service is either
granted access or controlled. If the firewall administrator has a signed, approved, up-to-
date policy to refer to, it can stifle the controversy. We need to have a policy on which to
base our access and control decisions. Policy development can be approached in several
ways, but in information security, we are probably best off to use a risk-based approach.
For this to work, we identify the risk, communicate what we have learned to an authority,
update or create security policy, and figure out how to measure compliance.

Identify Risks

It is time for a walkabout. Try not to let this stress you, but you will need to get out of
your cubicle and go talk to some people. We realize that computer security types are a
fairly introverted bunch, but users are a significant source of risk. Determine how your
organization uses computers and networks in the conduct of business, both routinely and
under emergency circumstances. You need to ask two questions:

What data do you have or do you use from a different source that would really hurt
the organization if it were not available?

Do you use the Internet for anything other than email? (Of course, if your
organization doesn't have a presumption of privacy, you can pull the logs and know
what answer to expect before you meet.) Keep in mind that if no policy exists, the
users in your organization aren't doing anything wrong. Make sure they understand
you are simply trying to establish a baseline, not cause anyone trouble.

These questions will provide insight into the risks that your organization faces. Odds are,
this will not be pretty. Just because you are using a personal firewall and keeping your
antivirus software up to date doesn't mean anyone else is. You might find that people
download games and other untested software, and that they run chat programs capable of
transferring files. You might even find a copy of a web server on a workstation if you look
long enough. The next step will be to pass your findings on the areas of risk to
management, the folks who are paid to approve or mitigate business risk.

Where Is It Written?

For many years, I believed that people were rational, and that any two
reasonable persons could be expected to make the same decision in a given
situation. That isn't so. Really intelligent people will ask questions like, "If we
have a firewall, why should we have to patch our systems?" We all know the
perimeter cannot guarantee that a system will be 100% protected 100% of the
time. But when people get a notion like that in their heads, logic ceases to be
the drug of choice. You can try to explain things to them and they just don't get
it. What is phenomenal, though, is the power of the written word. Someone
might ask, "What instruction requires that we do it that way (or at all)?" If you
show a written and dated policy signed by upper management, a surprising
number of times the person nods and accepts the policy.

Communicate Your Findings

When communicating what you have learned to management, keep it simple, balanced,
and fairly concise. If you mention an individual's name with respect to a problem or risk
you have discovered at any point, management is likely to think of this as a personal
attack and dismiss everything you have done. Keep the general tone on the types of
problems you found and the implications. When possible, give an example of where this
type of behavior was financially damaging to the organization.

SirCam as an Awareness Tool

I worked with a group that was pretty lax about antivirus, and nothing I said
seemed to get them to understand the risks of malicious code. After SirCam hit
in July 2001, I was at a restaurant with the group's senior manager. We were
discussing a business deal, and I told him about a law firm that was hit by
SirCam over the weekend. When the firm came in that Monday, the phones
were lit up because sensitive documents of all sorts had been blasted over the
Internet. It was fun to watch his face as he suddenly got it. The group added
email screening to its firewall, and began updating workstation antivirus
signatures regularly. SirCam created awareness of how malicious code could
expose sensitive information in unexpected ways.

Offer management a range of options for managing those risks. It's probably best to use
two different antivirus tools on the mail gateway, but if management decides to make the
investment in only one, that is their choice. Our job is to give management the data in
such a way they can make a reasonable decision. Don't try to do this by discussion only.
Make sure you leave a written summary of your findings as well.

Create or Update the Security Policy as Needed

If no written policy is in place, write it and get it signed by upper-level management. Later
in this chapter, we will cover the elements of policy and give you a few more tips for
creating policy. However, life is too short to write policy from the ground up if you can
avoid it. You don't write a makefile from scratch every time you build a new software
distribution, do you? You usually modify an existing makefile. Many policy references are
on the SANS web server (http://www.sans.org/resources/policies/), and an Internet
search should turn up plenty of additional resources. We went through a lot of trouble to
build the case for avoidance of unenforceable policy. One way to prevent unenforceable
policy is to build in methods that allow us to audit compliance.

Determine Policy Compliance

If you cannot measure compliance (conformance), the policy is unenforceable. If the
policy is specific enough, it should be easy to determine whether any item you are testing
is in compliance. For instance, if we are only allowed to play Star Trek two days a year, it
is possible to audit the system for the presence of that software. If trading sound files is
against policy, we can monitor logs for the default ports of tools such as Kazaa clients, but
also use Snort or a similar tool to look for the .mp3 file extension. One warning: If your
plan is to spot check, make sure someone spot checks to see whether the spot checks
actually happen. The spot checks should be logged and should occur quarterly. Audit the
spot check log. Again, if there are no metrics and no controls to ensure compliance, it is

probably unenforceable policy. If security supposedly spot checks for disk media at secure
installations and it really isn't happening, the security function will not detect violations of
their policy. A word of warning, though: Most people will choose compromise over
confrontation. Management might have the best of intentions. They might say all the right
words, but make sure you do not run afoul of your corporate culture, or your policy
experience might be a very unpleasant one.

Sound Out the Organization's Rules and Culture

Every organization has a particular style, an ethic or image. Many times, a senior manager
maintains this style and the organization buys into it to some extent. Does the
organization favor managers over technical people? Does it favor seniority over excellent
performance? Do the rules apply to everyone or only to some people? Is the organization
laid back or aggressive? If you are writing policy, make sure it reflects the culture;
otherwise, it is certainly going to be unenforceable.

We like to ask a few questions to determine the security posture of the organization
before looking at policy. Some of those questions include the following:

What is the presumption of privacy, including phone and network monitoring? Do
employees have a reasonable expectation that what they store on their computers,
what they say on the phone, and what they send on the Internet are protected
communications?

Are random physical searches permitted, and is there an active search program?

Is the perimeter configured to allow all connections that are initiated from inside the
organization?

Are employees able to add software or modify settings on their desktop systems?

Are administrators able to make changes without going through a formal configuration
management approval program?

The answers to these questions can really help you see the "tone" you would expect the
policy to have. Then you can continue to do an assessment of the culture by reading
existing written policy and writing down unwritten policy.

Comparing Policy and Culture

Written policy can be found in a number of ways. It includes official policy, of course, but
also directives from senior management, contracts, and other legal agreements, and even
existing Human Resources cases. It can be an interesting experience to compare the
official policy that is listed in documents with the other sources of policy we have
described. The wise analyst examines the alternate sources and the cases of enforced
policy to be alert for indications that the corporate culture does not completely agree with
its stated policy. In a sense, this is just like Windows Active Directory: You have the
Group Policy and the Local Security Policy, and they might not totally agree. If you want
your Windows system to be secure, you need to be aware of what the effective policy is at
all times. This is the same principle at work when we consider official policy and corporate
culture.

Note

Policy must be documented and consistently enforced. Humans have trouble with
this, but perimeter devices do not. This is why it is imperative to consider the
human side of the equation before engaging the perimeter.

Written Policy

The first place to start looking for your corporate culture is the Human Resources
handbook that is given to every new employee. At some point, this document was almost
certainly approved by senior management as the document they wanted new employees to
see. Be sure to check that the same management team that approved the employee
handbook is still in power. Also, directives and other standard policy information might be
available. It can't hurt to check those, being sensitive to when they were created.
Checking these sources gives you an idea of what some combination of policy writers and
management thought they wanted the policy to be.

Directives

Senior management will have approved the primary policy documents of their
organization, but they might have modified them afterward by issuing directives.
Generally, an executive secretary or administrative officer serves as the organizational
memory. Clearly, this person would not be comfortable sharing all email or directives with
you, but you are only interested in directives that modify either access or control. Even
informal emails from senior management can have a large effect on a corporate climate.

How do you ensure that the administrative officer takes this exercise seriously? We
suggest a checklist that lists the proposed perimeter policy based to the extent possible on
the written policy. This should be in English, not in a firewall rules language. This
checklist can be done with bullets, as in the following example:

All internal systems are maintained according to the organization's best-practice
checklist.

All connections that are implemented from the inside are considered trusted.

Acme Corporation, a strategic partner, has implemented a direct connection to us and
is not blocked or monitored for the following services: file transfer, access to our
product's database, and email.

Then you provide a place on the checklist for the administrative officer: "I have reviewed
senior management directives, and the following directives and instructions indicate the
proposed policy might need to be modified. If none, so state." This way, if the CEO or
president of the company is offended by the perimeter's active policy enforcement, you
have a layer of protection, a firewall between the angry manager and yourself.

Contracts and Human Resources Rulings

Legal contracts can effectively modify corporate policy, as can the hiring and firing
disciplinary rulings from Human Resources. Many policies have a references section, and if
you are aware of documents that modify the policy, you can include these in references as
you update.

Unwritten Policy

If you immediately jumped to the conclusion, "No, policy has to be written," then we
would ask you to consider the following:

We have always done it that way!

We have tried that five times and it always just dies.

I wouldn't go there if I were you.

Every organization has hidden rules. Crossing these rules usually doesn't cause
employment termination, but you can waste a lot of time. Every organization has wise
folks who have been around for a long time, and these are the folks with whom to chat.
Don't ask them to sign your checklist, but ask where the minefields are. You can always
raise points with the senior manager who approves the implementation of the perimeter
policy. Senior managers are paid to make the hard calls.

A chapter that is devoted to implementation of policy for perimeter devices cannot
possibly cover all the elements of policythat would be a book all by itself. That said, we do
want to make sure we discuss the most common elements.

Elements of Policy

You can think about the elements of policy as the outline or skeleton. When we learned to
code, many of us were taught to build the main program and put in dummy function calls.
The idea was to call the function and make sure we returned so that the flow of the
program would work. This limits troubleshooting to one function at a time, so we would be
able to build the program efficiently. The elements of policy serve the same purpose; you
can think of them as function calls in a main program.

We are not going to provide an exhaustive list of the elements of policy. This policy is
tailored to a perimeter situation, so it will not need everything that you find in more
Human Resourcerelated policies. Keep in mind that we need to focus on access and control
with the policy. We will discuss authority, scope, and expiration next. We will also cover
the characteristics of good policy.

Authority

We need to consider levels of authority: the manager who is authorized to sign the paper,
and the policy under which this policy might fall. Often, a higher-level ruling policy exists.
For instance, a perimeter policy might reference the organization's information security
policy, and that might reference the organization's security policy. If this is not policy at
the highest level, then to whom does it apply? Everyone, or perhaps everyone in a
particular department or group? This is why we need to explicitly define the scope of the
policy.

Scope

The scope section of policy identifies the depth and breadth of coverage (to whom or what
the policy applies). Is it for one element of the organization, or will it also apply to
contractor agencies that work for your organization? It is worth paying careful attention to
the scope. If the scope proves to be incorrect, you might end up having to support two
firewall policies: one for group A and another for group B. Of course, things change, and
the policy should be reevaluated periodically. This is the purpose of the expiration
information.

Expiration

Some policy is only valid for a short period of time. If your organization merges with
another, you might have a transitional policy for 3090 days. Policy is fairly static, with the
exception of perimeter policy, which needs to be reviewed at least yearly. Taking the time
to craft good policy makes it easier to check periodically.

Hallmarks of Good Policy

Anything worth doing is worth doing well, and that certainly applies to policy. Let's take a
few minutes to define what good policy is and is not. It does not have to be wordy, use
obscure words, or use acronyms. It does need to state the issue, state what is expected,
and be a tool that can be used to measure compliance. To best accomplish this task, the
policy should be specific, concise, and realistic.

Specificity and Clarity

Specificity is one of the most important aspects of good policy. One of the best ways to
avoid unenforceable policy is to reduce ambiguity. Many times, people who write policy
attempt to write in a formal tone that makes the policy hard to read. Just state the issue
in plain, readable language. It is imperative to be specific about the following:

What needs to be done Enough information should be available from the policy to
create a checklist that is sufficient to ensure compliance.

Why the policy exists and what the problem is designed to solve Rational
people need to understand what the problem is to fully buy into the solution.

Who is responsible for accomplishing the tasks listed on the policy This is
particularly important if procedures are developed from the policy. It must be clear
who is responsible for completing the procedures.

The policy should be reviewed for clarity to make sure the reader can understand it. One
simple way to test for clarity is to have one of the individuals identified as being
responsible determine whether he understands the responsibility. Ask this person to read
the policy and describe in his own words what the policy requires to be done. One of the
best ways to make a policy clear is to make it concise.

Conciseness

Rules of thumbs are dangerous, so this is meant to challenge you to say what you need to
say in a reasonable length. A specific policy topic (such as antivirus signature updates)
shouldn't exceed two pages. Many organizations limit them to one page.

Realism

Perhaps you have heard of the mnemonic SMART. It stands for Specific, Measurable,
Achievable, Realistic, and Time-based, and it is a good basis for effective policy. SMART
also illustrates the importance of a realistic policy. Security policy shouldn't require
people to try to implement things that can't be implemented. The R for Realistic is such an
important characteristic; if the policy is not realistic, it is unenforceable.

Perimeter Considerations

Next, we consider how policy can be implemented in our perimeter architecture. If good
policy already exists, we simply need to assess our perimeter technology, asking the
question, "Is it possible for us to implement our policy with the technology we have?" Now
that we have a firm foundation in what policy is and we are sensitive to unenforceable
policy, let's go back to the notion of active policy enforcement. We will discuss how to
map our architecture to our policy, and how the limitations of technology sometimes force
us to modify our policy.

Real-world Operations and Policy

All too often we have to bend policy to match our architecture. This doesn't have to be the
guiding principle, however. As we close out this chapter, let's cover some of the
technologies and consider their implications for our policy position. Because perimeters
examine and log packets, running a perimeter involves privacy issues. In addition, as
email bounces or gets sent back to us, we might see a user's private thoughts. Our policy
needs to prepare us for these situations in which limitations in our technology throw us
information we might not expect to see. Policy must provide guidance to administrators
and to those who operate content-sensing devices about what is and is not appropriate
when private information is exposed.

Note

Every time we buy a new product or upgrade a system, our goal must be to build
an architecture that actively enforces our policy.

Presumption of Privacy

If you are a student at a university in the United States, you have a presumption of
privacy. Certainly, some speech is not protected; for example, you can't threaten the
President or threaten to take your own life and expect confidence. However, on the whole,
custom, practice, and law protects your communications.

If you are a uniformed member of the United States Armed Forces, you tend to live on the
other side of the spectrum. Every time you enter a military base, you are greeted by a
sign letting you know that you and your possessions are subject to search. The telephones
have stickers warning that they might be monitored. You know that you do not have a
presumption of privacy.

In an earlier section, we gathered and evaluated both the written and unwritten policy,
which gives us the groundwork to determine what the presumption of privacy policy is for
our organization. This helps us make perimeter design decisions. If you are designing for
a university, you probably shouldn't collect content of packets. One of the engineering
requirements for the Shadow IDS was to be able to detect attacks without looking at
content. Widely deployed antivirus tools might be the "canary in the coal mine" that alerts
us to a user who is circumventing the perimeter. Usually, we can use the information
about the presence of a virus, but what do we do when we start getting arbitrary files from
someone's hard disk courtesy of a W32.SirCam-type infection? It depends on the
presumption of privacy. Email handling is another sticky point.

Email Handling

Have you ever worked in an organization in which people were fairly certain that the
postmaster read their email? Needless to say, it should be grounds for termination if
someone intercepts and reads mail without cause or written permission, but bounced mail
comes to the postmaster. Anyone who has been a postmaster for any length of time has a
story to tell about bounced mail. A postmaster must try to handle this by giving a quick
look at the mail headers and ignoring the content, but sometimes it is inevitable. If the
mail to the postmaster is a complaint from an outsider who received mail from our
organization, what then? We probably do need to respond and help in the investigation by
collecting the logs that corroborate or disprove the complaint. This is just one of the ways
that working with the perimeter defenses can vault us into the wonderful world of incident
handling.

Incident Handling: Preparation to Containment

Consider the six stages of incident handling:

Preparation

Detection

Containment

Eradication

Recovery

Lessons learned

It quickly becomes apparent that the perimeter is a crucial player in the process. Building
a perimeter that allows flexible, active policy enforcement is one of the best ways to
prepare for an incident. The event might well be detected by firewall or intrusion detection
logs. After detection, we can use the perimeter to assist in the containment phase, where
we typically make a decision between two approaches: contain and clean, or watch and
learn.

If you have a system that you suspect is infected, your policy might be to contain and
clean. You might choose to lock it down tight and prevent traffic from coming from the
Internet to this system, and also prevent outbound traffic from the system to the Internet.
In this book, we cover egress filtering, but it is worth emphasizing that a compromised
box might be sending packets with spoofed source addresses. If you have a switched
environment, you can often accomplish lockout right at the wall socket. Alternatively, you
might decide to increase your instrumentation and see what you can learn about the
motives and techniques of the hackers.

The watch-and-learn approach to incident handling takes access and control to the level of
an art form. The Honeynet Project (http://www.honeynet.org/) has done more than any
other group to advance the state of observing attackers in the wild who have been granted
access, while maintaining control over the state of the system. If you are considering this
approach to incident handling, you would be wise to visit Honeynet's website, get on the
mailing list, and get involved. Tools such as rate-limiting switches can be helpful with this
approach. Instead of denying the attacker access to the suspected machine, you throttle
the bandwidth to make the attacker's experience a longer wait. This gives you a little
more time to analyze the situation. Watch and learn is a higher risk strategy than contain
and clean, but the potential payoff is also much higher.

Incident Handling: Eradication to Lessons Learned

At some point, usually within 24 hours of a suspected compromise, the primary focus is to

get the system back in business. The first step is to completely clean the system and then
to restore operations. The perimeter systems can be used for additional monitoring and
filtering. Often, the attacker comes back, and we must remain alert for this. In addition,
the logs from the perimeter help tell the whole story and are useful during the lessons
learned phase of the process. If you don't understand how you were attacked and make
the appropriate changes, it is all too likely it will happen again tomorrow. In the final
section of this chapter, we will briefly consider policy that provides the security controls
that apply to firewall administrators.

Rules of the Road

The perimeter sets the rules of the road. If we use active policy enforcement to manage
access and control for various information assets, when and how do we have the authority
to make changes in the perimeter? Who has the authority to request these changes, and
under what circumstances? Who makes the final approval? Whatever your process is to
approve changes, make sure you document them. Often, an apparently small change in
filtering policy can have unintended side effects. If a change log exists, it can be of great
help to those who have to troubleshoot the system.

The Firewall Admin Who Shouldn't Have

When I was working for the U.S. Department of Defense, I noticed some
suspicious traffic on the Shadow IDS the department had deployed. After
considerable analysis, it was fairly clear that there was a complete TCP
connection, stimulated from HTTP, but on a high port with a three-way
handshake, a data exchange, and a graceful close. How could this be? A
sandbox violation seemed impossible. The client system was behind an
application gateway firewall, and things such as Java and ActiveX were not
permitted. How had the client been directed to open the connection from the
inside of the facility? When I went to see the firewall administrator with the
logs, I learned that the firewall administrator had turned off the HTTP proxy. My
jaw dropped as I asked why. The reply was, "I got a phone call and someone
complained it was too slow." Make sure you understand and follow the process
in your organization for making changes to the perimeter's policy.

Summary

Policy is not something to be left to a nontechnical administrative worker. Everyone who
is involved in perimeter design and operations is involved in policy. The perimeter can be
viewed as an engine or series of engines that actively enforces your organization's policy
relating to access and control of traffic. For the perimeter to do a good job of enforcing the
rules of the road, you need a comprehensive policy. Be sensitive to situations in which
your stated policy cannot be enforced. Strive for a policy that is clear, specific, and
concise so that any reasonable, technically educated person can look at the policy and
perimeter rules and understand the relation between the two. Never forget your
responsibilities in terms of maintaining the privacy and dignity of others. You are the
keeper of the gate for your organization; don't let an organization down by misusing the
information and authority that is available to you.

References

1 "Security Policy." SANS Security Essentials Course, Version 2.3. September 2004.

Part II: Fortifying the Security Perimeter

 6 The Role of a Router

 7 Virtual Private Networks

 8 Network Intrusion Detection

 9 Host Hardening

 10 Host Defense Components

 11 Intrusion Prevention Systems

Chapter 6. The Role of a Router
A router is a device that interconnects two or more networks. Because of its role as a
gateway between networks, it becomes a focal point of your network's security. Just like
any entranceway to a secured perimeter, efforts must be made to reinforce the router's
defenses to ensure your environment's safety.

The role that the router plays in your infrastructure's security depends greatly on its
placement and the networks it joins together. The router might be a simple border device
that joins your network to the Internet and relies on a firewall behind it to take care of the
majority of the security concerns. Or perhaps the router is used as the lone perimeter
security device for a small or low-risk network or a network subsegment. In either case,
the main function of a router is the forwarding of packets from one network segment to
another. Depending on the implementation you choose, you might strive to have the
router focus on routing and perform routine security tasks as part of a larger defense-in-
depth posture. Conversely, you could implement the router as an all-in-one perimeter
security solution in an environment that has no other protection and reinforce this
environment with additional defense in depth.

In this chapter, we discuss the router, its functions as a component of defense in depth,
ways to implement it as an all-in-one security solution, and ways to protect the router
through various hardening techniques. All examples use Cisco routers (Internetwork
Operating System, or IOS, version 12.1 or greater), although the principles demonstrated
could be applied to almost any brand of equivalent router.

The Router as a Perimeter Device

Simply stated, the main function of a router is the forwarding of packets between two
network segments. This is often forgotten when it is time to implement a security
structure. Many additional duties are thrust onto the router and, ultimately, performance
suffers. Routers, like computers, have processors, memory, and storage space.

How Can You Tell Whether Your Router Is Overburdened?

When your router is overtaxed, many strange things can happen. Packets can
be dropped, things can pass that shouldn't, and so on. To check whether your
router is overburdened, look at its processor utilization. With a Cisco router,
you can do this with the following command:

router#show processes cpu

This command shows the amount of central processing unit (CPU, or another
word for processor) usage for each process. A command with even more
interesting output is

router#show proc cpu history

Notice that this time, we abbreviated the word processes as proc. This

command shows your CPU usage in a graphical format for the past 60 seconds,
the past 60 minutes, and the past 72 hours. This can give you a much better
idea of what kind of workload your router has had over given periods of time
and when performing specific functions. If you are wondering how your router's
memory is being dispersed, try the following command:

router#sh proc memory

This shows how much memory each of the running router processes is using.
This can give you some major insight as to why you might need more RAM.
With tools like these, the mysteries of an overworked router can be solved in
record time!

You must consider these points when you're choosing a router for your specific network
environment. Many of the features of expensive, high-power routers are also available in
the lower power, more reasonably priced models; however, it is important to check under
the hood. Make sure the router you choose can handle enough bandwidth to fit your site's
needs. Also be sure it has enough memory and storage available to handle the features
you plan to employ. Information is available from your router vendor on the amount of
memory required for the features you need.

Routers usually don't have much storage space available, and storage upgrades are at a
premium. When considering your design environment, think about the ramifications of
implementing an external storage area for log files, configuration file backups, and

operating software. Most likely, the router in question will use Syslog for remote logging
and Trivial File Transfer Protocol (TFTP) for the transfer of configuration files and
operating software updates. Therefore, ensure that you have systems that provide these
services to the router to supplement its internal storage space.

Routing

To begin routing in a simple environment, a router needs little configuration. If you have
two separate subnets that need to communicate, drop the router in and configure each
connecting interface with an address for its attached network, make sure that routing is
enabled, andvoilàinstant communication! The router knows the IP address of its two
interfaces and can apply this knowledge to forward traffic sent from one network to the
other. Complexities begin to arise as network segments the router isn't directly connected
to are added to the configuration. Because the router doesn't have direct knowledge of
these segments, it must be told about them with statements in its routing table. Such
statements can be added manually by an administrator (static routes) or dynamically by
updates from other routers. Static routes are easy to configure in a small environment. On
Cisco routers, configuration can be accomplished with a command such as the following:

router_(config)#ip route 10.10.10.0 255.255.255.0 10.1.1.1 1

In this command, 10.10.10.0 is the network address range you want to tell the router
about, and 255.255.255.0 is its subnet mask. 10.1.1.1 is the address of the router or
gateway device to which the router should forward information that is destined for the
10.10.10.0 network. The single number 1 at the end of the statement is a route metric. It
can be any number between 1 and 255, and it tells the router how much precedence
should be placed on that path. If multiple choices are available, the router can make an
informed decision about which route is the preferred.

The ip route statement can also be used in circumstances in which hundreds of networks

might be unknown to our router, such as for a connection to the Internet. To forward all
unknown traffic on to the Internet, we use the form

ip route 0.0.0.0 0.0.0.0 gateway IP

where gateway IP is the address of the next-hop router on the way to the Internet. Each

of the following devices in the path to the Internet would also require a similar default
route to the next upstream device. This statement is typically called the default route or
the gateway of last resort .

Static routes offer a secure routing method for configuring a small environment, but what
happens when we have 100 routers in our corporation? Do we want to program all the
necessary static routes manually? Of course not! This is when dynamic routing protocols
come into play.

Dynamic routing protocols allow properly configured routers to learn from each other
about available routing paths. Protocols, such as Routing Information Protocol version 1
(RIPv1), Open Shortest Path First (OSPF), RIPv2, Interior Gateway Routing Protocol
(IGRP), Enhanced Interior Gateway Routing Protocol (EIGRP), and so on, allow routers in a
large environment to learn on the fly about one another. This process can simplify the
configurations of what would be hundreds of static routing tables. This dynamic
environment has its own set of problems, however. From a performance standpoint, all
those updates travel around the network so that the routers can learn about each other.
From a security standpoint, how do we know that the update being sent to our router is
not from a nefarious outside party? Such updates could be sent in an effort to gain access
to information on our network or sabotage its infrastructure.

Cisco Shorthand

Some of the examples throughout this chapter take advantage of Cisco router
shorthand. On Cisco routers, you can use just enough letters of a command to
differentiate it from all other commands. As long as the abbreviated form of the
command cannot also represent another valid command, it will work.
Otherwise, you will get this message:

% Ambiguous command:

This message is then followed by the characters you typed in, framed in quotes.
An example of this is the popular command show configuration being entered
as sh conf. show is the only other command that begins with sh, and
configuration is the only appropriate command-line option to follow show that
begins with conf. If you tried to use the command sh con, you would receive
the ambiguous command message because con could represent configuration
or connection, which are both valid options.

The command copy run star actually represents copy running-config
startup-config. You save a lot of time in typing, and if you are a bad typist,

the less typing the better!

Secure Dynamic Routing

One important part of keeping an environment that uses routing safe is secure
implementation of dynamically updated routing protocols, such as RIP (versions 1 and 2),
OSPF, Border Gateway Protocol (BGP), IGRP, and EIGRP. Dynamic routing protocols are
often a necessary part of a complex internetworking environment. However, if they are
not configured correctly, dynamic routing protocols can be an easily exploited security
hole. Some routing protocols use numbering schemes that require some knowledge of the
specific details of your network's routing configuration to send acceptable routing updates.
However, these numbers are transmitted in the clear (without encryption), so they can be
sniffed. In addition, often the numbers chosen are guessed easily and might not provide
adequate protection. Unless the configuration steps listed in the upcoming sections are
taken, the use of these protocols might leave a gaping hole in what would be an otherwise
secure network environment.

Route Authentication

Some dynamic routing protocols offer advanced protection known as route authentication .
On a Cisco router, the process of route authentication involves the use of a secret
keyword that is configured into all routers that are to share their dynamic routing
information. This keyword, used in conjunction with the routing update information,
generates a Message Digest 5 (MD5) hash signature to be sent with dynamic route
updates. If this hash information is not included with the updates or is incorrect, contacted
routers will ignore the provided route information. Protocols that support routing
authentication include RIPv2, OSPF, EIGRP, and BGP. Two dynamic routing protocols of
note that don't support this feature are RIPv1 and IGRP. Cisco routers have a feature that
performs a simple check to help secure these two protocols. The validate-update-source

command (which is configured by default) checks the source address of incoming RIP and
IGRP updates to verify that they are from a neighboring device on the same network
segment as the interface on which the update was received. This feature helps prevent
false router updates from outside of the network.

You could install route authentication on an OSPF routed network by using the ip ospf
message-digest-key 10 md5 secretkey command.

You must enter this statement at the interface that will be propagating the routing
updates. (For a refresher on the Cisco IOS interface, check out Chapter 2, "Packet
Filtering.") 10 is the key ID, which is a number that represents the unique secret key that
you define, and secretkey is the actual key used to create the MD5 hashes that protect

your routing updates. The importance of the key ID value comes into play if you want to
change keys in an active environment. You can simply add the new secretkey value in a

similar statement with a different key ID number. The router identifies that it has a new
key and starts sending two routing updates: one with the new key value, and one with the
original key value. This behavior is designed to allow a window of opportunity for you, the
administrator, to change the keys on all other routers that share common routing
information. After all routers have been updated, remove the original statement so that
only the new key is used. After all, using two authentication updates simultaneously
requires twice the bandwidth, and you are only as secure as the lesser of your two
statements.

To activate the MD5 authentication, use the statement

area 0 authentication message-digest

This command is entered in global configuration mode. The 0 represents the OSPF area in

which you will be using MD5 route authentication. It might differ depending on how OSPF
is configured in your particular environment.

Implementation of router authentication varies slightly depending on the routing protocol,
so be sure to check proper documentation before implementing in non-OSPF
environments.

Other Dynamic Routing Defenses

Another way you can be sure to prevent tampering with your route tables is by blocking
updates from networks that are deemed unsafe. For example, if you had an extranet
connection to a customer, you might not want the customer's routers to have the ability to
change the configuration of your routers (accidentally or on purpose). You can configure
the interface that connects your router to the customer's to deny routing updates. Cisco
routers use the distribute-list command, which prevents the propagation, or the

acceptance of specified route updates through configured interfaces. For example, if you
want to prevent outside routers from being able to make changes in routing information
for a mission-critical network segment in your internal infrastructure, you can use
distribute-list 112 in e1.

Here, e1 is the interface that connects you to the outside routers, and 112 is an access

control list (ACL) that defines the network address range of the mission-critical segment.
The access list can define ranges of allowed or disallowed IP routing information
(depending on whether it is a permit or deny ACL). In a similar manner, a distribute-
list out command can be used to disallow the sending of route updates that include
information on how to route traffic to your top-secret lab. The syntax is distribute-list
113 out e1.

Again, e1 is the interface you want to prevent routing information from leaving, and 113 is

the access list number that defines the address range of the top-secret lab. Remember
that the access list always defines the address range of the segment for which you don't
want to accept or propagate routing information. It does not represent the addresses of
segments that you want to prevent from receiving or sending the information.

To keep important details of your network infrastructure private, it may be necessary to
prevent dynamic routing protocols from sharing internal route information with outsiders.
To accomplish this on a Cisco router, use the passive interface command to prevent the

router from broadcasting route updates out of the specified interface. Its syntax is as
follows:

passive interface e1

In this case, e1 is the interface through which you want to disallow the sending of

updates, while still accepting updates inbound. This command behaves in a slightly
different manner with the EIGRP and OSPF routing protocols, by disallowing both the
sending and receiving of routing information via the specified interface.

The Router as a Security Device

Because the router is traditionally the entranceway to a network, it plays an important part in network security. For this reason,
routers have been designed with many built-in security features, such as packet filters, stateful firewall features, Network Address
Translation (NAT), and Virtual Private Network (VPN) support. The question is whether a router is utilized as your only security device
or as a piece of a larger defense-in-depth security structure. In a perfect (secure) world, the answer would always be as a part of a
larger security structure, letting the router focus on its primary function, and allowing firewalls, intrusion detection systems (IDSs),
and so on handle the burden of the security concerns. In this section, we look at scenarios that use a router as part of defense in
depth and also as the primary security solution. We also explore the technologies that are often implemented when using a router as a
lone security device, such as NAT, context-based access control (CBAC), ACLs, and so on. In addition, we look at the technologies that
can be employed to make the router a complement to a greater security scheme.

The Router as a Part of Defense in Depth

In Chapter 12, "Fundamentals of Secure Perimeter Design," we go into detail on the logistics of placing a router as part of the defense-
in-depth structure and the functions it should perform. In this section, we predominately focus on the technologies to make a router
an effective part of defense in depth and ways to implement those technologies.

A router's role as part of defense in depth can vary depending on the related pieces of the overall security scheme. For example, it
would be foolish to implement a router with stateful inspection capabilities in conjunction with a stateful firewall. Typically, the rule of
thumb is to keep the router from doing any more than it has to, and let it focus on what it is good at.

Packet Filtering

As stated in Chapter 2, blocking access from ranges of addresses is something that routers do well. It makes sense to take advantage
of this strong suit when using the router as a role player in conjunction with a stateful firewall, by utilizing the router for ingress and
egress filtering.

It is logical to implement ingress filters at the furthermost point on your perimeter, which is most likely your border router. Having the
router perform this function offloads some of the burden from the firewall, allowing it to focus on the things for which it is better
suited, such as the stateful inspection of defined protocols. Egress filtering is also a good choice for a router that is working in
conjunction with other perimeter firewalls; blocking or allowing entire network ranges is something that packet filters are well suited
for. Due to the structuring of the TCP/IP packet and the means by which matches are made with the standard packet filter, blocking a
range of network addresses is simple bit matching that is difficult to circumvent on a router and that can be accomplished efficiently.
For this reason, any time whole ranges of network addresses need to be blocked or allowed, the router is an excellent candidate for a
point of implementation.

For more information on the best ways to implement egress and ingress filters and to utilize the packet-filtering features of a router,
refer to Chapter 2.

Network-Based Application Recognition (NBAR)

Recently, routers have begun to be utilized in another way as a part of defense in depth. Cisco's network-based application recognition
(NBAR) is a feature that was originally designed to help with Quality of Service (QoS) issues, with full functionality available in IOS
12.1(2)e or later. With the onset of bandwidth-devouring streaming-multimedia applications and applications that require high QoS,
such as Voice over IP (VoIP), a method had to be created to allocate bandwidth based on the applications being used. NBAR can be
used to allocate at least a certain amount of bandwidth to an activity or traffic type or to limit bandwidth for a given traffic type.

You might be wondering why QoS commands are being mentioned in a book about security. In today's world, security is more than
disallowing or allowing access to resources. It also includes the protection of service demands and available bandwidth. Because of the
increased threat of denial of service (DoS) attacks, protecting the bandwidth we have to offer our business or clients has become a
major point of concern. A business relying on e-commerce whose storefront is inaccessible due to inadequate bandwidth can face a
serious financial hardship. A lack of bandwidth equates to a DoS whether it is due to an outside malicious DoS attack or mismanaged
use of internal bandwidth. Using solutions such as NBAR can prevent this mismanagement, keeping a "governor" on high-bandwidth

activities that don't serve as an important resource for your business. For example, if your site relies on e-commerce to exist and you
share bandwidth between e-commerce applications and Internet access for employees, NBAR would prevent a DoS condition caused
from all your employees simultaneously tuning in to the latest Victoria's Secret streaming fashion show.

NBAR can recognize traffic based on HTTP informationincluding MIME types, URLs, and hostnames. It can also search on static and
dynamic port information. After the traffic is identified, it can be marked, and then a policy determining the amount of bandwidth
allowed can be applied. This policy can be used in many creative ways to control QoS and protect application bandwidth.

For example, in a business environment, you might want to limit the bandwidth for multimedia applications to a fraction of your total
Internet connection bandwidth so that they don't interfere with higher priority business applications. Using the following commands
limits the bandwidth for all defined multimedia applications to 12 kilobits per second (Kbps) total:

Tip

Cisco Express Forwarding must be enabled for NBAR to function.

router(config)#class-map match-any av
router(config-cmap)#match protocol http mime "audio/*"
router(config-cmap)#match protocol http mime "video/*"
router(config)#class-map match-any images
router(config-cmap)#match protocol http url "*.gif"
router(config-cmap)#match protocol http url "*.jpg|*.jpeg"

Here, av and images are the unique names for the class maps, and audio/* and video/* are the MIME types for which we want to
control QoS. With the images class map, we specifically limit the bandwidth for defined picture types as well.

Then, both of these class maps can be combined into one all-inclusive class map:

router(config)#class-map match-any mmedia
router(config-cmap)#match class-map av
router(config-cmap)#match class-map images

Notice the use of the match-any keyword. The keyword match-all (not shown) requires that all the listed criteria be met, whereas
match-any allows a match if any of the listed criteria is the same. Because we want to affect traffic that matches either of the listed
class maps, we must use match-any.

Now we will create a policy defining how much bandwidth our mmedia class map will be allowed:

router(config)#policy-map mybusiness
router(config-pmap)#class mmedia
router(config-pmap-c)#police 12000 conform transmit exceed drop

Here, mybusiness is a unique policy name that represents all class maps for which we want to control QoS on an interface. Other class
maps could be applied in this same policy map. We apply the class map mmedia, which we created previously, and then allow no more
than 12Kbps of our total bandwidth to it with the police command.

Note

As you may have guessed by the syntax of the police command, any multimedia traffic exceeding the 12K bandwidth

limitation is dropped . It is not queued in any way and will break multimedia communications.

Finally, we apply the policy to an interface using the following command:

router(config-if)#service-policy output mybusiness

Here, mybusiness is the policy name previously defined, and output is the correct direction on the interface to which we choose to

apply it.

NBAR has also become a method to prevent outside attacks from causing a DoS condition. With the advent of the Code Red and Nimda
and SQL Slammer worms, many sites that properly patched their servers still fell victim to the "noise" generated by other infected
locations. They had no means to protect their bandwidth from the repeated assaults from outside infectors. By placing NBAR as a
screening mechanism on border routers, you can effectively prevent just such a DoS condition.

The setup is similar to our previous example. We simply create another class map. This class map can be used to screen incoming
malicious traffic that has a known uniquely identifiable structure, or footprint .

Note

Don't allow yourself to be lulled into a false sense of security. NBAR screening for malicious traffic is a dynamic process. As
variants are discovered, the footprints used to screen content must be updated.

Our class map will include Cisco's suggested match information for Code Red, Nimda, and some current variants:

router(config)#class-map match-any web-attacks
router(config-cmap)#match protocol http url "*.ida*"
router(config-cmap)#match protocol http url "*cmd.exe*"
router(config-cmap)#match protocol http url "*root.exe*"
router(config-cmap)#match protocol http url "*readme.eml*"

This new class map can be added to an existing policy that is applied in the same direction on the same interfaces. If you don't have a
like policy, you can create a new one:

[View full width]
router(config)#Policy-map attacks
router(config-pmap)#class web-attacks
router(config-pmap-c)#police 10000 3000 3000 conform-action drop exceed-action drop
 violate-action drop

Notice that the policy map looks similar to the last example, with the exception of the police command. Because of the addition of the
violate-action keyword, we need to add burst speeds after the first bandwidth listing. However, the three numbers specified are

meaningless because all defined actions will drop the identified traffic. Cisco has documented this as a solution for bandwidth issues in
these situations (http://www.cisco.com/warp/public/63/nbar_acl_codered.shtml).

To handle a worm like SQL Slammer with an unusual protocol and no particular URL-match criteria to filter on, we need to use other
information to generate a "signature." First, a custom protocol needs to be created with the following command:

ip nbar port-map custom udp 1434

Then, the class map can be created to include this custom defined protocol and another unique piece of criteria, the packet length:

Class-map match-all slammer
Match protocol custom
Match packet length min 404 max 404

The packet length as part of the matching criteria is crucial, because it is what separates the Slammer traffic from possibly normal SQL
traffic on UDP port 1434. Notice in this class map we specify to "match all" because we only want to drop UDP 1434 packets with the
listed packet length. In the Nimda/Code Red example, payloads matching any of the criteria would have been dropped. Finally, this
class map would be assigned to a policy map like the one in the Nimda/Code Red example and the traffic would be dropped using a
like police statement.

Note

Realize that your border router will experience additional load from this NBAR screening process, and a seriously
overburdened router can also create a DoS condition.

Tip

For more information on mitigating the effects of worms using Cisco technologies, refer to
http://www.cisco.com/en/US/netsol/ns340/ns394/ns171/ns128/networking_solutions_white_paper09186a00801e120c.shtml.
Also, additional settings can be added to your router to limit the effect of DoS attacks. For an article on protecting against
various other DoS attacks on Cisco routers, see http://www.cisco.com/warp/public/707/newsflash.html.

No matter what security technology you take advantage of on your routerwhether it's simple access lists for filtering out undesired
packets, or NBAR to drop malicious Internet wormsyou will find the router to be an excellent role player in your network's defense in
depth. However, in some cases a router may need to supply the majority of the security features for the defense of a network
segment.

The Router as a Lone Perimeter Security Solution

In some environments, the router can be used as an effective perimeter security solution on its own. It can be used as a sole means of
defense for a remote or home office, for an internal segment of your network, or as a security solution for a low-risk facility where it
wouldn't be cost effective to add an additional firewall or other security device. No matter what the deployment, a properly configured
router can provide a good base for a perimeter defense. However, it is still important to apply defense-in-depth principles beyond the
router. Relying on any single perimeter device as your only source of security leaves you only one step from being compromised. An
outsider needs to find only a single flaw to have access to your entire network.

Router Placement

The placement of your router will help determine the technologies you should implement when securing your environment.

A border router that has to serve as an all-in-one security solution might have many duties to perform. Not only does it handle all the
routing between your network and the outside world, but it must also block incoming attacks to provide security. Depending on the
environment, this might be accomplished with ACLs or stateful CBAC support. (For more information on CBAC, look at the "Technology
Choices" section later in this chapter.) Because it is at the border of your network, it may support NAT or Port Address Translation
(PAT) to allow the use of a private addressing scheme internally. It may also be where VPN connections are decoded and information
passed on to internal hosts. One important thing to remember when a border router is your sole security solution is its visibility.
Because it is your gateway to the world, anyone on the Internet must be able to contact it for you to be able to communicate. In turn,
that means it is vulnerable. Many border routers are configured to securely protect internal hosts, and yet are open to attack
themselves. In the section on router hardening later in this chapter, we discuss means to defend the lone router from being exploited.

Routers can also be placed at internal subnetting points in your network. IP networks are subnetted for various reasons, including
performance and security. A router must be placed at the points where the subnetted segments join together to facilitate
communication. Depending on environmental circumstances, a router might be a good device for enforcing resource separation on the
network. For example, when subnetting off a research and development lab, you might want to consider preventing inbound access
from other internal subnets, while allowing outbound access from the lab to the rest of the network and Internet. Again, this can be
accomplished with ACLs or CBAC, depending on the segment's security level. If the internal network is based entirely on a private
addressing scheme, it is unlikely that NAT would be implemented on a router joining such subnets.

No matter the placement, several security technologies can be used to secure the network. In the following section, we will discuss
these technologies.

Technology Choices

With the advancement of technology, routers are becoming more feature rich. Many options are available when implementing a router
as a security solution, whether it is as part of an entire defense scheme or as a standalone device. All the technologies in the following
list are discussed in depth in this section and can be used in either case, but they are often implemented as a lone solution:

NAT/PAT

CBAC

Packet filtering and ACLs

NAT has long been a means to help solve the public IP address range shortage and help secure a network and its privacy. NAT allows
the assignment of a public IP address on the "outside" of a device to a corresponding private IP address on the "inside." This way, the
internal network addressing remains hidden from outside parties. As communication ensues, the NAT device is responsible for
translating the traffic between the public outside and private inside addressing. Only the NAT device knows the internal addresses to
which the outside public addresses relate. These translations can be statically assigned (to allow bidirectional communication) or
dynamically assigned. When dynamic assignment is used, a pool of available public addresses needs to be created. This outside pool
does not necessarily have to match one-to-one with the number of inside addresses, allowing many privately addressed stations to
share a smaller group of public addresses. However, no more stations can make external connections at one time than there are
available public addresses in the pool. When all available public addresses from this outside pool are in use, the next internal station
attempting an outside connection will be unable to do so, unless a variation of NAT, called overloading or PAT, is also implemented.

Note

In the context of this section, we use the term NAT to define standard NAT using address-only translation. We use the term
PAT to define NAT translation using port overloading.

The greatest conservation of addresses can be accomplished by using overloading or PAT (also called NAPT , or single address NAT).
PAT maps multiple internal addresses to one external public address by tracking the communication sessions by the port number in
use. As an example, an internal station at IP address 192.168.1.5 contacts an outside web server. It generates an ephemeral port of
1035 and sends the request to its gateway router, which happens to be a PAT device. The router translates the requesting station's
address into the defined public IP address and assigns a new port number (1111 in this instance). This is accomplished by actually
rewriting the packet's header information with the new IP address and port number information. It then enters this information as well
as the station's original IP address information and the information of the server it is contacting into a table, like this:

 Source IP/port - Translated IP/port - Contacted IP/port
192.168.1.5.1035 - 200.200.200.2.1111 - 225.225.225.1.80

Depending on the implementation, the PAT device may attempt to assign the same source port number on the outside that is being
used by the station on the inside. However, if another connection is already using the port number, the PAT device might reassign a
new port number in approximately the same port range, as in our previous example. Also, many implementations of PAT use a range
of high port numbers (often 50,000 or more) that is assigned for the source port. When you're monitoring traffic, seeing ephemeral
ports in this range is often a sign that a PAT device has translated the traffic.

When the traffic returns, the PAT device can refer to the NAT table and translate the response for IP 200.200.200.2 port 1111 back to
IP address 192.168.1.5 port 1035. Subsequent connections from inside stations would be translated to other ports on the same
200.200.200.2 address. This way, thousands of sessions can successfully take place with only one public IP address, and each will be
able to be differentiated from the other. PAT does not have to be limited to a single IP address. Some implementations of PAT will
allow multiple IP addresses to be translated.

On a Cisco router, a NAT configuration can be implemented as follows:

Apply the command router(config-if)#ip nat outside on the external interface. This command sets this interface as the

outside NAT interface.

1.

Apply the command router(config-if)#ip nat inside to the internal router interface. For translation reasons, this command

tells NAT that this is the inside interface.

2.

Configure a pool of addresses for NAT to use with the following statement:

ip nat pool natpool 200.200.200.2 200.200.200.10 netmask 255.255.255.240

This statement defines a public address pool named natpool with the IP addresses 200.200.200.2200.200.200.10.

3.

Follow this with an access list to specify all internal addresses to be assigned public IP addresses from the NAT pool, as follows:

access-list 1 permit ip 10.0.0.0 0.255.255.255

If you are using this device for a VPN as well, additional access lists will need to be created to allow the VPN traffic to bypass NAT.
(For more information on VPN implementations on Cisco hardware, refer to Chapter 7, "Virtual Private Networks.")

4.

Execute the following command in global configuration mode (this command is the bread and butter of the NAT implementation on
a Cisco router):

ip nat inside source list 1 pool natpool

It starts by assigning 1 to the access list as the addresses to be translated. Next, it defines the pool of public addresses to
dynamically be assigned. This is a standard configuration for dynamic NAT, with a pool of addresses to be assigned.

For PAT, the command would be changed as follows:

ip nat inside source list 1 interface Ethernet0 overload

First, the definition of a pool of addresses is not needed because only one IP address will be used externally, although the
definition of a pool would be allowable. The keyword overload is added to the end of the NAT statement, signifying that multiple

outgoing connections can overload or share one external IP address. Notice that the following command doesn't use a pool name.
Instead, the interface keyword assigns the external address followed by the listing of the external interface's name. This way,

PAT and the router's external interface can share one public IP address. This statement would be entered in global configuration
mode.

5.

The entering of these commands can make almost any Cisco router into a NAT or PAT device. To view the NAT or PAT translation table
at any point, use the command router#sh ip nat trans.

Although NAT can be considered a privacy method, it offers limited inherent security after a connection is established from the inside.
After an inside IP address is added to the NAT table, the address it was contacting can be accessed from the outside until the mapping
is dynamically cleared. Some NAT implementations have no reference to port information in their NAT table, which leaves the inside
station open to activity from the contacted outside host (or from spoofed traffic) on protocols other than the one which it had
contacted. For example, if your internal web server contacted an outside DNS server for DNS information, and the DNS server tried to
initiate communication to your web server before the original NAT table entry expired, it would be allowed access to any services your

web server offers. This makes a good case for the addition of ACLs or CBAC as a complement to properly secure NAT traffic. PAT offers
more security because it also tracks the port numbers used for each connection and logs them in its translation table. As long as the
source port that your internal station is using is a dynamically generated ephemeral port on which no services are hosted, your
configuration should be rather safe. However, if an attacker has the ability to detect your IP address, most likely he also will be able to
detect the source and destination ports you are using. This means that if the translation table still holds the address/port combination
in question, properly crafted traffic could pass. This assumes that the inside station is still listening on the port it was contacting when
the table entry was created.

Another security issue with NAT is the lack of inherent outbound filtering. Any inside hosts can get out, which leaves an opening for
Trojan software. The lack of granularity in the translation tables allows a greater likelihood of the occurrence of session hijacking or
the infiltration of the network through an existing address translation. However, when used in conjunction with other technologies,
such as static packet filtering, dynamic packet filtering, and even stateful inspection methods, NAT and PAT can provide an excellent
privacy and security combination.

CBAC is a full-featured method of stateful inspection for Cisco routers. CBAC is available in the Cisco Secure Firewall Feature Set.
(Some functionality was introduced in IOS version 11.2p, but many useful features have been added up to version 12.05t.) CBAC
supports most popular protocols and keeps full track of the state of connections, dynamically creating access lists to allow return
traffic from outside sources. The implementation of CBAC involves creating inspect statements that monitor the defined protocols.
Following is an example of an inspect statement:

ip inspect name firewall http timeout 3600

Here, firewall represents the name of the inspection set we will be applying to our interface. http is a keyword that defines the
protocol we are inspecting with this command, and the timeout option (which is not required) tells how long the dynamically
generated access lists should exist after creation. This same formatting is applied to additional inspect statements for other protocols
that you want to allow to exit your internal network. The set named firewall must be applied outbound on the external router
interface with a command such as ip inspect firewall out. This command must be applied in interface configuration mode.

Because CBAC uses stateful inspection, not only does it make sure that ACLs are dynamically generated to allow return traffic, but it
also verifies that the traffic being inspected is indeed what it claims to be at the application level. This prevents the use of well-known
ports to facilitate possibly malicious activities (for example, using port 80 for Telnetting to a host instead of HTTP) and helps prevent
session hijacking. For more information on stateful inspection and stateful filtering, see Chapter 3, "Stateful Firewalls."

Despite the fact that CBAC adds an extra layer of intelligence to the inspection of inbound and outbound traffic, it is not a security
panacea. It is still wise to use ingress and egress filters in conjunction with CBAC. Despite CBAC's ability to inspect traffic, it will not
provide NBAR-type screening of malicious content. Although CBAC provides stateful inspection-level protection for communications
channels, it is still only one segment of a total defense-in-depth deployment. In addition, CBAC uses more resources and is slower,
comparatively, than the other technology choices. Despite the fact that CBAC might be the most secure method to protect traffic with a
router, it might not be the best selection in all scenarios.

Another way to secure a router is through ACLs that use static and dynamic packet filtering. This is what the router does best, and it is
a complement to any security configuration. An ACL can also be a facilitator. Often, when other default security solutions don't allow a
type of access, a static packet filter is created as an easy means to allow traffic in or out. This is often the way that a secure
configuration can suddenly jump to insecure. ACLs are a powerful tool that must be carefully configured to prevent security holes. For
more information on packet filtering with a router, see Chapter 2. For full sample listings of ACLs, see Appendix A, "Cisco Access List
Sample Configurations."

Regardless of which security technologies you choose for your router, it is important to remember that they all have their strengths
and weaknesses, and no method is impenetrable. Also, each of these technologies can benefit from defense-in-depth methodology,
even in the simplest of networks. Keep these points in mind when designing your network's security structure, and remember that
even the most secure interior configuration can still leave the perimeter router at a point of vulnerability.

Router Hardening

Having the device that provides all your network's security on the edge of the perimeter is like having an
army's general placed ahead of his troops. The piece that is vital to your success or failure is in the most
vulnerable position. When it comes to perimeter protection, we can use defense in depth to help, but in some
environments, we might not have much support for our "general." This is why router hardening is so important
to your network's security. In effect, it's like placing your general in a tank. Its focus is on protecting the
protection device. This protection involves disabling all unneeded services and servers, blocking all
unnecessary traffic types, locking down any methods we use to configure our security device, posting warning
banners, and closely monitoring the device and the traffic that passes through it.

Operating System

Protecting a router isn't that much different from protecting a computer. (Hardening procedures applicable to
hosts are described in Chapter 9, "Host Hardening.") One major concern that is often overlooked involves
patches for the operating system. The operating system for Cisco routers is called the IOS. Keeping tabs on IOS
updates and security flaws is imperative in defending your router from attack. Cisco's website posts security
issues as they are discovered, and it is a good practice to check such sites regularly. For a list of Cisco security
advisories, go to http://www.cisco.com/en/US/products/products_security_advisories_listing.html.

It is also wise to subscribe to an email/list such as @RISK: The Consensus Security Alert, which automatically
sends multiplatform security advisory information to you as it becomes available. To subscribe, go to
http://www.sans.org/newsletters.

Cisco also has a security mailing list at cust-security-announce@cisco.com.

Registration information is available at
http://www.cisco.com/en/US/products/products_security_vulnerability_policy.html.

Locking Down Administration Points

One of the most important parts of securing a perimeter security device is locking down the ways it can be
configured. Otherwise, it is like locking a door and leaving the key in the lock. Over the next few sections, we
will discuss popular administration methods and some ways to secure them from outside attack.

Telnet

Telnet is probably the most popular way to remotely configure a router. Following are the two greatest concerns
of Telnet:

Properly securing the Telnet server from outside access to prevent remote nefarious users from
reconfiguring your router.

Realizing that all information, including logins and passwords, are sent in clear text. This means that a
sniffer could assist in gaining access to your router configuration.

The Telnet server on board every Cisco router can be protected through username and password authentication.
However, protection by authentication might be insufficient for securing of something as vital as a perimeter
security device. For this reason, it is advisable to apply access lists that limit where Telnet sessions can
originate. Following is an example of an ACL that allows an administrative station at IP address 192.168.1.1 to
have Telnet access:

access-list 11 permit 192.168.1.1

This access list is applied to the virtual terminal lines (VTY) using the access-class command, which works
similarly to the access-group command that applies ACLs to router interfaces. (For more information on ACLs
or the access-group command, see Chapter 2.) This access list would be applied as follows:

To get into line configuration mode, enter normal configuration mode and type router(config)#line 1 3,

where 1 through 3 is the range of VTY lines to which you want to apply the access list in question.

1.

Enter the access-class command router(config-line)#access-class 11 in. One administrator's trick

is to apply an ACL to the first several VTY lines (for example, 1 through 3) that allow access for the IP
addresses of all administrators. Then, apply an ACL to the last VTY line, including only the IP address of the
senior administrator's station. This way, the administrator can always get Telnet access, regardless of
whoever else is connected. Not only do these access lists verify that you'll always have a free VTY session,
but they also protect you from malicious outside users (and inside users for that matter).

2.

Make sure that Telnet is the only input type your router will accept by using router(config-
line)#transport input telnet. This command disables all other protocols from being used to access the

VTY lines. (This is important to prevent access from alternate protocols such as rlogin.)

3.

If you want to ensure that Telnet access is completely disabled at the router level, you can add the login
keyword to the VTY line configuration of your router and then add the no password command. This disables

Telnet usage because a password is required for access.

4.

Though this causes a great headache for many an administrator, it is wise to enable timeouts for sessions
with the exec-timeout command. Simply add it followed by the time, in minutes, you want an inactive

session to remain open before you are disconnected.

5.

The fact that Telnet transfers information in clear text can only be corrected by using an alternative
configuration method such as Secure Shell (SSH), which utilizes encryption, or by adding IPSec support to run
your Telnet sessions through encrypted ESP tunnels.

Telnet Trick

Sometimes you might want to separate VTY sessions on a Cisco router, such as when using lock
and key access lists or other instances when you need to set different criteria for various VTY
Telnet sessions. You might want to have certain settings for VTY lines 13 and others for 45. How do
you then log in to line 4 or 5? Using the default Telnet port (23) connects you to the first available
VTY. If that doesn't happen to be line 4 or 5, the alternatively defined criteria will not apply.
access-class statements will not correct this problem. If your connection fails to one VTY line,

you are simply denied access, not rolled on to the next line to see if its ACL will allow you.

I searched for a way to change this behavior, but to no avail. Then as I was perusing a firewall
mailing list archive one day, I found a workaround. A gentleman sent in the advice that you can
use the rotary # command to allow VTY Telnet access via an alternate port. This port is the number

listed after the rotary command, added onto 3,000, 5,000, and 7,000. The result is that if you
configure the option rotary 13 on your last VTY line with alternate criteria, you can initiate a

Telnet connection to ports 3013, 5013, or 7013. You will also access the alternate criteria instead
of what is configured for the other VTY lines. This can be great in situations where you have to
execute an autocommand, such as with lock and key ACLs. Personally, I don't like having all those
ports available, so I lock down the line with an ACL such as access-list 117 permit tcp host
my IP any eq 3013 and apply it with an access-class 117 on the VTY line in question. Not only

does this verify that no one else will gain access, but it ensures that I can only access port 3013.
(Of course, this port is based on the rotary number used.) Use this tip at your own riskit is not the
way the command was intended to be used, but it works!

SSH

SSH is a secure alternative to Telnet. Instead of passing login information in clear text, SSH uses encryption to
protect login names and passwords while authenticating. Since version 12.1 of IOS (only those versions that
support encryption), SSH version 1 only is supported in most of the Cisco router platforms. If you remotely
manage your routers, you are in a high-risk environment, and you have concerns about the security of your
authentication information, consider using SSH as your Telnet replacement. To configure SSH server
capabilities on your router, do the following:

Enter the commands hostname host and ip domain name domain , where host specifies the unique
hostname of the device and domain is the domain that the device resides in.

The host and domain name information must be entered before attempting to configure SSH. This
information is required to enable key generation.

1.

Our next goal is to create our RSA key with the statement crypto key generate rsa. This statement

actually generates an RSA key and activates SSH. You can view generated RSA keys using the command
show crypto key mypubkey rsa. You can verify that SSH is active by entering sh ip ssh.

Tip

Enter the crypto key generate rsa command at the global configuration command prompt. It is

not part of your configuration file; therefore, it cannot be entered by editing and reloading the
current configuration file.

2.

We can set SSH options with the following commands:

ip ssh time-out 50
ip ssh authentication-retries 4

If these options are not entered, the defaults for each are assumed.

3.

Use the login local command to enable local authentication or use Authentication, Authorization, and

Accounting (AAA) commands if authenticating through Remote Authentication Dial-In User Service
(RADIUS) or Terminal Access Controller Access Control System (TACACS) servers.

4.

Of course, we also have to include the command username name password pass , where name is the
username for authentication and pass is the password of choice.

5.

The transport input ssh command can be entered for the VTY lines in question. It disables Telnet remote

configuration, allowing SSH to be the only connection method. (Multiple items can be listed for more than
one input type.)

6.

The exec-timeout x command can be applied to verify that inactive sessions will be disconnected after x

minutes of no activity.

7.

The Cisco router (IOS version 12.1[3]t and up) also includes an SSH client implementation so that other SSH-
capable devices can be contacted from the router's console prompt. The command to start such a session is ssh
l user 10.0.0.1, where user is the user ID you will use to connect, and 10.0.0.1 represents the SSH server
device to which you are connecting. Additionally, the p option allows the use of an alternate port number, and
the c option allows the preferred encryption strength to be specifiedeither Data Encryption Standard (DES),

3DES, or AES with 128-, 192-, or 256-bit key strength (for SSHv2 only).

The Console Port

Don't let the fact that the console port of your router is local lull you into a false sense of security. Even in

facilities with high physical security, individuals may still be able to gain local access to your router. For this
reason, all the same authentication precautions mentioned for the VTY lines using Telnet or SSH should be
applied to the console port. Either add a local password with the password command, set it for local user login
using the login local command, or set it for remote authentication using the login tacacs command. Finally,
because the console port has a local transport, the exec-timeout statement is more important than ever. If you

are configuring your router via the console port and don't properly exit before disconnecting your console cable
and walking away, your session will remain active if no exec-timeout is set! When the next person plugs in to

the port weeks, months, or years later (assuming there haven't been any reboots), the router will still be in
whatever mode it was left in, most likely enable mode if you were in the configuration process! With exec-
timeout set, reauthentication will be forced after x minutes.

TFTP and FTP

TFTP is a dangerous protocol. It has the file transfer power of FTP, but with zero security. No login or
authentication is neededjust point and transfer. You can imagine that if TFTP were running on any systems on
your network, you wouldn't want anyone to have outside access to it. TFTP can be run as a server on some
versions of Cisco routers, although it should be disabled by default. (For more information on disabling the TFTP
server on Cisco devices, see the "Disabling Servers" section later in this chapter.) TFTP can also be run as a
client on all Cisco routers, enabling transfer of configuration files, IOS upgrades, and so on.

Many experienced administrators use TFTP as their administration method of choice instead of Telnet or other
command-line type utilities. This brings up the greatest TFTP security concern, which is not the router, but the
TFTP server where configuration files are held. A place must exist for administrators to upload and download the
configuration files they edit, and these locations are a major point of concern. Many administrators use their
personal station or an administration station for this purpose and only run the TFTP server while in the process
of updating configurations. This is the preferred method.

Having a TFTP server running all the time with former or current configuration files and IOS updates on it is an
outside attacker's dream. Those configuration files can be used as a map of your entire security structure. For
this reason alone, it is imperative to block TFTP traffic coming in from the Internet. An access list to block
traffic destined for a TFTP server using standard UDP port 69 would look something like this:

router(config)#access-list 110 deny udp any any eq 69

Of course, this wouldn't be necessary in an environment that only allows necessary traffic.

Since IOS version 12, FTP has also become available to transfer IOS and configuration information. Thankfully,
FTP servers have the authentication controls that a TFTP server lacks. However, if you have administrative FTP
servers running on your network, it is still advisable that you verify whether inbound FTP traffic is being
blocked. Also, keep in mind that all FTP information travels in the clear, so it has the same "eavesdropping"
issues that Telnet suffers from. If your router's IOS version supports encryption, it would be possible to protect
your FTP sessions from eavesdropping with IPSec.

Configuration Management Tricks with TFTP and Scripts

Anyone who has configured a Cisco router via Telnet or another command-line interface has wondered, "Isn't
there a better way?" Because the ordering of rules is so important to their effectiveness, reconfiguration of a
long ACL via the command line is a chore of Herculean proportions. In addition, the retyping of key information
for VPNs or other features that require encryption demands the utmost in accuracy. This is why many long-time
Cisco administrators transfer config files to their station and use an editor to make router changes. Use the
command copy run tftp and supply the details about where the TFTP server can be located. This will copy the

running configuration from the Cisco device in question to your TFTP server. Then you can edit the document
with an editor that handles formatting, such as WordPad in a Windows environment. (Other text editors might
not be able to process the formatting, and the file will appear jumbled.) With Find and Replace, a changed IP
address can be propagated throughout a complicated configuration with ease. Cut and Paste can allow the swift
addition of ACL lines wherever you want them. When the process is complete, copy the saved file back to the
router with the copy tftp run or copy tftp star command. If the update needs to be done without a reboot,
you will need to copy to run. However, when you copy to the running configuration, commands are appended

rather than overwritten, which can be messy. A better way, in environments that can afford a few minutes down
time, is to copy the config to star (or the startup configuration) and then do a reload to reboot. Upon reload, the
changed configuration will be loaded as typed. Watch for typing errors; with this method, you lose the error
checking of the IOS until it's too late!

In environments where a reboot cannot be afforded, administrators can make scripts from copied configurations
that can be pasted into the command-line interface. This way, the same speed can be afforded with Find and
Replace, but without any service interruption.

Simple Network Management Protocol

Simple Network Management Protocol (SNMP) is a popular way to manage network devices (including routers),
especially in large, cumbersome, complex, or geographically dispersed networks. Many different management
products and systems use it. However, allowing Internet access to SNMP, despite the fact that it provides an
easy way for a distant administrator to help manage the network, still opens a potential security hole that
outside malicious users can exploit. If an attacker can figure out your SNMP security scheme, or if the scheme
isn't properly secured, the attacker could be the person managing your network. Because we strive to avoid
this, it is highly advisable that you simply block all SNMP traffic at the entrance to the network. SNMP devices
may use several ports, but most typically operate on UDP ports 161 and 162. An access list to explicitly block
such traffic would look like this:

router(config)#access-list 113 deny udp any any eq 161
router(config)#access-list 113 deny udp any any eq 162

Other SNMP-related ports that may need to be blocked in some environments are TCP ports 161, 162, 199, 391,
705, and 1993, and UDP ports 199, 391, and 1993. Of course, you would only use this access list if it were part
of an existing access list that permits traffic by default. In other configurations, SNMP traffic would be most
likely be blocked by an implicit deny.

The most effective way to mitigate SNMP-related risks is to disable SNMP in environments where it is not
required. You can accomplish this by applying the following command in the configuration mode:

router(config)#no snmp-server

Note

In February 2002, vulnerabilities were discovered that left many vendors' SNMP implementations open
to exploit (http://www.cert.org/advisories/CA-2002-03.html). It is imperative that your product is
patched to the level required to fix these vulnerabilities, or that a workaround is implemented to
prevent external access to the SNMP ports of your hosts and devices.

In Chapter 19, "Maintaining a Security Perimeter," we describe the benefits of using SNMP for monitoring the
network devices on the internal network. If you want to take advantage of SNMP capabilities built in to Cisco
routers, here are some suggestions on best practices for securing SNMP. If your environment allows it,
implement at least SNMP version 3, which supports encryption and cryptographic authentication and is
significantly more secure than its predecessors. (SNMP versions 1 and 2c, which are also supported by Cisco
IOS, are limited to using community strings for authentication, and they transmit data in clear text.) If you
cannot use version 3, consider implementing IPSec encryption to protect the clear-text SNMP traffic if it
absolutely must travel across the Internet. When you need to resort to using plain community strings, by all
means, carefully pick community string names. Don't use the universal choices of "public" and "private." The
Cisco command for setting up a complex community name for SNMP version 1 reads as follows for read-only
(RO) access:

router(config)#snmp-server community complex name RO

Substituting RO with RW (read-write) allows read-write access to the said community. It is in your best security

interest to disallow read-write access from the outside network if possible. An IP access list number can be
included to restrict access to certain stations by adding the number of a standard ACL to the end of the snmp-
server community command, as follows:

snmp-server community complex name RW ACL #

The standard ACL represented by the listed number includes the IP address range of stations that are allowed to
access the agent.

Note

This is an SNMPv1 command. Do not use this command in an SNMPv3 environment; otherwise, the
router will think you are using SNMPv1 and disable the advantages associated with SNMPv3. For
information about configuring SNMPv3 on Cisco devices, take a look at
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/_120t3/snmp3.htm.

Authentication and Passwords

When discussing the security of a managed device, it's imperative to mention authentication and passwording.
In the Cisco router, each service has its own configuration options for the authentication method of choice (as
mentioned in their individual sections). However, these options basically boil down to two types: remote and
local authentication. Remote authentication is the preferred method, and it relies on an external RADIUS or
TACACS+ server. Both RADIUS and TACACS+ are remote server methods of verifying a user's name and
password credentials. To set this up for TACACS+, use the following commands.

To enable AAA from config mode, use the command

aaa new-model

Until this is typed in, no other aaa commands will be available. Then follow with this command:

aaa authentication login default group tacacs+ local

Here, default is the name of the AAA list (you can substitute a unique name here). Also, group tacacs+ tells
the router to authenticate with any servers defined in the tacacs+ group, and local indicates to use the local

login as a backup if the remote server should fail.

Tip

Always have a backup for your AAA authentication command, especially when you're first configuring
remote authentication! It is a good practice to leave an open session to the router while configuring
and testing AAA commands. Also, do not save the configuration until it has been tested. This way, you
can always recover by rebooting. Otherwise, you may find yourself completely locked out of your
router!

Then go to the line you want to configure remote authentication for (con, aux, vty, and so on) and type the
following:

login authentication default

This will force the line in question to use the authentication methods defined in the AAA authentication list
default.

Finally, to specify your TACACS+ server, use these commands:

tacacs-server host 10.0.0.1

tacacs-server key THISISMYKEY

Here, 10.0.0.1 is the IP address of your TACACS+ server and THISISMYKEY is the unique key name you are

using for authentication with your TACACS+ servers. This will be the default key used for any TACACS+ server.
For unique server keys, append the key keyword to the tacacs-server host command, followed by the unique

key value.

The advantage of remote authentication is not having all of your "eggs in one basket." If you use local
authentication, your login and password information is accessible directly in the router. Moving this information
to a remote location adds to its security. Also, when you are administering a lot of devices and dozens of users,
setting up all your users on new devices is as easy as configuring them for RADIUS or TACACS. Also, because
all the user and password information is securely held on a remote server, the security complications of having
to transport and type in local users is eliminated. One negative point of remote authentication is that if your
remote authentication source is down and you have no other authentication options available, you could be
kept from logging in. However, remote authentication options can allow for many types of backups for just such
circumstances, including the ability to use local or no authentication.

When a business decision is made not to implement a remote authentication server, the next best option is
local authentication. As mentioned previously, this is accomplished by adding the login local command to the
line you want to control access to. To configure a username and password, use the username command

mentioned previously in the section on SSH. It is important to use best practices to select a username and
password for configuration purposes. If you do remote configuration by Telnet or SSH, a good username and
password might be all that stands between your network and an attacker.

For extra protection, passwords can be set to appear as an encrypted string when listing configuration
information on the router. This is accomplished with the command service password encryption. This

command is simply a means to help sanitize configurations, preventing accidental exposure of passwords to
"shoulder surfers." However, the encryption method employed is weak and will not protect the passwords from
serious cryptographic analysis. Don't let this encryption give you a false sense of security and start leaving
configuration files lying about!

Disabling Servers

Several servers can be run on most Cisco routers, and as with a PC, any running server is a point of
vulnerability. Therefore, all unneeded servers should be disabled. Depending on the IOS version, these servers
might be disabled by default; however, it never hurts to double-check. We already discussed the Telnet server
and ways to defend it. Following are a few of the more common server programs and the commands to disable
them:

The Bootp server is a forerunner of DHCP that can be configured to hand out necessary IP information to
configured clients. Bootp can be disabled with the command no ip bootp server.

The TFTP server on supported routers is disabled with no tftp-server device-name . Here, device-name is

the device that is configured to receive files.

The HTTP server offers alternative means to manage the router via a web browser. This can be a major
security concern because web traffic is much more likely to be allowed into an environment than Telnet
traffic is. You can disable HTTP by using the command no ip http server.

If the HTTP server must be used for management, authentication can be enabled (much like the login local
feature of Telnet) with the command ip http authentication local.

For additional security, ACLs can be applied to allow only specified addresses access to the HTTP server
with the command ip http access-class ACL # , where ACL # refers to the standard access list that

defines stations that can gain access.

You can change the HTTP server's port address with the command ip http port port# , where port# is the

port used for HTTP access, numbered 065535. Picking an unusual port number helps promote "security
through obscurity," making your Cisco router's web server harder to find.

Disable Unneeded Services

One key to securing any type of device is removing any services that are not needed. These services might not
serve as a direct threat, but when you're maximizing security, any window that isn't needed should be boarded
up. In this section, we will take a look at some services that are not used in some environments and that can
be known troublemakers.

Small Services

Small services (ports below 20 TCP and UDP) and the Time service (TCP and UDP port 37) are seldom used and
are more of a liability than a value to you. The small services can be disabled with the following commands:

router(config)#no service tcp-small-servers
router(config)#no service udp-small-servers

By typing these commands at the config prompt and saving the configuration, you will disallow small services

on the router. (These services are disabled by default on IOS version 12.0 and later.) Access to these services
should be blocked at your perimeter. In an environment where inbound access is allowed until explicitly denied,
access to these services running on internal systems can be blocked using an ACL as follows:

router(config)#access-list 101 deny tcp any any lt 20
router(config)#access-list 101 deny udp any any lt 20

The Time service should also be blocked. Any time-related services should be handled by NTP (see "Configure
NTP and NTP Authentication," later in this chapter). The rule of thumb in security is to block any service ports
you know you don't need. It doesn't matter whether this is regarding an unpopular service, such as Time, or
one as popular as FTP. If your security policy states that a service isn't used on your network, block it. In an
environment where you only block traffic that you don't want, the Time service can be filtered with two
extended access lists:

router(config)#access-list 101 deny tcp any any eq 37
router(config)#access-list 101 deny udp any any eq 37

The following line is used to apply the access lists to the interface:

router (config-if)#ip access-group 101 in

This is applied with the rest of the deny statements on the external router interface to the Internet.

Cisco Discovery Protocol

Another popular protocol specific to Cisco routers is the Cisco Discovery Protocol (CDP), which enables Cisco
routers to discover specific details about each other. CDP can be a major security concern because detailed
configuration information is propagated throughout the network. If you don't have a specific need for CDP,
disable it. The command to do so by interface is router(config-if)#no cdp enable. To completely disable
CDP, use router(config)#no cdp run.

Finger

Finger is a service that allows users to query a network device to discover information about other users by
their email address or about currently logged-on users. Depending on the variation of Finger server, you might
find out only if the user is currently logged on, or you might find more personal information, including the last
time the user retrieved his mail, his telephone number, full name, address, and so on. Cisco routers specifically
can give information about users who are logged in currently to the router via services such as Telnet. Most
ISPs now disable Finger services for privacy reasons; we want to give out as little information as possible to
prevent possible attacks. It is in your users' best interest to block the Finger service at the furthest contact
point from your private network, most likely your border router. To disable the Finger server built in to the
Cisco router, use the following command:

router(config)#no service finger

An access list to specifically block the Finger service would look like this:

access-list 122 deny tcp any any eq 79

It is unlikely that this access list would be used, however, because most environments only allow traffic they
want.

PAD Service

The PAD service is used for Packet Assembler/Disassembler commands, which are used for connections
between servers accessing the services and devices using PAD. If your Cisco configuration does not require this
service, use the command no service pad.

Proxy-ARP

Cisco routers have the ability to respond to ARP requests on behalf of hosts that are shielded behind them. This
proxy-ARP feature can allow hosts on routed subnets to communicate as if they are on one large, flat network.
However, in a properly configured routed environment, this feature is not needed. Also, spoofing and denial of
service attacks can be facilitated with proxy-ARP enabled. Therefore, it is a commonly accepted best practice to
disable proxy-ARP. This is accomplished on all router interfaces by typing no ip proxy-arp.

Configure NTP and NTP Authentication

Network Time Protocol (NTP) is used to synchronize time sources on a network. You should disable access to
NTP services through any interface that does not require them. Cisco includes a simple command to disable NTP
on any router interface:

router(config-if)# ntp disable

NTP is disabled on all interfaces of Cisco routers by default. However, NTP is important from a security
perspective, because it can be useful for synchronizing time sources when comparing log files from various
devices and for tracking time-sensitive update information. To prevent update information from unwanted
sources, authentication can be enabled that requires all updates to be "signed" with an MD5 hash. If you are
using a local NTP source, verify that it is properly "hardened" and that you have these authentication
mechanisms enabled. Also, if you use a remote NTP time source, be sure it is a known public source and audit
that it is answering NTP requests from your hosts on a regular basis.

Note

For an updated list of publicly available time servers, check out
http://ntp.isc.org/bin/view/Servers/WebHome.

Often, public time servers ask that you use a DNS name to reach them instead of an IP address, because they
want the flexibility to change the IP address of the server they are using for this service. However, many
routers and switches can only support an IP address. For this reason, it is a good practice to set up a local NTP
server to query the public source by DNS name and then configure routers and switches to synchronize with it.
Here's the command to configure a Cisco router to query an NTP time server:

ntp server 10.0.0.1 key key#

In this example, 10.0.0.1 would be the address of the time server. If authentication is used, the key option is

specified, followed by the number of the key being used. Multiple commands can be listed for redundancy, in
case one time server is down. To choose a preferred time server, add the prefer keyword to the end of the
corresponding NTP server statement. You can also append the version keyword, followed by the version of NTP
you are using (13) and the source keyword followed by the name of the interface you want to be the source of

the NTP request.

If you want to use authentication for NTP on a Cisco router, use the following command:

ntp authenticate

This command enables the ability to use authentication with NTP. Then, type in this next command:

ntp authentication-key 1 md5 thisismytestkey

Here, 1 is the key number, md5 is the hash algorithm being used, and thisismytestkey is the value used to

generate the MD5 hash.

Finally, use the following command to let the router know that the previously defined key (identified as 1) is a
trusted key and should be used for future NTP transactions.

ntp trusted-key 1

As a final means to protect your Cisco router's NTP services, you can apply an access list to it of all its peers
(servers it is allowed to communicate with):

ntp access-group serve-only 1

Here, 1 is the standard access list defining allowed NTP communications partners and serve-only specifically
states that this ACL will only allow server access to the router's NTP service. You can also specify peer, query-
only, and serve for other combinations of allowed NTP access.

Cisco TCP Keepalives Services

The Cisco TCP Keepalives services ensure that connections are properly cleared when they are idle and
improperly terminated. These services guarantee that connections cannot be used by nefarious users for
diabolical purposes. To enable these services, add the statements service tcp-keepalives-in and service
tcp-keepalives-out to your global router configuration.

Unicast Reverse Path Forwarding

Unicast Reverse Path Forwarding (RFP) verifies that packets come from a logically sound source based on
routing information stored in the Cisco router. In turn, this feature helps prevent spoofed packets from being
accepted on the router. To enable Unicast RFP, use the command ip verify unicast reverse-path. This

feature requires Cisco Express Forwarding (CEF) to be enabled, which uses additional resources on the router.

Internet Control Message Protocol Blocking

Internet Control Message Protocol (ICMP) is a workhorse protocol in an IP-based environment. It is responsible
for generating many of the error messages and informative messages that keep the Internet working. However,
many popular attacks and reconnaissance techniques are based on this protocol. In this section, we will look at
some ways to protect your router from these types of attacks.

Unreachables

We will now look at the filtering of host unreachables (ICMP type 3). A router sends the "host unreachable"
message when it can't find the listed host because it is down or doesn't exist. This doesn't seem like such a bad
thing, but if a malicious mapper compares the unreachables and other responses from an IP address range, she
can determine which of the IP addresses represent valid, running hosts. This is yet another method for the
devious to map out your network before an attack. A trace of communication (using a product such as
Tcpdump) between a sender and a nonexistent recipient would look like this:

sender.com.31054 > receiver.com.23: S 3435678932:3435678932(0) win 8760 <ms 1460> (DF)
router > sender.com: icmp: host receiver.com unreachable

The trace shows an initiating Telnet packet from sender.com to a nonexistent host, receiver.com. Because the
nonexistent receiver can't respond for itself (obviously!), the router (called "router" in our example) replies to
sender.com with the ICMP host unreachable message.

Because of these mapping concerns, host unreachables are another traffic type that is popular to block. Cisco
has the following integrated command to disable them:

router(config-if)#no ip unreachables

After applying this in global configuration mode, all host unreachable messages will be disabled. To test this,
Telnet to an IP address that doesn't exist on your inside network while running a network trace program to see
what packets are returned to you. Be sure that Telnet traffic will pass through to your inside network by altering
any access lists that would deny such traffic. After the command has been applied, you shouldn't receive host
unreachables. You might wonder, "If it's not returning host unreachables, what would the traffic look like?"

The answer is simply that there would be no reply. The sender would give up on its own because it didn't
receive a response in the allotted amount of retries.

Disabling such informative ICMP messages from your network or from being propagated by your router has
consequences. The "packet-too-big" unreachable message (a subtype of the standard ICMP unreachable) is
often necessary for proper network functionality. If you can't let outside parties know that they need to
fragment their information or adjust their maximum transmission unit (MTU) size to communicate with you, you
might not successfully communicate.

Note

For information on excluding the packet-too-big ICMP unreachable messages (type 3 code 4) from
your ICMP filtering, as well as suggestions for filtering the various ICMP types from your network, look
at the "Filtering TCP and UDP Ports and ICMP Types" section of Chapter 2.

Blocking IP unreachables and other ICMP traffic types that facilitate smooth communications assumes either
that you don't have any publicly accessible servers or that you do and aren't being a good Internet neighbor. If
you have public servers, you might want to be a good Internet neighbor and allow certain ICMP interactions
with them on your screened subnet. Apply all the ICMP filters to the router interface of the private network,
protecting it, and allow chosen ICMP traffic to the screened subnet. This allows enhanced communications with
outside parties who aren't familiar with your environment. Some allowed ICMP types might include outbound
echo replies, time-exceeded messages, packet-too-big, administratively prohibited, and unreachables. Inbound,
you might want to allow echo requests (perhaps just to a few particular servers' IP addresses). Your security
policy and your ISP will decide the types you allow.

Most of these traffic types are security concerns because of an outsider's ability to map your network. This isn't
as great of a concern on a publicly accessible segment. Echo replies and requests are of the most concern (due
to exploits and covert channel concerns), but with properly patched, configured, and hardened servers, they
shouldn't be a problem either. The proper logging of said traffic types is advised to verify that the traffic in
question is not of a malicious nature. For more information on the logging and examination of malicious traffic,
check out Chapter 8, "Network Intrusion Detection," and Chapter 20, "Network Log Analysis."

Directed Broadcasts

One command that is useful when securing Cisco routers against popular ICMP-based attacks is
router(config-if)#no ip directed-broadcast.

This command disallows traffic to broadcast addresses, preventing amplification of Smurf-like attacks, where
one echo request can generate hundreds of responses. For this reason, it is best to execute this command on all
router interfaces on your network. As of IOS version 12.0, directed broadcasts are disabled by default. Although
this command is popularly mentioned as a means to deter Smurf attacks that use the ICMP protocol, it is also
effective against broadcast attacks using UDP, TCP, and IP.

Smurf Attacks

Smurfing is a type of denial of service attack that makes use of the broadcast behavior of IP
networks. It is called smurfing because one of the first programs to implement the attack was
named Smurf. The attack works by sending a series of spoofed ICMP echo packets to the broadcast
address of a network. The attacker hopes that all the hosts on the network will send ICMP echo
replies to the spoofed address. If the network segment is large, the attacker might be able to
evoke hundreds of echo reply packets generated for every echo packet he sends. This allows the
attacker to magnify the bandwidth of the attack, making it possible for a dial-up attacker
connected at 56Kbps to bring down sites connected using a T1 line (1.544Mbps).

Redirects

Another popularly implemented Cisco ICMP type command is router(config-if)#no ip redirects.

This command is often used in conjunction with antispoofing access lists and is applied to any router interface
from which malicious traffic can enter your network. It is a means by which a nefarious user could manipulate
the path of return traffic, and it should be disabled.

Spoofing and Source Routing

As introduced in Chapter 2, source routing and spoofing can be an effective and hazardous combination. This is
why it is so important to apply ingress filters and disable source routing. As mentioned previously, the
command to disable source routing on Cisco routers is router(config)#no ip source-route.

For a review of ingress filtering and source routing, refer to Chapter 2.

Router Logging

Logging is an important feature of any firewall, especially one with a secured subnet. A router doesn't have
much space onboard for logs, however. In addition, logging takes up extra resources on a possibly already
taxed component of your network. Other logging solutions could involve installing an IDS or some other type of
sniffer on your network to monitor and log the type of traffic roaming about on your network segments. (A
sniffer is a device that captures detailed packet information.) If you do a lot of logging on your router (with the
log option appended to your access lists), you can set up or use an existing Syslog server on your network and
redirect the log files to it. This way, you don't run into the space limitations of a router's onboard memory, and
if you have more than one router, you can have all the routers' logs sent to one centralized location.

POSTED: No TrespassingThe Importance of Banners

When configuring a router, it is possible to configure a banner that will be displayed at the logon
prompt when a user first accesses the router. The command to create such a login banner is
router(config)#banner login,_scary approved message,.

The commas in this command represent some (any) delimiter, and "scary approved message"
represents a login message that your business has chosen to most effectively ward off evildoers.
Posting a warning doesn't guarantee that if a bad person elects to trespass on your virtual property
you will be able to capture and convict him, but it can help improve the chances and help
demonstrate the interloper's intent. More than one electronic trespasser has escaped conviction
with the claim "I didn't know I wasn't supposed to be there." It is a good idea to get counsel
familiar with your area's legal specifics to help choose the wording for your banner to maximize its
effectiveness. Don't include information about your site or its equipment because this can all be
used against you.

Remember that a banner can work against you as well. Using a banner that reads "Top-Secret
Government SiteDO NOT ENTER!" is just asking for trouble. Something along these lines might be
preferable: "ALL ACTIVITY ON THIS DEVICE IS MONITORED AND WILL BE USED AS EVIDENCE IN
THE EVENT OF PROSECUTION." Gives you a funny feeling, doesn't it? Again, the banner might have
to be tweaked for your environment and local laws, but it does three things:

It keeps your site completely anonymous.

It lets trespassers know (without threats) that they are being watched.

It states up front that the owner of this device will prosecute people who shouldn't be there.

The end result is that it makes the visitor think twice, and if bad things happen, it is a strong

indicator of an attacker's intent.

To configure a Cisco router to perform logging, make sure it is currently enabled with the command
router(config)#logging on.

To send logging information to a local Syslog server, use the command router (config)#logging ip address ,
where ip address represents the IP address for the Syslog server in question.

After logging is successfully configured, the router sends its logging information to the Syslog server based on
the "trap" level you configured. This is set using the command router(config)# logging trap information
level , where information level is the informational level of the messages that will be sent to the Syslog
server. (This command sends all messages of the listed level and lower.) The default level of the trap
command is informational, which includes all message types except debugging information (which is
generated by the Cisco debug commands). To log this information as well, change the trap level to debugging.

Tip

Keep in mind that the debug commands can generate quite a lot of information and can fill up log
servers quickly.

After logging is properly configured, messages like this one should magically appear on your Syslog server:

[View full width]
138: 1d06h: %SEC-6-IPACCESSLOGP: list 112 permitted tcp 10.0.0.3(4766) -> 192.168.219.25
(80), 5 packets

The message is an example of a standard Cisco log entry as generated by an access list, including the log
keyword (access-list 112 to be exact). The ACL was a permit rule, so this is reported as matching the permit

and is allowed to pass. Most of the rest of the entry is pretty intuitiveaddress, port source, and
destinationexcept the cryptic Cisco labeling mechanisms. For more information on log files, take a look at
Chapter 20.

For readability of log files and for sanity between multiple devices, it is a best practice to force all routers to
use the same time zone or, if your company crosses more than one time zone, to use Greenwich Mean Time
(GMT) as your standard. To do this on a Cisco router, use the following command:

enable clock timezone GMT 0

Here, GMT is a label for the time zone you are configuring and 0 is the offset from GMT.

Automatic Securing and Auditing of Cisco Routers

Due to the complexities of securing a Cisco router, several automated methods have been established to help
ease the burden on network professionals when auditing and hardening router configurations. The two we will
discuss in this section are Cisco's Auto Secure and the Router Audit Tool (RAT).

Securing Your Router with Cisco's Auto Secure Feature

As of IOS version 12.3(1), administrators can take advantage of a new security tool for Cisco routers. Cisco's
Auto Secure option allows the automated securing of Cisco routers using best practices. It adds ingress filters
and disables commonly exploited services while enabling security enhancements, all with little input from the

end user. The syntax of the command is as follows:

auto secure

This command is typed in enable mode (not config mode) and will offer prompts to the end user. First, it will
ask if the router is connected to the Internet. If the answer is yes, it will ask questions to determine the
interfaces facing the Internet and apply ingress filters to them blocking IANA reserved addresses and RFC 1918
addresses.

Next, it will go on to disable Finger, service PAD, UDP and TCP small servers, CDP protocol, Bootp server, HTTP
server, source routing, and gratuitous ARP. It will enable password encryption, tcp-keepalives-in, and tcp-
keepalives-out.

It then asks if SNMP is used to manage the router. If the end user answers yes, it deletes the default RO and
RW community strings and suggests the use of SNMPv3. If the end user answers no, it disables SNMP.

Then the command prompts the user with a sample banner and asks him to input a banner of his own. It then
checks the enable password and forces it to be configured if it doesn't exist or if it is of insufficient length.

The command then configures local AAA authentication and applies local authentication, exec-timeout, and
transport options for all available con, vty, and aux lines. It disables IP redirects, IP proxy ARP, IP
unreachables, IP directed broadcasts, and IP mask replies on all interfaces. It enables Cisco Express Forwarding
and enables Unicast RFP on all interfaces connected to the Internet. To see an example of a configuration
created by Auto Secure, check out Appendix A, "Cisco Access List Sample Configurations."

Cisco Auto Secure, though no substitute for a security professional, is a great step in the right direction for
Cisco router security.

Auditing Your Router with the Router Audit Tool (RAT)

The Router Audit Tool (RAT) is a freeware command-line program available from The Center for Internet
Security at www.cisecurity.com. As its name implies, RAT allows the automated auditing of your Cisco router
configurations (and more recently PIX configurations) for common security issues. It runs from a computer's
command prompt and is available for both Windows and UNIX platforms. After installing RAT, you will need to
load a copy of the Cisco router configuration you want to audit on to the station where you installed RAT. This
can be accomplished by loading a TFTP server on your RAT station and issuing the command copy running-
config tftp from the Cisco router. You will be prompted for the communication information of your TFTP

server. After transferring the file to the download directory of your TFTP server software, you will need to move
the configuration file to the RAT/bin directory. Then, simply go to a command prompt and run the following
command from the RAT/bin directory:

RAT router-config

Here, router-config is the name of the router configuration file you copied to your host. RAT will go through

and check your configuration against a plethora of security best practices, much like Auto Secure. However, the
end result is not an updated router configuration, but instead a report in HTML format that documents all the
security tests your router configuration has failed and why they are issues. Next, the report includes a rating of
your router's security and a script (that will need some minor editing for your particular IP address information)
to correct the vulnerabilities it has found. This script, once adjusted for your environment, can simply be pasted
into the command-line interface of the Cisco router from which it was downloaded. Though there may be a few
minor false positives and some user input required, RAT offers many more security tests than Cisco Auto Secure
and produces a friendly audit report that helps educate the user. The Router Audit Tool is a powerful program to
add to your security arsenal.

Summary

The router plays a significant role in the security of your network. It can be configured as
a role player in defense in depth, helping protect your QoS, defending against DoS
attacks, or just taking some of the burden off your existing firewall by handling egress or
ingress filtering. Your router might also be acting as your primary firewall, using
technologies such as CBAC, NAT, and ACLs. With CBAC, your router might be supporting
you as a truly stateful firewall. With NAT, your router might be shielding your addressing
scheme from prying eyes and helping protect your network from unsolicited entrance.
Finally, with access lists, your router might be defending your network using packet-
filtering technology.

In any case, the router performs important security duties and must be sufficiently
armored. Be sure to disable unused features and block unused services, use adequate
passwording and authentication, secure configuration channels and methods, prevent the
propagation of unneeded network information, and use logging to audit your success.
Tools such as Cisco's Auto Secure and the Router Audit Tool can assist in the automation
of your router hardening. After all, a properly implemented and hardened router is the
beginning of a secure network.

Chapter 7. Virtual Private Networks
In today's interconnected world, the need to move information from site to site is
becoming common. Whether this move is from one end of town to the other or across the
globe, the basic challenge is the same: How can we securely transport our data? For many
years, this transportation was accomplished with expensive proprietary links that were
leased from communication vendors so that companies had a "private" segment for such
communications. The longer the distance, the more these connections cost, making wide
area networks (WANs) a luxury that many firms could not afford. At the same time, many
firms could not afford to go without them. As broadband Internet connections became
staples for many firms, the concept of using the existing structure of the Internet as WAN
cabling became an intriguing one. Costs could be greatly reduced using these already
available public access points. The concern again was how to keep the data secure.
Because we are sharing an international "party line" with anyone else who connects to the
Internet, how can we be sure that our data is protected from eavesdroppers? The solution
is Virtual Private Networking.

In this chapter, we discuss the basic concepts of how a Virtual Private Network (VPN)
works and is configured, the basic encryption technologies that a VPN uses, details of
Internet Protocol Security (IPSec) (a standard for VPN networking), as well as other
popularly implemented protocols for virtual networking. We also show sample
configurations that demonstrate practical applications for the theory we cover. This
chapter also provides a foundation for understanding Chapter 16, "VPN Integration," which
discusses how VPN technologies can be incorporated into the security perimeter.

VPN Basics

A VPN is a connection that is established over an existing "public" or shared infrastructure using
encryption or authentication technologies to secure its payload. This creates a "virtual" segment
between any two entities that have access. This might occur across the shared infrastructure of a local
area network (LAN), WAN connections, or the Internet. In this chapter, we focus predominately on
VPNs that traverse the Internet as a means to create a secure channel over its public infrastructure.
Such channels make for an inexpensive and effective remote networking solution that anyone with
Internet access can take advantage of.

VPNs can be categorized into three basic configuration types: host-to-host, host-to-gateway, and
gateway-to-gateway. Any of these scenarios could be used with a VPN that is traversing the Internet,
although host-to-host VPNs are also popularly used as a means to communicate privately on local
network segments.

Regardless of which media the VPN uses, which type of configuration it represents, or what shared
infrastructure it crosses, the VPN is a powerful tool that can be used in many different ways to create a
secure communication channel.

Note

If you would like to brush up on cryptography fundamentals, take a look at Appendix B,
"Crypto 101," where we review key topics in cryptography that you need to know to effectively
plan and implement VPNs.

Basic VPN Methodology

The basic concept behind a VPN is securing a communication channel with encryption. Communication
can be safeguarded through encryption at many different layers of the network, such as the following:

Application

Transport

Network

Data link

At the application layer, encryption can be applied with programs such as Pretty Good Privacy (PGP) or
through channels such as Secure Shell (SSH). In addition, remote single-session programs such as
pcAnywhere and multisession programs such as Terminal Server can be used with encryption to protect
remote communications. Most of these programs work from host to host, meaning that they only offer
protection for the packet's payload and not the packet. The exception is SSH, which can be used in a
port-forwarding mode to create a tunnel. We will cover this in greater detail in Chapter 16.

At the transport layer, protocols such as Secure Sockets Layer (SSL) can be used to protect the
contents of a specific communication between two parties. This is typically used via web browser
communications. As with application layer protection, the contents of the communication are protected,
but the IP packets that carry this information are available for inspection. SSL can also be used as a
tunneling facilitator for other communication session types using a product called Stunnel
(http://www.stunnel.org/). SSL and its use are covered in greater detail in Chapter 16.

At the network layer, protocols such as IPSec not only encrypt the payload of the packet, but they also

encrypt the TCP/IP information. Although the IP address information for the parties that are encrypting
and decrypting the packet is necessary to facilitate proper routing, higher-level information, including
transport protocols and associated ports, can be completely obfuscated. Endpoint station IP address
information can also be hidden if a gateway device such as a router, firewall, or concentrator is doing
the encryption, using a concept called tunneling . We will cover IPSec's implementation, its inner
workings, and sample configuration in detail in the "IPSec Basics" section, later in this chapter.

Layer 2 Tunneling Protocol (L2TP) is an addition to Point-to-Point Protocol (PPP), which allows the
encryption of packets sent over PPP on the data link layer (Layer 2). We cover L2TP and its predecessor
PPTP (Point-to-Point Tunneling Protocol) in greater detail later in this chapter, in the "Other VPN
Protocols: PPTP and L2TP" section.

Despite the fact that these encryption technologies occur at many different network layers, they all
could be part of a VPN. However, some might not be able to handle all the duties of a VPN without some
help from other applications or protocols. In this chapter, we predominately discuss the use of network
and data link layer encryption technology for VPNs.

What Is Tunneling?

Tunneling is the process of encapsulating one type of packet inside another to facilitate some sort of
transport advantage. For example, tunneling could be used to send broadcast traffic across a routed
environment or SNMP traffic across the Internet, or to secure IP packets with encryption. One effective
demonstration of tunneling as a means of encryption can be illustrated by using a gateway-to-gateway
VPN example. The two networks in Figure 7.1 are interconnected via a VPN that is terminated at either
end by a firewall.

Figure 7.1. A virtual tunnel is formed across the Internet, connecting the two
remote networks.

[View full size image]

The firewall in our example translates any packet that is destined for the remote network into
encrypted form, and it adds a new IP header to the resultant payload with its own IP address as the
source address and the remote firewall's address as the destination IP address of the packet.
Encryption hides the actual IP information of the original packet. When the remote firewall receives the
packet, it decrypts the packet back to its original form and passes it to the host for which it was
originally intended. The virtual segment being created between the two gateway endpoints is called a
tunnel . The hosts have no knowledge of the fact that the packets are being encrypted or that they are
being sent over a public network. No special software or configuration is required for the hosts. When a
host sends a packet that is destined for a host on the remote subnet, the VPN process is handled
completely by the gateway devices.

When tunneling is used, even though host system IP addresses are masked from the outside world,
they don't have complete anonymity. Because the IP addresses of the gateway devices are available,
eavesdroppers can still determine who is communicating with whom. Maybe this won't give away

communication streams on a host-to-host level, but it might on a network-to-network level, which
could tell an outsider a lot. For example, what if it is rumored that Mr. X is a spy from Switzerland? The
government immediately starts to monitor his Internet connection and determines that he is using a
VPN. We can't tell what his communications are about. However, if we know Mr. X owns the source
address and the destination is somewhere in Switzerland, we might want to investigate further.

Encryption, encapsulation, and tunneling do not make the packets that are being sent inaccessible. The
packets can still be gathered and analyzed. However, if a properly implemented, adequately strong
encryption algorithm is used, your payload should still be safe. In the next section, we take a closer
look at what a gateway-to-gateway tunnel transaction looks like in packet form.

Packet-Level View of Tunneling

The concept of tunneling can be more clearly understood by taking a look at it at the packet level. The
following code, which uses tcpdump, shows a packet as it would appear without going through an
encrypted tunnel:

[View full width]
00:05:18.671517 192.168.44.129 > 172.16.1.128: AH(spi=580532459,seq=0x3): 1232 > 80: P 1
:260(259) ack 1 win 17520 (DF)

This is actually an IPSec packet that uses the Authentication Header (AH) security protocol, which we
will cover in greater detail in the IPSec section of this chapter. This packet is sent in a mode that does
not require tunneling. The packet traverses directly from one host to the other, without being translated
in any way by the gateway devices. Make note of the IP addresses. They represent the addresses of the
two hosts. In addition, notice that the transport layer information is available and that this is an HTTP
transaction, as signified by the use of TCP port 80. (It is actually the contacting of a web server.)
Because the TCP flags are available, we can tell that this is actually the end of the three-way
handshake. Host 192.168.44.129 is sending a lone ACK back to the web server at IP address
172.16.1.128.

The following code shows a similar packet that has been encapsulated. It is the same transaction as
listed previously, but it is translated by a gateway-to-gateway VPN tunnel. Notice that the IP-level
information appears much the same. Also note the lack of Layer 4 TCP information:

00:01:30.057912 192.168.44.1 > 172.16.1.1: ESP(spi=1302500357,seq=0x3) (DF)

The source and destination IP addresses changed from the previous packet to this one. This address
switch is because the tunneled packet took on the addressing of the source and destination VPN
gateways. Layer 4 information (in this case, TCP information) is missing because it, along with the
original IP information and higher-level information, is actually encapsulated into the payload of this
packet. All we have available is the IP information and the information of the protocol doing the
encapsulation (ESP, the Encapsulating Security Payload protocol).

Advantages and Disadvantages of VPNs

When determining whether a VPN is the solution of choice for your organization's remote
connectivity needs, you must consider many factors. What is the confidence level of the
data you are sending? What value is placed on its secrecy? How important is it to know
the source of the data? If the secrecy level is high enough, even a VPN that uses strong
encryption might be inappropriate. Only a dedicated point-to-point connection might be
suitable.

You can describe all forms of remote connectivity as three different types:

Dedicated point-to-point connections, such as via a leased T1 line

Standard unencrypted Internet communications

Encrypted VPN Internet communications, which is a compromise between the first two
types

Of the first two types, the security and performance advantages both go to a dedicated
connection type. Why consider an alternative? The answer is that a third factor is
involved: finances. Dedicated connections are expensive, especially when they cover
great distances. To add to this expense, most sites are also already utilizing some sort of
high-speed Internet connection. Because broadband Internet connections are becoming a
common part of most networks, the ability to utilize such a high-speed connection as a
means of remote connectivity is attractive for most businesses. The monthly expense of
leased T1 lines can be a thing of the past.

However, the use of a shared medium such as the Internet makes security an even
greater issue. Your data is literally traversing an infrastructure shared by millions of
people around the world. The cost advantages of such public access connectivity must
offset the value of your data's secrecy. Therefore, to be able to leverage the functionality
of your existing Internet connection and increase the security level of your
communications, the VPN is an excellent compromise. Encryption protects your data, but it
adds a slight burden to your network and decreases bandwidth. Varying levels of
encryption strength can add to the VPN's ability to protect your data, although greater
encryption strength comes with a cost. More expensive hardwareor often, more expensive
or additional softwaremight be required to use a stronger encryption algorithm. Because of
the greater complexities of such an algorithm, additional overhead must be shouldered by
the equipment you are using, thus decreasing overall bandwidth.

Note

Although some commercial VPN solutions might vary their prices based on the
level of encryption you choose, it should be mentioned that some excellent free
VPN solutions are available. Many free Linux variants have exceptional IPSec
implementations, and freeware VPN applications provide adequate protection as
well.

Benefits of a VPN

The main benefit of using a VPN for remote network access can be summed up as the price
effectiveness of being able to utilize a public medium to transport private information as

securely as possible. A VPN can supply many levels of security to a shared network
medium, including improved confidentiality, integrity, and authentication. Because a VPN
utilizes existing infrastructures, it can be implemented swiftly, without having to wait for
the establishment of a line or other factors that commonly hold up such implementations.
If VPNs are used for remote users, they can offer a secure and more cost-effective "road
warrior" solution. That way, people who need remote access can take advantage of local
Internet access wherever they are, instead of making costly long- distance calls. The
combination of security, quick setup, and cost effectiveness can make a VPN an excellent
communication solution.

Security

VPNs offer many security features that make them a powerful method for securing
information traveling across insecure territory. These features can be customized
depending on the "hostility level" of the environment. This security level must be balanced
against the value of the data.

Lower-strength encryption might be adequate for remote connections for many
companies; the information that is being transmitted might be of little value to others. For
example, if you owned a car lot with two locations, you might want to share inventory and
pricing information between them. For obvious reasons, it might be a little too tempting
for your competitors if you transmit this information in the clear, making it possible for
someone else to read it. On the other side of the coin, it is unlikely that your competition
will go to great lengths to break your encrypted traffic; they could easily drive by to count
the inventory in your lot, and probably have a good general idea of what you are paying
for your inventory. Utilizing a low-strength encryption VPN might adequately protect your
information.

However, what if you are sending a top-secret formula for an item that is a matter of
national defense or possibly the whole reason your company is in business? That data
might be valuable enough that some outsiders would be willing to go to great expense and
effort to defeat your protection. Therefore, stronger encryption would be needed. In
general, if the cost of using stronger encryption is not much greater than that for weaker
encryption, carefully consider using stronger encryption. The security needs for the
communications could increase over time without your knowledge, so it is safer to use the
strongest available encryption.

Regardless of the strength of the chosen encryption technology used for your VPN, your
VPN should still offer the requirements of a secure communication channel. The following
three requirements are the most basic:

Confidentiality is the guarantee that no one else is going to be able to peek at your
information. The encryption algorithms that scramble your private data into
meaningless segments of characters provide this for a VPN. If this encryption
algorithm is not sufficiently strong enough to protect your data, your confidentiality
can be compromised.

Data integrity is the next issue that can be protected through encryption and VPN use.
Integrity verifies that the information you are receiving is the same as it was when it
was sent to you. Long ago, this was often accomplished by securing a document with a
wax seal emblem of the party who was sending the message. If the seal was broken,
you could not be sure that the message wasn't altered in transit. In today's world, this
same integrity assurance can be accomplished with digital signatures and hashes.
Both are discussed in greater detail in Appendix B.

Authentication verifies that the information has come from whom it is supposed to
and, in turn, that it is received by whom is supposed to receive it.

Deployment Advantages

Anyone who has had to wait for the phone company to terminate or activate a line knows
that the waiting can be the hardest part. When you need to have something done today,
filling out requests and waiting for outside parties are not things you want on your
itinerary. Because VPNs can take advantage of existing infrastructure, many of these
stumbling blocks can be avoided. Even in cases in which internal infrastructure needs to
be patchworked, a VPN can shine. For example, imagine you are the network engineer at a
college campus. You are told that the accounting office is having an audit tomorrow and
you are responsible for setting up a place for the teams of auditors to work. The auditors
have to be separate from the rest of the accounting office, and the only place you have for
them to go is quite a distance away on the other side of the campus. Networks connect the
whole campus, but none connect to the accounting office because it is on a separate
segment from the rest of the campus. You could get out your handy spool of fiber-optic
cable and trench digger and get ready to physically run the half-mile connection, or you
could rely on securing the connection through existing infrastructure with VPN technology.
This could either be accomplished by adding an additional hardware device and doing
some fancy cable-patching to tie the remote location to the accounting office, or relying
on an existing VPN device that the accounting office already uses for remote connection
and some already available Internet connections across campus. The end result of going
with the latter option is a lot less work, considerably less preparation time, and, most
likely, a savings cost of infrastructure changes.

Cost Effectiveness

A VPN can save you money in many ways, most of which involve the VPN replacing some
type of high-cost, dedicated WAN link. Often, high-speed Internet access is already in
place at these same locations. When pitching broadband Internet, you should see a bean-
counter's eyes light up when you explain that the monthly Internet access charges will be
offset by the removal of the dedicated T1 link that the company is currently using to
connect to its branch office. Usually, same-speed Internet access offsets the price of a
similar speed point-to-point T1 within a year or two (this can vary greatly by region and
location proximity), even considering the costs of additional firewall/VPN hardware.

VPNs can help pay for themselves in other ways as well. For instance, most VPN solutions
can also offer an alternative to remote dial-in. This can add up to savings in long-distance
bills for remote users who are accessing your network. It also removes the need for
dedicated dial-in servers or modem pools for these same users, meaning lowered
equipment cost, as well as a reduction in monthly dial-up phone charges. Regardless of
the network setup, in most scenarios a VPN can give an excellent return on investment
and add up to considerable savings in the long run.

Disadvantages of VPN

Despite all their positive points, VPNs are not all smiles and sunshine. You must consider
the disadvantages before confirming that a VPN is suitable for your environment. The use
of encryption brings about an additional processing burden, most likely to be handled by
your existing gateway devices or by additional equipment that must be purchased. Fitting
a VPN into an existing location can also be a challenge in some environments due to the
additional packet overhead. A VPN has significant design issues that novices (as well as
some intermediates) will most likely not want to tackle on their own, and troubleshooting
traffic that is encapsulated can be a real challenge for even the most experienced
practitioners.

Processing Overhead

Encryption, the backbone of the VPN, involves incredibly complex mathematical
computations. These must occur for every packet that is sent across and received by a
VPN gateway device. These complicated computations take their toll not only on the
gateway device, but also on the overall bandwidth of the VPN connection. This speed

reduction intensifies with stronger encryption algorithms, which in turn require more
mathematical complexity and more processing bandwidth. This problem has become such
an issue over time that special "offload cards" have been created to help absorb some of
the additional processing burden of VPN encryption. These hardware acceleration devices
can improve the detriment of lost processing power, but at a hefty price. In turn, it is
important to make this processing burden a part of your hardware and bandwidth
determination requirements when deciding on a VPN.

Packet Overhead

Another interesting disadvantage of implementing a VPN is the additional overhead that is
added to every packet. Existing packets can be encapsulated, which requires the
"wrapping" of the original packet in additional packet overhead. Even if you aren't using
encapsulation, additional header information still adds to the packet size. In either case,
this overhead, although not substantial, can be enough to become a design concern in
some environments. In addition, adding size to every packet can negatively affect network
bandwidth, not only due to sending larger packets, but also because each larger packet is
more likely to need fragmentation as it journeys across various gateways and routers.
This fragmentation will negatively affect network performance.

Implementation Issues

Implementation is a concern when making a VPN part of your existing network
infrastructure. Some of these implementation issues include incompatibility with Network
Address Translation (NAT), VPN passthrough usage, and maximum transmission unit
(MTU) size and design issues. VPN design and implementation details are covered in
greater detail in Chapter 16.

Troubleshooting and Control Issues

Troubleshooting a VPN can be a complicated process. Because the inner headers and
payloads of encapsulated packets are unavailable until they are decrypted, you can't see
what is happening while the packet travels between two gateway devices. Tools such as
traceroute are ineffective when employed across a VPN tunnel. For more information on
traceroute and VPN troubleshooting considerations, see Chapter 21, "Troubleshooting
Defense Components."

Common means to examine the packet flow, such as network intrusion detection systems
(IDSs), are less effective because the payload is unknown until after it passes through the
perimeter VPN device. Not only can this make troubleshooting more difficult, but it also
can punch a big hole in an otherwise secure network.

Note

Host-based intrusion detection offers one way to effectively monitor encrypted
traffic, as we discuss in Chapter 10, "Host Defense Components." Because the
traffic is decrypted either before reaching the host at a perimeter device (tunnel
mode) or on the host (transport mode), the host-based IDS can check the
packets after they are translated. Therefore, in high-security environments that
use a VPN, it is wise to implement host-based IDS on mission-critical systems.

It becomes a security concern when you don't have controls on entities that are remotely
connected by the VPN. For example, users who telecommute via a VPN might provide
backdoors to your network due to a lack of security on their home PCs. Also, smaller

remote offices that lack an IT staff, or even extranet connections to customers or vendors,
could be the source of backdoor attacks or malicious code propagation.

Regardless of your environment, you must consider many issues when deciding the
effectiveness of a VPN solution as your remote communication choice. If all issues are
adequately considered beforehand, the outcome will be a correct decision and a smooth
implementation.

Internet Availability Issues

One final point that must be made about using the Internet as the backbone of your wide
area network (WAN) concerns the communication glitches that can occur between you and
your remote partners' networks. Technical problems at your Internet service provider's
(ISP's) level, denial of service (DoS) attacks, or other infrastructure issues such as
damage to outside cabling can cause outages to Internet service that most of us have
experienced at one time or another. Because the Internet is redundant by design,
hopefully these problems are few and far between. However, when your business relies on
remote communications, any such outage can become a major financial burden and an
unacceptable outcome. Designing in extra redundancy to your Internet connectivity can
help alleviate such situations. Multiple Internet connections using multiple ISPs can
lessen the chance that a problem at a single ISP will create a system-down situation for
you. This, combined with the incorporation of screening routers or like products that can
help prevent DoS conditions, can maximize Internet availability for your network. For
more information on the use of such screening routers, check out Chapter 6, "The Role of
a Router."

IPSec Basics

Even though IP has become the most-used communication protocol in the world and is the backbone
technology behind the Internet, it still has many flaws. Some of these issues are address space
limitations, no auto-configuration of hosts, and a lack of intrinsic security. The main reason for these
flaws is that IP wasn't designed for use by the masses. It was actually designed for a much smaller, self-
sufficient, contained environment. Because IP has invaded most businesses and homes, many of these
flaws have been patched with other protocols and programs.

In an effort to move IP forward, a new version of the protocol, IPv6 (IP version 6), was born, with built-in
functionality that takes care of many of the issues of its predecessor. Because the adoption of a new
version of IP in our constantly growing, current Internet environment has been difficult, the security
measures incorporated into IPv6 have also been ported to our current version of IP (version 4) as an
optional protocol suite. This set of protocols is known as the IPSec Protocol Suite.

IPSec Protocol Suite

IPSec's goal is to facilitate the confidentiality, integrity, and authentication of information communicated
using IP. This is accomplished through the use of several protocols, including Internet Key Exchange
(IKE), Encapsulating Security Payload (ESP), and Authentication Header (AH). These three protocols
combine to allow the secure exchange of information without fear of outside eavesdropping or tampering.
A second goal of the security suite is a means for multiple vendors to have a set of standards by which
they can interoperate securely. Industrywide testing is being done to verify that the products of these
vendors can all work together correctly to provide sound IPSec implementations. IPSec-based security
starts with the forming of a security association (SA) between two communicating parties.

SA

An SA is basically an agreement between two entities on how they will securely transmit information. One
of the exceptional things about IPSec is the openness of its standard to support not only multiple
protocols and communication modes, but also various encryption algorithms and hash types. All these
details must be prenegotiated before the secure exchange of user data can begin. The resultant
agreement is an SA. Each communication session has two SAsone for each communication partner. Each
partner negotiates a new SA for every IPSec connection he makes.

Before an SA is negotiated, the particular settings that an IPSec partner is going to support must be
configured for it locally. These settings are held in what is known as a security policy database (SPD) .

After the SA has been negotiated, it is contained in a security association database (SAD). This is
necessary because different communication rules can be configured for each of the sessions that a host or
device might initiate. For example, look at Figure 7.2. A Cisco PIX firewall can be set up to allow Data
Encryption Standard (DES) or 3DES as the encryption algorithm for a VPN tunnel. When Host 1 connects,
it might only support DES and would negotiate an SA with DES encryption. However, Host 2 behind
another PIX might also attempt to create a tunnel with our PIX, and it might require a 3DES tunnel
because of its own business and security requirements. In this case, only a 3DES tunnel could be
negotiated. Each of these negotiated connections would require its own SA entry in the SAD, listing all the
specific details of what was negotiated for each. These details will include such information as encryption
algorithm negotiated (DES, 3DES, AES, and so on), VPN mode, security protocol negotiated (ESP or AH),
and hash algorithm negotiated (MD5 or SHA-1).

Figure 7.2. IPSec connection parameters negotiated for VPN tunnels are
maintained in the SAD.

Because multiple IPSec sessions are available per device (each with its own set of unique settings), for
this process to function correctly, each SA session must have its own singular identifier. This identifier is
made up of a unique security parameter index (SPI) that tells which SA database entry pertains to the
connection in question, the destination address of the connection, and the protocol identifier for the ESP
or AH protocol, whichever is being used for the connection.

Listing 7.1 is an excerpt from a Cisco router's SA database for an inbound ESP connection.

Listing 7.1. Cisco Router SA Database

inbound esp sas:
 spi: 0x71BB425D(1908097629)
 transform: esp-des esp-md5-hmac,
 in use settings ={Tunnel, }
 slot: 0, conn id: 2000, flow_id: 1, crypto map: mode
 sa timing: remaining key lifetime (k/sec):(4608000/3500)
 IV size: 8 bytes
 replay detection support: Y

This excerpt contains much information about this specific connection, such as the SPI number of the
connection, the encryption and hash algorithms being used for this connection, the fact that it is working
in tunnel mode, and the lifetime for this connection. This information is recorded in the SAD for each
negotiated connection.

IPSec Tunnel and Transport Modes

An IPSec connection has two basic modes: transport and tunnel. Transport mode is a host-to-host form of
communication and involves the encryption of a packet's payload only. Because of this host-to-host
requirement, software needs to be loaded on all communicating hosts, which in large installations can be
an administrative nightmare.

However, this VPN mode is well-suited for encrypted communications between hosts on the same
network, or in situations where it is important to be able to differentiate hosts by their IP address
information. Transport mode lacks a means to do gateway-to-gateway communication and the ability to
conceal host IP information, which can be a major concern when your data is traversing a public medium

such as the Internet. Transport mode communication can be coupled with other tunneling means for a
more secure communication channel.

The other IPSec mode takes advantage of tunneling. Tunneling mode is the method of choice for most
VPNs because it encrypts not only the payload but also the entire original packet, partially or completely
obfuscating the source and destination addresses of the communicating systems. Also, tunneling mode
can occur host-to-host, host-to-gateway, or gateway-to-gateway. Gateway-to-gateway operation is
another reason that tunneling mode is well-suited for VPN operation; it allows simplified network-to-
network communications setup. Gateway devices such as routers or firewalls need to be set up for VPN
communication, but communicating hosts on the internal network need no special setup or additional
software. Encryption of the entire packet and gateway-to-gateway setup combine to make tunnel mode an
excellent choice for securing a communication channel. Most VPNs use tunnel mode and have at least one
gateway device.

IKE

The IKE protocol is the authenticator and the negotiator of IPSec. It verifies that you (or, more typically,
your system) should be allowed to start encrypted communication with the device in question, and then it
negotiates the type of encryption that will be used. IKE is actually a combination of two protocols:
Internet Security Association and Key Management Protocol (ISAKMP), which handles security
negotiations, and Oakley (based on a variation of Diffie-Hellman), which is responsible for exchanging
keys. Two phases of the IKE transaction support the creation of an SA between communication partners.
In the following sections, we will explore these phases in greater detail.

Note

IKE is not the only key-management solution for IPSec, although it is the standard. Key
management can be done manually or by using IKE alternatives such as Secure DNS, Photuris,
or Simple Key Internet Protocol (SKIP).

IKE Phase 1

If a remote user wants to begin a session with a VPN gateway device, the process starts with IKE Phase 1.
Phase 1 serves two functions: authenticating the remote user and exchanging the public key information
that will be used for encryption in Phase 2.

IKE authentication can be done in several ways. The most common is with pre-shared keys or digital
certificates. A pre-shared key simply means that some key value is preconfigured on all systems that
want to communicate via the VPN. For an example of a Cisco router using a pre-shared key configuration,
see the pre-shared key example in the "Cisco Router VPN Examples" section later in this chapter.

In smaller, low-risk environments, a pre-shared key can be an easy and effective way to quickly set up
authentication with little extra administrative overhead. It is by far the easiest means to configure VPN
authentication, but with this simplicity comes several drawbacks. Sometimes the same pre-shared key is
used on all communicating devices. This is not necessary (and definitely not recommended unless
another choice is not available), but it is the easiest way administratively speaking. Using such a
configuration is common when planning for dial-up remote systems because it is difficult to predict the IP
addresses they might use. The IP address could be anything, so a wildcard is used in place of an
identifying address or hostname and in conjunction with the pre-shared key value. Therefore, all stations
dialing in must use the same key. Because this key value is configured locally on the devices, if any of
them is compromised, the VPN's security is compromised as well. Of course, a pre-shared key can be
reconfigured at any time if a compromise is known. However, if a pre-shared key is successfully captured
and the thief is clever enough not to tip off the owner, he could have a backdoor into your system as long
as that particular key is in use.

Because the pre-shared key must be configured manually, regularly changing keys can be a headache

that falls to the bottom of many busy administrators' lists. Using pre-shared keys with remote users is
equivalent to giving them a password to your network. This is not a problem until they are no longer
employed at your company. The effect is comparable to the re-keying of all the locks in a building when
an employee who had a key leaves, but in this case you are the locksmith. Other key-management issues
occur as well, such as remote site configuration. How do you send the key? Who at the remote site is
trusted with keeping the value secret? Wouldn't it be nice if you could remotely manage keys for
everyone who needs one on a connection-by-connection basis?

That brings us to a second popular way to authenticate users: digital certificates. Digital certificates can
be assigned separately to each entity that connects to the VPN, and they can be remotely managed and
administered by a centrally located Certificate Authority (CA). This can ease administration problems,
although it also adds an extra piece with which an administrator has to be concerned.

The CA is the centerpiece of a greater structure known as Public Key Infrastructure (PKI) . The whole
concept behind PKI is a publicly available structure to distribute public key information. A popular way to
do this in the enterprise is to combine the PKI with existing network directory structures, such as
Microsoft's Active Directory or Novell's Network Directory Services. This way, the existing base of user
information can be combined with the user's public key information, preventing duplication of user
information databases. For an example of VPN authentication through digital certificates and a CA, look at
the CA example under the "Cisco Router VPN Examples" section later in this chapter.

Other than authenticating that the communicating parties are who they are supposed to be, the other
function of the Phase 1 session is spent setting up the parameters for the communication session that will
occur in Phase 2. Phase 2 is where the actual VPN SA's are negotiated. In other words, Phase 1's second
purpose is the negotiation of the parameters for the connection (Phase 2) that will carry out the
negotiation of the parameters for the actual VPN tunnel. This might sound redundant, but this is by
design, to help ensure the security of the final VPN connection.

In Phase 1, two modes can be used when exchanging authentication information and security parameters
for Phase 2: main mode and aggressive mode. The differences between them are in the number of
packets exchanged and when the public key information is generated. Aggressive mode has lower packet
overhead, but main mode is the more secure of the two and the more frequently used. Some VPN
implementations don't support the use of aggressive mode. The important thing to remember is that the
candidates who want to connect must both be using the same mode to negotiate successfully.

Annotated IKE Phase 1 Example

Now you will see what one of these exchanges actually looks like under the packet microscope. The
following example demonstrates a common exchange when doing an IKE Phase 1 negotiation. We can see
the order in which the packets are actually transmitted and when the authentication and key exchange
processes actually occur. The listing is from a log file generated by a SafeNet VPN client connecting to a
Cisco PIX firewall. It is using main mode, as can be seen by the MM listings throughout. We start by

exchanging proposed parameters for our IKE SA as follows:

Initiating IKE Phase 1 (IP ADDR=<MY IP ADDRESS>)
SENDING>>>> ISAKMP OAK MM (SA)
RECEIVED<<< ISAKMP OAK MM (SA)

Next, we exchange key information and what is known as a nonce . A nonce is a random number that the
initiator generates; the number is then digitally signed and sent back by the responder. The nonce is used
to confirm that the key information is coming from whom it is supposed to be coming from. This IPSec
implementation also includes a vendor ID (VID) that allows participants in cross-platform interactions to
make determinations on the capabilities and configuration of their partners that might be of a different
manufacturer. The exchange of key information looks like this:

SENDING>>>> ISAKMP OAK MM (KE, NON, VID, VID)
RECEIVED<<< ISAKMP OAK MM (KE, NON, VID)

In our final exchange confirming what we've negotiated, a hash is sent from each party to confirm that all
are who they say they are. These are the first exchanges that are encrypted, using the negotiated
information and keys exchanged in earlier messages. This is also where authentication of both parties
finally takes place. The ID or identification value identifies the parties to each other. This value can be an
IP address, hostname, and so on, as chosen when configuring the partners. Both hosts must use the same
identification method or the connection will fail. The final exchange looks like this:

SENDING>>>> ISAKMP OAK MM *(ID, HASH, NOTIFY:STATUS_INITIAL_CONTACT)
RECEIVED<<< ISAKMP OAK MM *(ID, HASH)
Established IKE SA

The end result is an established IKE SA. This means that the two parties have agreed on the methods
they will use during Phase 2 IKE to exchange parameters for the actual VPN connection.

Note

Phase 1 of the IKE exchange creates the IKE SA, not an IPSec SA. The IKE SA states the
parameters for Phase 2 communications. The IPSec SA states the parameters for the actual VPN
communication. The IPSec SA is negotiated in IKE Phase 2.

If this had been an aggressive mode transaction, it would have only taken three packets instead of six.
The first packet is sent to the responder with keys, nonces, and SA suggestions all in one. The responder
then returns a similar packet, but with a hash appended for authentication. Finally, the initiator responds
back with its own hash to confirm the IKE SA negotiation. Although aggressive mode obviously offers a
speed advantage in that fewer packets are exchanged, the lack of redundancy in the packet flow leaves it
more open to exploitation than its main mode counterpart.

IKE Phase 2

In IKE Phase 2, we are specifically negotiating the parameters of the IPSec SA. The exchange is similar to
the one in Phase 1 aggressive mode. After Phase 2 is complete, the IPSec SA is formed and we have a
VPN connection! Actually, two unidirectional IPSec SAs are created, each protecting communications in a
single direction.

Phase 2 has only one exchange mode selection: quick mode. Quick mode is a brief exchange involving
three packets. The security precautions of the Phase 1 exchanges aren't needed because of the protection
given by the established IKE SA. Because the previous IKE SA was established, all the exchanges in
Phase 2 are encrypted using the negotiated protocols and encryption type. The only other protection is in
the form of hashes and nonces that are included in the packets to confirm their origin.

Annotated IKE Phase 2 Example

Now that we have discussed the principles of the Phase 2 exchange, it's time to look at an actual
example. Continuing the previous example, this is also from the log file of a SafeNet VPN client that is
initiating a connection to a Cisco PIX firewall. This time, because only internal private range IP addresses
are listed, they don't need to be sanitized.

The first packets exchanged include hashes and nonce information as well as the proposed SA
parameters. The responder returns a similar respondent packet. Both contain ID values, identifying each
participant, as originally labeled in Phase 1:

SENDING>>>> ISAKMP OAK QM *(HASH, SA, NON, ID, ID)
RECEIVED<<< ISAKMP OAK QM *(HASH, SA, NON, ID, ID, NOTIFY:STATUS_RESP_LIFETIME)

Finally, the initiator confirms the agreement with a final hash. Notice that these transactions also use
ISAKMP and Oakley and that QM is used in the listings to represent quick mode (the only choice for Phase

2):

SENDING>>>> ISAKMP OAK QM *(HASH)
Loading IPSec SA (Message ID = 353EEA13 OUTBOUND SPI = B53E860B INBOUND SPI = 3FAF771D)

An established IPSec SA and the creation of unique inbound and outbound SPI information earmark the
successful exchange. This last line tells us that we have established a tunnel.

IPSec Security Protocols AH and ESP

Now that we have covered the creation of a security association using IKE, it's time to look at the security
protocols. You have two security protocols from which to choose in the IPSec suite: AH and ESP. When
building an IPSec-based VPN, you can elect to employ either one of these protocols or to use both AH and
ESP at the same time. Each has its own functions, although in practical application, ESP is used much
more frequently than AH. In the following sections, we examine the inner workings of AH and ESP and
describe strengths and limitations of these protocols to help you design and set up an IPSec VPN that
matches your needs.

AH Protocol

The AH protocol is IP protocol number 51. It offers packet authentication and integrity-checking
capabilities, but it does not offer confidentiality for the packet's payload, thus limiting its effectiveness as
a sole security method for most VPN implementations.

The AH protocol provides packet authentication and integrity protection by adding an additional header to
each IP packet. This header contains a digital signature called an integrity check value (ICV) that is
basically a hash value verifying that the packet hasn't been changed in transit. The IP information in the
packet is guaranteed to be correct, but it is not hidden in any way. Because AH looks at the IP header
when computing the digital signature, we can be sure that the source IP address on the packet is
authentic and that the packet came from where it claims to. AH also supports the use of sequence
numbers that help prevent replay attacks. Because communicating devices track the stream of
conversation using these numbers, an intruder who is attempting to gain VPN access can't re-send a
captured packet flow.

The fact that AH authenticates the packet using its IP address information makes it incompatible with the
IP header changes that are brought about by NAT. Because AH's ICV would be computed before NAT
changes the IP address for an outbound packet, the integrity check performed on the packet at its
destination would fail.

On the other side of the coin, because AH offers no confidentiality for its packets, it does not possess the
computational overhead of having to encrypt packets. Not only does the lack of payload encryption equate
to smaller processing burden for the sending device, but it also means that the overall overhead of
encapsulating packets is lighter. These factors combine to make AH a fine solution where only integrity
and IP address authentication are needed and performance is highly valued.

Much can be learned about a protocol by taking a look at its packet header (see Figure 7.3). If a definitive
source exists for what a protocol does or what information a packet carries, the header is it.

Figure 7.3. An AH packet header is composed of several fields.

The following are the fields of information contained in the packet header:

The next header field contains an identifier that specifies the protocol type of the next packet header
following the AH packet header.

The payload length field specifies the length of the AH header information.

The reserved field is an area for the possible future expansion of the AH protocol.

The SPI value is listed next, showing of which SA's communication stream this packet is a part.

The sequence number is the next field listed. It is simply a unique incrementing value that protects
against replaying captured packets successfully. This type of assault is called a replay attack.

The authentication information is listed last. This field contains the ICV and digital signature for
authenticating the packet in question.

Now that you know more about the packet structure, let's look at an example of some AH packets. Listing
7.2 is a Tcpdump trace of AH traffic. It is actually an example of a user accessing a web page. Notice that
the payload of the packets contains cleartext representations of the information they carry. (This is most
noticeable in the last packet listed, seq=0x3.)

Listing 7.2. AH Packet Trace

[View full width]

00:05:18.645054 192.168.44.129 > 192.168.44.128: AH(spi=580532459,seq=0x1): 1232 > 80: S
 3631297390:3631297390(0) win 16384 <mss 1460,nop,nop,sackOK> (DF)
0x0000 4500 0048 089a 4000 8033 1797 c0a8 2c81 E..H..@..3....,.
0x0010 c0a8 2c80 0604 0000 229a 38eb 0000 0001 ..,.....".8.....
0x0020 c118 fc19 0124 3688 d1b7 3e13 04d0 0050 $6...>....P
0x0030 d871 336e 0000 0000 7002 4000 57cd 0000 .q3n....p.@.W...
0x0040 0204 05b4 0101 0402

00:05:18.655236 192.168.44.128 > 192.168.44.129: AH(spi=3951698033,seq=0x1): 80 > 1232: S
 2981983731:2981983731(0) ack 3631297391 win 17520 <mss 1460,nop,nop,sackOK> (DF)
0x0000 4500 0048 0080 4000 8033 1fb1 c0a8 2c80 E..H..@..3....,.
0x0010 c0a8 2c81 0604 0000 eb8a 2071 0000 0001 ..,........q....
0x0020 24db fdd4 aaa4 0c89 16cf c00c 0050 04d0 $............P..
0x0030 b1bd 75f3 d871 336f 7012 4470 2b9b 0000 ..u..q3op.Dp+...
0x0040 0204 05b4 0101 0402

00:05:18.659869 192.168.44.129 > 192.168.44.128: AH(spi=580532459,seq=0x2): 1232 > 80: .
 ack 1 win 17520 (DF)
0x0000 4500 0040 08a1 4000 8033 1798 c0a8 2c81 E..@..@..3....,.
0x0010 c0a8 2c80 0604 0000 229a 38eb 0000 0002 ..,.....".8.....
0x0020 cbf6 be88 73d7 97a6 a63b a092 04d0 0050 s....;.....P
0x0030 d871 336f b1bd 75f4 5010 4470 585f 0000 .q3o..u.P.DpX_..

00:05:18.671517 192.168.44.129 > 192.168.44.128: AH(spi=580532459,seq=0x3): 1232 > 80: P 1
:260(259) ack 1 win 17520 (DF)
0x0000 4500 0143 08a2 4000 8033 1694 c0a8 2c81 E..C..@..3....,.
0x0010 c0a8 2c80 0604 0000 229a 38eb 0000 0003 ..,.....".8.....
0x0020 3521 0ef0 df8f 17db d87e 7477 04d0 0050 5!.......~tw...P
0x0030 d871 336f b1bd 75f4 5018 4470 0108 0000 .q3o..u.P.Dp....
0x0040 4745 5420 2f20 4854 5450 2f31 2e31 0d0a GET./.HTTP/1.1..
0x0050 4163 6365 7074 3a20 696d 6167 652f 6769 Accept:.image/gi
0x0060 662c 2069 6d61 6765 2f78 2d78 6269 746d f,.image/x-xbitm
0x0070 6170 2c20 696d 6167 652f 6a70 6567 2c20 ap,.image/jpeg,.
0x0080 696d 6167 652f 706a 7065 672c 202a 2f2a image/pjpeg,.*/*
0x0090 0d0a 4163 6365 7074 2d4c 616e 6775 6167 ..Accept-Languag
0x00a0 > truncated for display purposes.

Not only is the payload of these packets in cleartext, but the Layer 4 (transport) information is also
viewable. We can watch the three-way handshake as the user's workstation attempts to contact the
remote web server. We can also see other flags, window size settings, and TCP ports used (80 for the web
server and 1232 as the ephemeral port chosen by the workstation). SPI and sequencing information are
also listed for each one-way connection.

ESP

The second security protocol that IPSec offers is ESP. The ESP protocol is IP protocol number 50. It offers
full confidentiality by completely encrypting the payload of IP packets. ESP is modular in design and can
use any number of available symmetric encryption algorithms to encrypt its payload. Popular choices
include DES, 3DES, and AES.

The way that ESP works differs slightly depending on the IPSec mode that is being used. In transport
mode, ESP simply adds its own header after the IP header and encrypts the rest of the packet information
from Layer 4 up. If ESP's authentication service is specified during the initial negotiation of the IPSec
connection, ESP then adds a trailer that contains ICV information to confirm packet integrity and
authentication. However, unlike AH, ESP does not include IP header information when calculating the ICV.

In tunnel mode, ESP encapsulates the entire original packet, encrypting it fully and creating a new IP
header and ESP header at the tunneling device. A trailer is also added for authentication purposes if ESP's
authentication service is chosen.

In either mode, ESP offers sequence numbers in each packet that, like AH, provide protection against
replay attacks.

ESP is often regarded as the IPSec protocol that works with NAT. Although this is usually the case for ESP
used in tunnel mode, transport mode ESP and NAT do not work together because of changes that NAT
makes to the packet's header information. When NAT translates the packet's IP information, it also needs
to recalculate the checksum located in the TCP header. This is because the TCP checksum is calculated
using information in the TCP header and the IP header, including the source and destination IP addresses
of the packet. Therefore, NAT must recalculate the TCP header checksum to keep the packet from failing
its integrity check. In transport mode ESP, the entire TCP header is encrypted, preventing the TCP
checksum from being recalculated by the NAT device. (A similar problem occurs with UDP packets as well,
when UDP checksums are used.) As a result, upon decryption the packet will fail its integrity check,
keeping transport mode ESP from interoperating successfully with NAT. This issue can be avoided in rare
cases where TCP checksums are not used or can be disabled.

In tunnel mode ESP, traffic can successfully pass NAT because the entire original packet, including both
IP and Layer 4 information, is encapsulated and therefore untouched by NAT. Because the IP and Layer 4
information and checksums are unaltered in tunnel mode ESP, after the packet is decrypted it will still
pass its TCP integrity check. However, even though ESP traffic in tunnel mode can pass through NAT, you
may still encounter NAT-related problems when negotiating IPSec connection parameters. For instance,
one-to-many NAT (frequently referred to as Port Address Translation [PAT]) will rewrite the source port of
an outbound IKE packet, causing it not to have the expected value of 500, and resulting in the failure to
re-key IPSec session parameters.1

One great point of contention is the authentication capabilities of ESP. ESP has authentication services
that can be used, but the hash that is generated is based on the entire packet, with the exception of the
IP header and authentication trailer. This is good in that any changes that might be made to the IP header
(for example, by NAT) do not invalidate ESP's ICV value. However, this lack of IP header authentication is
upsetting to some because it prevents the guarantee of identifying the originating IP address. In most
implementations, however, the successful authentication of the packet's payload, as implemented by ESP,
can be considered adequate proof that the packet actually came from the expected source.

Now that we have discussed the ESP protocol, let's take a closer look at the structure of its packet header
(see Figure 7.4).

Figure 7.4. An ESP packet header is composed of several fields.

Here's an explanation of the individual fields in the ESP packet header:

The SPI is the first field in this packet.

The sequence number field follows it and is used, like the AH headers, to prevent replay attacks.

The payload of the packet follows this information. This is where the encapsulated information is
located.

The pad length field tells how much padding, if any, was needed to make the payload, pad length, and
next header fields fit appropriately into the packet's bit-length requirements.

The next header shows the protocol number for the type of information encapsulated inside the ESP
packet.

The authentication information lists the optional ICV authentication option that is available for ESP
packets.

Now that we have gone over the packet structure, let's look at a real-world example of ESP packets in
transit. The following is a tcpdump trace of ESP-encrypted traffic. Notice that no identifiable commands or
information exists in the payload of the packets because of the encryption of the packet's payload (in this
particular case, with 3DES). Despite its obscure appearance, Listing 7.3 is actually an example of a user
checking a standard web page, like the AH trace seen previously.

Listing 7.3. ESP Packet Trace

00:01:30.031 192.168.44.128 > 192.168.44.129: ESP(spi=1728941913,seq=0x1) (DF)
0x0000 4500 0050 0061 4000 8032 1fc9 c0a8 2c80 E..P.a@..2....,.
0x0010 c0a8 2c81 670d 8f59 0000 0001 0262 5e96 ...,.g..Y.....b^.
0x0020 d238 3af3 c90e c385 fca7 09cf 693a b6cc .8:.........i:..
0x0030 6d88 5400 d417 a0c4 6f5b df7f 5e96 994f m.T.....o[..^..O
0x0040 cb03 1624 6668 d10d cf89 f6b0 e4e7 46a9 ...$fh........F.

00:01:30.038 192.168.44.129 > 192.168.44.128: ESP(spi=1302500357,seq=0x2) (DF)
0x0000 4500 0048 06a7 4000 8032 198b c0a8 2c81 E..H..@..2....,.
0x0010 c0a8 2c80 4da2 9405 0000 0002 f22d 2ce7 ...,.M........-,.
0x0020 4dc6 ba58 11e3 333f 0cd5 8079 62d7 7128 M..X..3?...yb.q(
0x0030 0590 3056 085a dd96 3653 ef97 35e1 593c ..0V.Z..6S..5.Y<
0x0040 8213 a0e7 2516 835b %..[

00:01:30.105 192.168.44.128 > 192.168.44.129: ESP(spi=1728941913,seq=0x2) (DF)
0x0000 4500 01a8 0062 4000 8032 1e70 c0a8 2c80 E....b@..2.p..,.
0x0010 c0a8 2c81 670d 8f59 0000 0002 5e96 994f ..,.g..Y....^..O
0x0020 cb03 1624 7da5 0ecb 392f a703 6f53 aa21 ...$}...9/..oS.!

One point of interest on this ESP trace is the SPI numbers. The SPI numbers change depending on which
partner initiates the communication, because each end of an IPSec connection has its own SPI value
assigned. You might also notice that each packet has an incrementing sequence number to help prevent
the use of replay-type attacks. Layer 4 (TCP or UDP) transport information is blatantly missing because
any such information is encapsulated into the encrypted payload of this packet. Other than these points,
this trace looks much like any other IP traffic exchange.

The existence of two IPSec protocolsAH and ESPoffers the flexibility of selecting the configuration that is
appropriate for your security requirements and can operate under the constraints of the existing network
infrastructure. AH is great at providing authentication and integrity services but does not protect the
confidentiality of the packet's payload. ESP is more computationally expensive but is able to encrypt data
while also offering limited authentication capabilities.

Combined Use of ESP and AH

If your environment requires the address authentication capabilities of AH and the confidentiality
provided by ESP, the two protocols can be combined into a single IPSec implementation. In this
configuration, not only are the strong points of both AH and ESP combined, but the weak points are as
well. Therefore, you have a configuration that has all the NAT problems of AH and the additional
processing burdens of ESP, which are added on the AH processing for an even greater overall workload.
Such extra security comes at a high price, and in the real world such configurations are relatively
uncommon.

IPSec Configuration Examples

Now that we have journeyed through the creation of an IPSec VPN, let's take a look at some practical
examples of VPN configuration on some popularly used devices that you might even find on your own
network.

Cisco Router VPN Examples

Most Cisco routers have the potential (with the correct IOS software version) to be a gateway device for a
VPN. The only other consideration is the processing power of the router, which could become heavily
taxed by the additional burden of traffic encryption and decryption.

Assuming that the router has the necessary power, it can be configured as part of a VPN in many ways. In
this example, we allow the creation of a tunnel from one Cisco router to another, using ESP as the IPSec
security protocol and SHA-1 as the hashing algorithm. A pre-shared key provides the authentication. This
configuration and all commands are based on IOS version 12.3.

The first section of the code involves the ISAKMP settings for the IKE part of the VPN configuration, as
follows:

crypto isakmp policy 10
authentication pre-share
crypto isakmp key s3cr3t! address 199.199.199.199

In the ISAKMP policy section, the authentication type is specified as using a pre-shared key, and the key
(s3cr3t!) is set up for the address in question (199.199.199.199) in the line that follows it.

The next code shows all the security options that this router will require when negotiating an SA. In
Cisco's world, these security configuration options are called a transform set :

crypto ipsec transform-set secure esp-3des esp-sha-hmac

The transform set secure is set up with the listed encryption capabilities. Other transform sets, using

other unique names, can be set up as well, each defining other security options that the router would also
accept during the negotiation process.

Note

A VPN device must be set up with security parameters that are acceptable to its communication
partner; otherwise, a connection will not be established.

The next command is used to assign a crypto map to an interface:

crypto map cmap local-address Ethernet1

In this example, the crypto map name is cmap. A crypto map is a set of configuration information that

defines traffic that should traverse the VPN and the details of how that connection can occur.

In the next section of the listing, we define the crypto map cmap from the last example:

crypto map cmap 10 ipsec-isakmp
set peer 200.200.200.200
set transform-set secure
match address 101

These statements tie together all the VPN configuration components. They give the peer address of the
entity to which the tunnel will be constructed, list any transform sets that will be allowed, and specify an
access list that will match any traffic that should be directed across the VPN.

The following access lists are the ones defined in the crypto map cmap:

access-list 101 permit ip 192.168.2.0 0.0.0.255 192.168.1.0 0.0.0.255
access-list 101 deny ip 192.168.2.0 0.0.0.255 any

They are specifically used to match the VPN traffic and, in turn, encrypt those packets and direct them to
the VPN peer.

Now we will look at the interface configuration section of the router:

interface Ethernet1
description external interface
ip address x.x.x.x
crypto map cmap

The only setting that is specifically needed for a VPN configuration is the crypto map cmap command. With

Cisco routers, it is necessary to apply a crypto map to the interface where the tunnel will be initiated.

The following line is typically used to configure NAT service on a router. It is listed here because a Cisco
router that is running NAT must be explicitly configured to allow VPN traffic to bypass NAT translation:

ip nat inside source route-map nonat interface Ethernet1 overload

When you configure the route map that defines the traffic that should be NAT-translated, it should
exclude VPN traffic. In this example, the route map is called nonat.

In this section, we define the route map nonat:

route-map nonat permit 10
 match ip address 102

This route map allows the traffic denied in the listed ACL to bypass NAT, while NATing the permitted
traffic.

Following are the access lists defined in the previously listed route map nonat:

access-list 102 deny ip 192.168.2.0 0.0.0.255 192.168.1.0 0.0.0.255
access-list 102 permit ip 192.168.2.0 0.0.0.255 any

These access lists are used to bypass translation by NAT and allow the IPSec-related traffic that will
initiate the VPN tunnel:

access-list 112 permit udp any any eq isakmp
access-list 112 permit esp any any

The access lists are configured to allow in the ISAKMP (UDP port 500) and ESP (IP protocol 50) traffic
involved in the creation and use of the VPN tunnel. If you will be using the AH protocol (IP protocol 51),
you will need an access list that allows it.

Cisco Router VPN and Access List Rules

When you're using a Cisco router as a VPN device, it is important to understand how the rules
that apply to access lists work, specifically in a VPN environment. For example, after a VPN-
encrypted packet initially passes through the access list that allows IKE, AH, or ESP traffic
and is unencrypted, it will be tested a second time by the inbound access list. Creating an
access list that allows traffic from the private IP address range used by the partner VPN to the
private IP address used by the local network solves this issue. You should have no fear of this
access list being a security hole; if someone fabricated traffic that would be able to pass it,
the responses would be encrypted and sent to the VPN peer and would never be returned to
the originator.

When traffic leaves the inside network, it is encapsulated in a new packet with a source
address of the gateway device and a destination address of the peer gateway. This has to be
considered when creating outbound access lists on the external interface. For example, if you
are creating an egress filter that is applied outbound on the outside interface, it typically
reflects the inside IP address range. Encapsulated VPN traffic does not pass this egress filter.
For this reason, egress filters work better inbound on the inside router interface.

Next, we provide an in-depth example of a Cisco router with certificate authentication. Using pre-shared
keys appears to be such a simple solution that some questions exist on why you would choose an
alternative. Setting up two VPN peers is as simple as typing in a few commands and a single secret piece
of information. However, when your environment grows from two peers to 2,000, the concept of a
centralized key-handling authority becomes more attractive. This concept becomes more appealing when
you consider the scenario of having to change keys. Being able to make these changes through a
centralized CA is why PKI is a buzzword among the IT elite. To show the differences between a pre-shared
key and a CA configuration, we will use the same Cisco router example we used previously, only changing
settings that are needed for certificate authentication. All commands that remain the same will not be re-
listed; we will only list new commands and commands that would need to be changed. This section will
assume that you have an accessible CA already configured in your environment and available to you.

Let's start our look at CA authentication by seeing what must be changed from our previous configuration.
Because we are discussing authentication specifically, we know that this falls into the IKE section of the
VPN; therefore, only our ISAKMP settings will be affected. Crypto maps, transform sets, encryption types,
and everything else will remain the same. We only need to change the authentication type under our
ISAKMP policy and then make the changes necessary to prepare our router for such authentication.

The first statement in this section is identical to the one listed in the pre-shared key example:

crypto isakmp policy 10
authentication rsa-sig

The change is reflected in the second line of the section. The authentication command must reflect the
use of RSA digital signatures, or rsa-sig for short.

Because a certificate-based authentication scheme requires the querying of an entity outside the router
for its keys, key storage and CA accessibility become important issues. If the CA is inaccessible, your
router might accept an expired certificate or you might suffer an offline condition on your VPN. Storing
certificates locally can help offset this problem of downtime, but at the price of taking up some of the
precious router NVRAM storage. To configure your Cisco router to request a certificate whenever
necessary, use the following command:

MyRouter(config)# crypto ca certificate query

This command prevents the storage of certificates or certificate revocation lists (CRLs) from using any of

your router's NVRAM. Because these items wouldn't be found in local NVRAM, the router must take a
performance hit to make a request.

The next commands are probably already configured on your router. However, they are listed here
because they are essential for operation with digital certificates:

MyRouter(config)# hostname MyRouter
MyRouter(config)# ip domain-name domain.com

Host and domain names must be present in the router configuration because certificates are named with a
fully qualified domain name. This means that the certificate's name is actually the hostname of the router
followed by its domain name. For example, in this example, our router's certificate would be named
MyRouter.domain.com.

Before we go any further, we must generate the RSA key pair that we will use to request a certificate for
our router. The following command is entered only once to generate the keys and is not a saved part of
the configuration:

MyRouter(config)# crypto key generate rsa

To verify that your keys have been generated, you can use this command:

show crypto key mypubkey rsa.

Now we must configure the specifics so that our router knows where and how often to collect certificates:

MyRouter(config)# crypto ca identity CA.COM

This line specifies the domain name of the Certificate Authority and drops you into CA configuration
mode.

The following line is the last required line in this section. The rest are optional or used only in some
environments:

MyRouter(ca-identity)# enrollment url http://ca_4u

This line simply specifies the URL of the CA. In this example, it is http://ca_4u .

These next two lines are needed only in environments that use a Registration Authority (RA). An RA is an
extra entity that caches certificates and CRLs in case the CA is down or otherwise unavailable.

MyRouter(ca-identity)# enrollment mode ra
MyRouter(ca-identity)# query url ldap_url

If you have an RA in your environment, specify the first command. The second is also only used in an RA
environment, but one that also supports LDAP. ldap_url in this example is the URL of the LDAP server.

The next two optional lines specify how often, in minutes, the router will retry to get a certificate and how
many times it will retry:

MyRouter(ca-identity)# enrollment retry period 5
MyRouter(ca-identity)# enrollment retry count 100

The default number of minutes for the first command is 1, and the default number of retries is infinite.

This last entry, which can be configured in the CA configuration mode, is regarding whether CRLs must be
available to accept a certificate:

MyRouter(ca-identity)# crl optional

When this line is entered, if a given CRL is not available, the router still accepts the certificate in
question. This could be a security concern because the certificate might have been previously revoked.
However, it can keep authentication functioning even if the CA is temporarily unavailable.

Now we are ready to request the CA's certificate. This is done with the following command:

MyRouter(config)# crypto ca authenticate CA.COM

Requesting the CA's certificate is necessary for authentication before receiving a certificate for your
router. As a best practice, you might want to manually confirm this certificate after downloading it from
the CA. The information used in this command should match the information specified in the crypto ca
identity command:

MyRouter(config)# crypto ca enroll name

The previous command is used to receive a certificate for your router. After this command has been
issued, you should be ready to initiate a VPN connection.

The following are a couple of useful commands for auditing your router's CA capabilities:

MyRouter# show crypto key pubkey-chain rsa

The previous command shows details of available RSA public keys on your router.

The following command lists all certificates stored on your router if you are not using query mode, which
disallows certificate storage:

MyRouter# show crypto ca certificates

It is plain to see that setting up the use of digital certificates is more complicated than using pre-shared
keys in the short haul, but in the long run, the time spent can pay you back many times over, especially
in a large environment.

Windows XP IPSec Configuration Example

Windows XP Professional and Windows XP Home Edition can also effectively handle IPSec duties if
properly configured. Doing so requires the addition of the IP Security Policy Management snap-in to your
Microsoft Management Console (MMC) and monitoring with the IP Security Monitor snap-in. This
integrated capability lies at the operating system level, and Windows XP's prevalence in many businesses
will most likely make it an important player in the future of VPNs. (Other versions of Windows, including
Windows 2000 and 2003, also offer similar IPSec capabilities.)

IPSec VPN policy is configured on a Windows XP system using the IPSec snap-in for MMC. The console
appears in Figure 7.5.

Figure 7.5. MMC can be used to configure local and remote Windows XP IPSec
policies via the IP Security Policy Management snap-in.

[View full size image]

As listed in the right pane, several default security policies can be used for quick setup of Windows XP
system-to-system VPNs. However, to set up an IPSec policy that will work well with other VPN products,
we need to create a custom policy. This is primarily because the default authentication used for these
policies is the Windows Kerberos authentication protocol. To begin to create a new security policy, follow
these steps:

1. Right-click the desired IP Security Policies object in the left pane of the window and then select Create
IP Security Policy. This opens the IP Security Policy Wizard. Click Next to continue.

2. Name your security policy. You might also want to include a description of its purpose. When you are
finished, click Next to continue.

3. On the following window, remove the check from the Activate the Default Response Rule check box.
Click Next to continue.

4. Verify that the Edit Properties check box is selected because we will be customizing this policy. Then
click Finish.

5. This brings up the Policy Properties box (see Figure 7.6), where Policy is the name of the policy you
specified in step 2. Make sure the Use Add Wizard check box is checked and then click the Add button
to continue. This opens the Security Rule Wizard. Click Next to continue.

Figure 7.6. The New IP Security Policy Properties box is used to define IPSec
rules for the currently selected policy.

The Security Rule Wizard walks you through the process of setting IPSec parameters, such as
authentication settings and IP filter settings. (IP filters are discussed further in Chapter 10.) To define
IPSec parameters, follow these steps:

1. Choose whether to use a tunnel. In this example, we will use a tunnel, so click the option button to
specify the tunnel endpoint and type in its IP address. Click Next when you're finished.

2. Choose the type of network connections you want to affect (most likely All Network Connections) and
click Next.

3. In the Authentication Method window, we pick the authentication we want to use: Kerberos,
certificates, or a text string to use as a pre-shared key. If you are creating a connection to be used
with another Windows XP system, you should probably use the default Kerberos authentication.
Otherwise, for interoperability, you will most likely have to use certificates or pre-shared keys. For
our example, we will use the latter. To use a pre-shared key, choose the appropriate option button
and specify the pre-shared key value used in the text box below it (see Figure 7.7). Click Next to
continue.

Figure 7.7. In the Authentication Method window, we specify which
authentication method should be used for the IPSec policy.

[View full size image]

Note

Microsoft discourages the use of pre-shared keys for IPSec authentication on production
systems, stating that it was implemented primarily to achieve RFC compliance. Furthermore,
the confidentiality of the pre-shared key is difficult to protect because it can be viewed from
the local computer.2 Whenever possible, use Kerberos or certificate authentication methods
for IPSec.

4. In the IP Filter List tab, click the Add button. In the next window, make sure the Use Add Wizard box
is checked, specify a name for the filter you are creating, and click the Add button. This opens the IP
Filter Wizard. Click Next to continue.

5. For Source Address, choose My IP Address. This assumes that you are using this system directly to
contact the peer VPN device and not using it as a gateway or proxy device. If you were using your
Windows XP system as a gateway, you would most likely choose A Specific IP Subnet and specify the
IP addresses and subnet mask settings. Click Next to continue.

6. For Destination Address, choose the appropriate type from the drop-down menu. A Specific IP Subnet
is usually the correct selection for a VPN. Then specify the subnet range of the network that is
protected by the gateway VPN device. Click Next when you're finished.

7. Unless you have a specific change needed, leave the protocol type as Any and click Next. With tunnel
traffic, it would be inappropriate to specify a setting other than Any because tunnels can't filter on
port information or protocol type.

8. Make sure the Edit Properties box is checked so that we can verify settings. Then click Finish. This
ends the IP Filter Wizard.

9. Verify that the Mirrored check box is checked in the Filter Properties window, under the Addressing
tab. The Mirrored check box ensures that the policy applies to both incoming and outgoing traffic.
Click OK when you're finished.

10. Click OK on the IP Filter list screen.

After completing the IP filter configuration settings, the next step is to tie the filter to the policy and
describe how the policy should be enforced. To do so, follow these steps:

1. Choose the filter list you just created from the ones listed and then click Next.

2. On the Filter Action screen, make sure the Use Add Wizard check box is checked and then click the
Add button. This opens the Filter Action Wizard. Click the Next button to continue.

3. Create a new name and optionally a description for your filter action and then click Next.

4. Choose Negotiate Security for Standard IPSec Operation. Otherwise, you could create a specific
Permit or Block rule in this section. When you're finished, click Next.

5. Check Do Not Communicate with Computers That Do Not Support IPSec to support only IPSec
communications. Then click Next.

6. In the IP Traffic Security window, choose the security level you desire based on the settings of the
peer device with which you are communicating. Using Custom allows you to set exactly the protocol
(AH or ESP), encryption, and integrity algorithm combination you want to use. Click OK when you're
finished and then click Next.

7. You have come to the end of the wizard. Verify that the Edit Properties check box is checked so that
we can make final settings changes. Then click Finish.

8. This drops you into the Properties window for the action you just created. Be sure to uncheck the
Accept Unsecured Communication, But Always Respond Using IPSec check box for highest security.
You should end up with a screen similar to the one shown in Figure 7.8, but reflecting your security
choices. When you are ready to proceed, click OK.

Figure 7.8. We use the New Filter Action Properties window to specify how
IPSec properties should be negotiated for traffic that matches the current IP

filter.

9. Choose the new filter action you just created on the Filter Action screen. Click Next.

10. Make sure the Edit Properties check box is unchecked because we are now done. Click Finish.

11. Click Close on the Policy Properties box, and your new policy should appear in the right pane of the
window. Right-click the policy and choose Assign. This changes the Policy Assigned column from No
to Yes. The policy is now active.

To test the settings, open a command prompt and try to ping a host on the remote subnet in question.
After security is negotiated, the pings will get through if everything is configured correctly. This can be
confirmed by checking the IP Security Monitor screen to show active security associations after the device
is successfully pinged. Figure 7.9 shows the IP Security Statistics screen, which can be loaded by right-
clicking a hostname in the IP Security Monitor and selecting Statistics. The IP Security Statistics screen
contains many different counts related to IKE and IPSec activity, including several types of failures.

Figure 7.9. We can use IP Security Monitor to observe statistics regarding the
host's IPSec operations.

[View full size image]

Other VPN Protocols: PPTP and L2TP

As stated previously, IPSec is not the only tunneling set of protocols that can offer VPN-
type service. At Layer 2, PPTP and L2TP are both popularly implemented VPN protocols.
The greatest reason for this is that both are included with Microsoft Windows operating
systems, which enjoy the greatest distribution of any operating system to date. This
means that a large portion of the deployed computer base has built-in VPN capabilities
using PPTP and L2TP. For this reason (and because popular VPN software often goes for as
much as $100 per seat), both protocols, especially the newer L2TP, can be effective for
VPN solutions in Windows environments. An interesting thing to keep in mind is that
neither has inherent encryption capabilities. Encryption must be added to make either a
true VPN protocol. Let's take a look at each.

PPTP

PPTP is an outgrowth of PPP, which appeared in computers everywhere with the advent of
dial-up Internet access. PPTP, although popularized by Microsoft, was actually designed by
a consortium of computer technology vendors, including US Robotics, Ascend, and 3Com.
Microsoft's original implementation of PPTP was highly criticized as being insecure by
cryptography gurus industrywide, which left a bad taste in the mouths of many IT people.
For encryption, PPTP relies on Microsoft Point-to-Point Encryption (MPPE), which uses the
RC4 cipher. However, most of the security issues were due to the insecurity of its
authentication methodthe Microsoft authentication protocol Microsoft Challenge
Handshake Authentication Protocol (MS-CHAP). PPTP has PPP's capability of user
authentication using all associated protocols, such as MS-CHAP, Password Authentication
Protocol (PAP), Challenge Handshake Authentication Protocol (CHAP), and Extensible
Authentication Protocol (EAP). Later PPTP implementations from Microsoft that included
MS-CHAP version 2 actually resolved most of the aforementioned security issues, making
it a much safer bet (although not as well regarded as IPSec) as a VPN protocol.3

PPTP operates through two channels that work together. The first is a control channel that
operates on TCP port 1723. This channel sends back and forth all the commands that
control the session management features for the connection. The second is an
encapsulated data channel that uses a variant of the Generic Routing Encapsulation (GRE)
protocol (IP protocol 47), which uses UDP as its transport protocol.4 PPP frames are
encapsulated and sent using this method. This is the "tunnel" of PPTP. An advantage of the
GRE tunnel over a standard IPSec tunnel is that it can encapsulate and carry protocols
other than IP. For this reason, GRE tunnels can find their way into environments that are
otherwise completely IPSec.

PPTP does have some interesting attributes that can make it useful in particular
environments. First, it works without a hitch through NAT because NAT-related changes to
the IP layer have no effect on Layer 2 PPTP. Second, it comes integrated with many
hardware devices and is available in operating systems; with such high availability, it is
more easily deployable in environments that use such products. However, on the
downside, because PPTP uses PPP to initiate communications, it can be vulnerable to
spoofing and man-in-the-middle attacks.

L2TP

L2TP is defined by RFC 2661. As its name implies, it is a Layer 2 tunneling solution. L2TP
is actually a hybrid of two previous tunneling protocolsCisco's Layer Two Forwarding (L2F)
protocol and PPTPand combines the best attributes of both. It replaced PPTP as the Layer 2
VPN protocol of choice for Microsoft Windows operating systems as of Windows 2000.

Like PPTP, L2TP uses PPP's user authentication capacities (MS-CHAP, CHAP, EAP, PAP, and
so on). Also like PPTP, L2TP has two communication method types: control messages and
data transmission "tunnel" messages. The first bit in the PPTP header differentiates these
message types (1 for a control message; 0 for a data message). Control messages are
given precedence over data messages to ensure that important session administration
information gets transmitted as effectively as possible. The concept behind L2TP's
operation is similar to PPTP. A control connection is set up for the tunnel, which is then
followed by the initiation of an L2TP session. After both are completed, information in the
form of PPP frames can begin to traverse the tunnel.5

Comparison of PPTP, L2TP, and IPSec

L2TP most commonly uses UDP port 1701 as its transport medium for all its packets.
Because UDP is a connectionless protocol, it can actually require less communication
overhead (it doesn't require TCP's response traffic to confirm connection) than PPTP,
which transports control messages (only) on connection-oriented TCP.

An advantage of L2TP over PPTP or IPSec alone is that it can create multiple tunnels
between two hosts. However, its disadvantage is that it relies on PPP and can be
victimized by spoofing and man-in-the-middle attacks. Also, like PPTP, it supports the
transmission of non-IP protocols, which is an advantage over IPSec. However, unlike
PPTP, it does not require IP and TCP as its transmitting protocols. It can use other options
such as X.25, Frame Relay, and ATM.

Although L2TP lacks its own encryption capability, it has the potential as a Layer 2
protocol of working in conjunction with IPSec. L2TP can be used to provide a tunnel for
transport-mode IPSec traffic. For example, Windows 2000 and Windows XP rely on IPSec
as the encryption method for their L2TP tunnels. This combination of IPSec and L2TP can
be mutually agreeable because it allows IPSec to supply packet authentication for L2TP
control messages, which lack such protection. L2TP offers IPSec multiprotocol
transmission capability and multiple tunnel support. Also, the advantage of L2TP's user
authentication protocols can be applied to IPSec, which has no such ability of its own.

PPTP and L2TP Examples

Now that we've discussed the details of how PPTP and L2TP tunnels work, let's look at
some practical examples of how the technologies can be implemented in common network
devices: a Windows XP system and a Cisco PIX firewall.

Client Windows XP Setup

Because L2TP support is integrated by default in Windows XP, setting up client software to
support an L2TP VPN is not difficult, as the following steps prove:

1. Double-click the Network Connections icon in Control Panel and click Create a New
Connection to start the New Connection Wizard.

2. After receiving the splash screen, click Next to continue. For L2TP VPN client access
configuration, you will choose the Connect to the Network at My Workplace option
button. Click Next to continue.

3. In the Network Connection window, specify Virtual Private Network Connection. Click
Next to continue.

4. In the Connection Name window, enter a name for the connection. Click Next to
continue.

5. In the VPN Server Selection window, type the hostname or IP address of the entity to
which you are connecting. Click Next to continue and then click Finish to save the
configuration.

6. Windows XP should then display a Connect window. Click Properties to alter the
default settings.

7. On the Options tab, select the Dial Another Connection First option if Windows XP
needs to establish a dial-up connection before the VPN.

8. On the Networking tab, change the Type of VPN setting from Automatic to L2TP IPSec
VPN. (The only other choice is PPTP VPN.)

9. The Advanced tab contains settings for Internet Connection Sharing, which allows you
to specify that the system you are working on should act as a gateway for other
network systems. That way, other systems can gain access to the entity you are
connecting through your system. Unless you have a specific need for this type of
sharing, do not check the check box.

10. Review all other settings, such as those for authentication, and confirm that they are
appropriate for your needs and environment. When finished, click OK to save the
configuration changes.

11. Windows XP will show the Connect screen again. This is where you will need to
specify the logon and password information to authenticate with the L2TP device you
are connecting to.

After your authentication information is entered, you are ready to connect. Simply click
the Connect button, and the system will attempt to contact the remote system. If the
connection fails, it returns an error and waits a predetermined time before redialing. This
connection can be reached any time through the Network Connections screen.

Note

The VPN connections that are created, as explained in this section, are for PPTP
or L2TP connections specifically. They do not necessarily support IPSec as listed.
For IPSec support, see the example in the IPSec section.

Cisco PIX VPDN Setup for PPTP Traffic

In this example, we will specify the commands of interest in a Cisco PIX configuration that
is running software version 5.1 or later. We will not go over all the standard configuration
commands, just those that pertain to Virtual Private Dial-Up Network (VPDN) support for
PPTP connections. VPDN is basically Cisco's way to support non-IPSec, dial-up-type
protocols. The protocols are the most popular incarnations of PPP: PPTP, L2TP, and Point-
to-Point Protocol over Ethernet (PPPoE), which is popularly used with DSL connections.

To begin our PIX configuration, we need to specify an access list to describe the traffic
leaving our network that will need to bypass NAT. PIX firewalls have NAT integrated at the
lowest level, and to keep VPN traffic from "breaking," we need to make sure it isn't
translated. Here is the access list we will be matching:

access-list 101 permit ip 10.0.0.0 255.255.255.0 192.168.1.0 255.255.255.0

This access list simply says that it will match or allow any IP traffic that has a source
address in the 10.0.0.x subnet and a destination address in the 192.168.1.x subnet.

The next section does not specifically relate to VPDN, but it's of interest because it lists
our inside and outside interface addresses. This can shed some light on other IP address
selections in the rest of this listing:

ip address outside 172.16.1.2 255.255.255.0
ip address inside 10.0.0.1 255.255.255.0

The outside address or external address in this case is 172.16.1.2 and is using a class C
subnet mask. The inside address also uses a class C subnet and is 10.0.0.1.

Our next statement creates an address pool to assign all connecting PPTP clients:

ip local pool pool4pptp 192.168.1.1-192.168.1.50

The pool name is pool4pptp and the address range is 192.168.1.1-50.

Only one of the next lines is of consequence in our VPDN configuration. The lines contain
the NAT settings that will be used on our PIX. The global command lists the range of

external addresses that will be used for our NAT pool:

global (outside) 1 172.16.1.3-172.16.1.4
nat (inside) 0 access-list 101
nat (inside) 1 10.0.0.0 255.255.255.0 0 0

The nat (inside) 1 command shows all IP addresses that should be NAT-translated. The
command of interest is the nat (inside) 0 command. This command shows what

addresses should bypass NAT. In this case, the addresses are specified by the 101 access
list that we looked at previously. Therefore, traffic that has the source address of our
internal network and is sent to the addresses used by connected PPTP clients (as stated in
our pool) should bypass NAT. Otherwise, if the source address is in our network address
range (as stated in the nat (inside) 1 command), NAT it.

The next command simply states that all PPTP traffic should be uniformly allowed access:

sysopt connection permit-pptp

VPDN will not work without this command.

The next group of settings shows specific configuration options for our VPDN clients. The
first line shows the protocols we will allow access through our VPDN configuration. L2TP
could also be specified:

vpdn group 1 accept dialin pptp

The next group of authentication settings shows acceptable protocols to use for PPTP
authentication. Only specify the protocols you want to allow:

vpdn group 1 ppp authentication pap
vpdn group 1 ppp authentication chap
vpdn group 1 ppp authentication mschap

The next line is what assigns our IP address pool mentioned previously to the connecting
PPTP clients:

vpdn group 1 client configuration address local pool4pptp

The following line chooses where the authentication information is held:

vpdn group 1 client authentication local

In the example, the PIX will use local authentication. This is not a best practice. Ideally, it
is best to have authentication information held outside of the PIX on a separate
authentication system such as a RADIUS or TACACS server.

The username line then specifies the local information we alluded to in the last statement:

vpdn username user password secret

Here, user refers to a username, as defined by the person configuring the PIX, and secret

refers to a well-chosen password.

Finally, the enable outside command says that the outside interface can accept VPDN

traffic. With this final statement, PPTP traffic will be allowed to traverse our PIX firewall:

vpdn enable outside

Summary

In this chapter, we discussed the basics behind how VPNs work and the process of
tunneling. We discussed the advantages of VPNs, including security, deployment, and cost
benefits. We also looked at some disadvantages, including bandwidth considerations,
design and implementation issues, and troubleshooting and control issues.

We also covered the popular VPN protocols IPSec, L2TP, and PPTP. IPSec is a suite of
security protocols that includes IKE, AH, and ESP. IKE is used in two phases to negotiate
and authenticate VPN partners. Next, one or both AH and ESP protocols are used as the
main security protocol for data transmission. AH is used to authenticate and verify
integrity of data flow, whereas ESP completely encapsulates the packet or its payload
(depending on SA mode), offering full confidentiality of data flow.

Finally, we covered L2TP and PPTP and saw the advantages of a Layer 2based tunneling
protocol, including the transmission of non-IP protocols, and its ability to pass NAT
without issue. The downside is that because both protocols were built on PPP, they have
communication session vulnerabilities that aren't found with IPSec.

Regardless of your choice of VPN hardware or tunneling protocol, the concepts of VPNs are
universal. Correctly identifying and weighing the disadvantages and advantages for your
particular environment is a necessary part of designing remote communications. After a
VPN is decided upon as the choice communication for your situation, a full understanding
of the principles of cryptography and their incorporation into the VPN will help facilitate a
smooth implementation.

Understanding VPNs, IPSec, cryptography, and other tunneling protocols will be
advantageous to anyone who is involved in the upkeep and implementation of network
security.

References

1 Microsoft, Inc. "How to Configure an L2TP/IPSec Connection Using Pre-shared Key
Authentication (Q240262)." http://support.microsoft.com/default.aspx?scid=kb;EN-
US;q240262. September 2004.

2 Microsoft, Inc. "Mutual Authentication Methods Supported for L2TP/IPSec (Q248711)."
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q248711. September 2004.

3 Bruce Schneier and Mudge . "Cryptanalysis of Microsoft's PPTP Authentication Extensions
(MS-CHAPv2)." August 1999. http://www.counterpane.com/pptpv2-paper.html. September
2004.

4 Kory Hamzeh, Gurdeep Singh Pall , et al. "RFC 2637 Point-to-Point Tunneling Protocol."
July 1999. http://www.ietf.org/rfc/rfc2637.txt. September 2004.

5 W. Townsley, A. Valencia , et al. "RFC 2661Layer Two Tunneling Protocol 'L2TP'." August
1999. http://www.ietf.org/rfc/rfc2661.txt. September 2004.

Chapter 8. Network Intrusion Detection
A good network intrusion detection system (IDS) can have an enormous positive impact
on the overall security of your organization. The focus of intrusion detection is identifying
attacks and security incidents, but in this chapter we see that intrusion detection can do
so much more than that. After covering the basics of intrusion detection, we discuss the
critical role that IDS plays in a perimeter defense. Much of this chapter is devoted to
determining where IDS sensors should be deployed in various environments. By the end of
this chapter, you will have a strong sense of how you can use network intrusion detection
to strengthen your organization's defenses.

Network Intrusion Detection Basics

Network intrusion detection systems are designed to sniff network traffic and analyze it to
identify threats in the forms of reconnaissance activities and attacks. By detecting
malicious activity, network intrusion detection enables you to identify and react to threats
against your environment, as well as threats that your hosts might be directing at hosts
on other networks. (Many network IDSs today also offer intrusion prevention capabilities,
which means they can stop detected attacks. See Chapter 11, "Intrusion Prevention
Systems," for much more information on network-based intrusion prevention.)

Although the focus of this chapter is network IDS, there is also a related IDS technology
known as host-based intrusion detection . Host-based IDS software focuses on detecting
attacks against a particular host, such as a workstation or server, and is run from the host
itself. There are several types of host-based IDS software products, including log
analyzers and file integrity checkers. Log analyzers monitor operating system and
application logs, looking for entries that might be related to attacks or security violations.
File integrity checkers alert you if particular files are altered, which might indicate a
successful attack. You can learn more about host-based intrusion detection products in
Chapter 10, "Host Defense Components."

The Need for Intrusion Detection

Many people have heard of intrusion detection, but they might not realize why they need
to deploy it in their environment. Without intrusion detection, you may be unaware of
many attacks that occur. Because you don't have information about attacks, when a
successful one occurs, you won't have the information you need to stop it from happening
to that host again, or to other hosts. Most ominously, you may never know about an
attack that doesn't damage your host, but simply extracts information, such as a password
file. Without intrusion detection, you will be unaware of these events until it's much too
late. This is why intrusion detection is beneficial in many environments.

Many attacks involve multiple steps or phases. For example, an attacker might start by
launching a scan that sends a DNS query containing a version.bind request to each IP

address in a range. Some DNS servers respond to such a query with their BIND version
number. The goal of this scan is to identify which hosts are DNS servers and what
versions of BIND they are using. Based on the results of the first scan, the attacker then
sends a specially crafted DNS query to some of the DNS servers to exploit a buffer
overflow vulnerability in a particular version of BIND. This second set of queries could
occur hours or days after the first setor it could occur within seconds. It depends on the
tools being used and the attacker's methodology.

If any of the buffer overflow exploits are successful, the attacker might be able to perform
unauthorized actions on one or more of the servers, potentially gaining administrator-level
privileges. An attacker who gains privileged access to a server could do many things,
including using that server to launch attacks against other hosts on the network and
against external hosts. It is important to understand that this is not a hypothetical attack
scenario we are describing. Various attack tools use this exact technique to scan, attack,
and compromise servers; many worms also do this by spreading throughout the Internet
on their own. Sometimes it only takes seconds from the initial scan until the vulnerable
host is compromised.

If you are not using intrusion detection, how will you know when a successful attack has
occurred? Some attacks are immediately visible, such as a website defacement; others are
not. Perhaps you will look through a directory and see some strange files or directories.
Perhaps your server's performance will decline and you will find many unknown processes
running. Perhaps your server will crash and you won't be able to reboot it. Or perhaps no

one will notice that anything has happened.

A properly configured, robust IDS can play more than one role in identifying typical
attacks. An IDS can detect reconnaissance activity that may indicate future targets of
particular interest. It also generates alerts for the subsequent attempts to breach host
security. Alerts are usually generated through one of two methods. The first method,
anomaly detection, relies on statistical analysis to identify traffic that falls outside the
range normally seen in this environment, or it relies on protocol analysis to identify traffic
that violates protocol standards or typical behavior. The second method, signature
detection, identifies known attack signatures observed in traffic. Although most network
IDS products throughout the years have been signature-based, anomaly-based products
are growing in popularity as a complement to signature-based products. The following
sections describe the anomaly and signature detection methods.

Anomaly Detection

Although there are various ways to detect anomalies in network traffic, many IDS
products based on anomaly detection methodologies work by establishing baselines of
normal network activity over a period of time, then detecting significant deviations from
the baseline. For example, a product could monitor a network for two weeks to identify
which network services are provided by each host, which hosts use each service, and what
volume of activity occurs during different times of the day and days of the week. A month
later, if the IDS sensor sees a high volume of traffic involving a previously unused service
on a host, this could indicate a distributed denial of service (DDoS) attack against the host
or a compromised host providing a new service. This class of product is sometimes known
as a DDoS attack mitigation system , because it not only detects the DDoS attacks, but
also acts to stop them through intrusion prevention techniques (as described in Chapter
11). Examples of DDoS attack mitigation systems include Captus IPS, Mazu Enforcer, and
Top Layer Attack Mitigator.

One obvious drawback of this type of anomaly detection is that the baseline needs to be
updated constantly to reflect authorized changes to the environment, such as the
deployment of a new server or the addition of another service to an existing server. Some
products permit the baseline to be updated manually, at least in terms of identifying which
hosts are authorized to provide and use certain services. If the baseline can be kept
current, or if the environment is quite static and the baseline changes rarely, anomaly
detection can be extremely effective at identifying certain types of attacks and
reconnaissance activities, such as port and host scans, network-based denial of service
attacks, and malicious code (particularly worms). Unfortunately, this type of anomaly
detection cannot identify most other types of attacks, so it is best used to complement
other IDS technologies.

Many signature-based IDS products perform some type of protocol anomaly detection. This
means that the IDS compares traffic to the expected characteristics for widely used
protocols, such as HTTP, DNS, and SMTP. When a serious discrepancy is discoveredfor
example, a header field that contains hundreds of binary values instead of the expected
small number of text charactersthe IDS generates an alert that an anomaly has been
discovered. This can be very effective at identifying certain previously unknown instances
of attacks that a purely signature-based IDS could not identify.

One significant limitation of anomaly-based IDS is that generally it cannot determine the
intent of an attackjust that something anomalous is occurring. Analysts need to study the
data captured by the IDS to determine what has happened, validate the alerts, and react
appropriately. However, because network and protocol anomaly detection based methods
can detect attacks that signature-based IDS cannot, a robust IDS solution for an
enterprise should incorporate both anomaly-based and signature-based methods if
resources permit.

Signature Detection

A network IDS signature is a pattern you are looking for in traffic. When a signature for an
attack matches observed traffic, an alert is generated, or the event is otherwise recorded.
A simple signature example is one that detects the Land attack; the source and
destination IP addresses in a packet are the same (http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-1999-0016). Some older operating systems could not
properly handle such packets, which violate standards, so attackers would send crafted
packets with the same source and destination addresses.

Although some network traffic signatures, such as ones for the Land attack, are quite
simple, others are considerably more complicated. Many signatures are protocol or
application specific; for example, many signatures pertain only to DNS traffic. Because
DNS zone transfers traditionally use TCP port 53, a signature pertaining to a zone transfer
vulnerability includes the TCP protocol and also needs to look for destination port 53. Each
signature specifies other characteristics that help to identify the vulnerability that the
attacker is trying to exploit. Some IDSs focus on long sequences of code from published
exploits, whereas other IDSs actually perform full protocol analysis, examining and
validating the header and payload values of each packet. Although full analysis is more
resource intensive, it tends to produce a much more robust signature solution.

Most intrusion detection vendors release new sets of signatures regularly. If a major new
vulnerability is discovered or an exploit is widely seen, intrusion detection vendors quickly
research the exploit or vulnerability, create new signatures for it (or determine that
existing signatures already match it), and release the signatures to their users as soon as
possible. This process is similar to the process that antivirus software vendors follow when
addressing threats from new viruses, worms, Trojans, and other types of malicious code.
When a major new threat emerges suddenly, such as the Slammer and Netsky worm, IDS
vendors typically have a signature available for their customers in a matter of hours.

How Signatures Work

Let's look at an example of a signature for the Nimda worm. Because the worm uses a
common text-based protocol (HTTP) and uses a relatively simple exploitation technique,
it's an ideal subject for understanding the basics of signatures. When the Nimda worm
tries to infect a web server, it sends a set of HTTP requests, including this one:

GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir

The purpose of this particular request is to exploit a Unicode-related vulnerability in
certain unpatched Microsoft IIS servers to gain unauthorized privileges. %c0%af is the

Unicode equivalent of a slash, so this command is actually trying to traverse the root
directory to exploit the vulnerability. Although no damage is done to the server, success at
this point tells the worm that the server is vulnerable. The worm can now launch a
damaging attack to this server.

You want your network intrusion detection sensors to notify you when they see this traffic.
Many different possible signatures exist. A simple text-matching signature would look for
/scripts/..%c0%af../ in a URL (more precisely, in the payload of a TCP packet that a
client sends to a server's port 80). Because the Nimda worm issues several GET requests

with slightly different values, you would need a separate signature for each one of them if
you wanted to identify each attack attempt.

Some IDS sensors have a much more robust way of identifying these types of requests as
attacks. Rather than doing simple text matching, they actually decode the request,
substituting a slash for the %c0%af sequence, and then analyze the validity of the decoded

URL. As a result of the analysis, the IDS sensor determines that the attacker is trying to
go past the root directory, and it generates an alert. Although this method is more
resource intensive, it provides a much better detection capability than the simple text-
matching method because it actually examines traffic for the attack technique, not for
specific known instances of that technique being used.

False Positives and False Negatives

Signature development is always a balancing act. A specific signature might be extremely
accurate in identifying a particular attack, yet it might take many resources to do so. If an
attacker slightly modifies the attack, the signature might not be able to identify it at all.
On the other hand, a general signature might be much faster and require far fewer
resources, and it might be better at finding new attacks and variants on existing ones. The
downside of a general signature is that it also might cause many false positiveswhen a
sensor classifies benign activity as an attack. Another factor is the original release date of
the signature; over time, false positives are identified by the IDS vendor and corrected,
leading to the release of higher-quality signatures. Brand-new signatures often generate
high numbers of false positives.

Every intrusion detection system generates false positives. When you first look at an IDS
console and see dozens or hundreds of alerts, you might think that your systems are
under massive attack. But those alerts are much more likely to be false positives. By
selecting a solid IDS product and tuning your sensors, you can reduce false positives, but
you can't completely eliminate them. No matter how precisely a particular signature is
written, there's still a chance that some benign traffic will accidentally match that
signature. False positives are a headache for an intrusion analyst because you have to
spend time and resources determining that they are, in fact, false.

The Intrusion Detection System Is Possessed!

I will never forget the first time I had to review and analyze intrusion detection
alerts. I opened the IDS console to review the data, and my mouth dropped as I
saw hundreds of alerts that all said "Devil." I scrolled through screen after
screen of Devil alerts, and I started to wonder if the IDS was possessed! The
Devil turned out to be an alert for the Devil Trojan. After several hours of
research, I determined that the alerts were false positives caused by a poorly
written signature.

A false negative occurs when a signature fails to generate an alert when its associated
attack occurs. People tend to focus on false positives much more than false negatives, but
each false negative is a legitimate attack or incident that IDS failed to notice. False
negatives get less attention because you usually have no way of knowing that they have
occurred. Sadly, you're most likely to identify a false negative when an attack is
successful and wasn't noticed by the IDS, or when a different type of network IDS sensor
or host-based IDS product notices it. In addition, if a signature generates many false
positives, the analyst usually shuts off the signature altogether or ignores all the
corresponding alerts. This means that the analyst doesn't review legitimate instances of
the alert, and this also becomes a type of false negative. It's important to understand
what causes false positives and negatives so that you can choose an IDS that minimizes
them.

Developing Signatures That Minimize False Positives and Negatives

To better understand false positives and negatives, let's look at a simple example.
Suppose that in your intrusion detection system, you write a signature that looks for
cmd.exe anywhere in a URL. (cmd.exe is often used in root traversal exploits against IIS

servers, such as the Nimda worm.) This is a general signature that matches many
different attack attempts. Unfortunately, it also matches cmd.exe-analysis.html, a web
page that contains an analysis of cmd.exe attacks. It matches against nascmd.exe as well,

which is unrelated to these exploits. These are examples of false positives caused by an

overly general signature.

Because of the false positives, you decide to rewrite your signature to use some
contextual information as well. Now your signature is a URL that contains
/winnt/system32/cmd.exe. Because this is a more specific signature, it triggers fewer

false positives than the more general signature.

Unfortunately, reducing false positives often comes at the expense of increasing false
negatives. If an attacker uses a URL that includes
/winnt/system32/../system32/cmd.exe, the more specific signature misses it, causing a

false negative to occur. However, the more general first signature would have sent an
alert. And the more robust method described earlier, which decodes the entire URL and
evaluates it for root traversals, would have sent an alert for both versions. More complex
signatures are usually better than simple text-matching signatures, which are unable to
identify most variations on attacks. In fact, some attackers purposely craft their attacks to
avoid detection by simple signatures; this is known as IDS evasion .

Detecting IDS Evasion Techniques

As if developing an IDS signature that minimizes false positives and false negatives isn't
difficult enough, you must also consider the effects of IDS evasion techniques on
signature development. Attackers have many methods of altering their code to avoid IDS
detection. Many are simple, such as the example discussed previously that obfuscated the
path by including .. sequences. Another technique used in URLs is replacing a character
with its hex or Unicode equivalent. Therefore, cmd.exe could become cmd.%65xe because
%65 is the hex representation of e. Only IDS products that perform hex decoding before
performing signature comparisons would determine that this string matches cmd.exe.

Some evasion techniques actually relate to the IDS sensor's core architecture, not specific
signatures. One such technique is to fragment a packet so that it has a small initial
fragment; the attacker hopes that the IDS examines only the first fragment, which looks
benign, and ignores the remaining fragments, which contain malicious content. An IDS
that does full-packet reassembly is not fooled by this evasion method.

Avoiding Unwanted Alerts

Besides false positives, you might also have alerts that address legitimate problems that
you simply don't care about. Unwanted alerts seem to occur in just about every
environment. For example, if your environment is an ISP or a wireless company, you are
providing network services to customers. You probably have a lot of traffic passing on your
networks between your customers and other outside hosts. If you are monitoring these
networks with IDS sensors and you tune them to identify all possible scans and attacks,
you are likely to be overwhelmed with a huge number of alerts that you honestly don't
care about. Do you really want to know if one user sends another a FOOBAR.TXT.EXE file?

This could trigger an alert because of the suspicious extension combinationand the alert
would almost certainly be accuratebut the activity is outside the scope of your control.

Note

Tuning your sensors to produce only the information relevant in your
environment is critical if you're going to get the best results from your IDS
solution.

Alerting, Logging, and Reporting

When an intrusion detection system sees traffic that matches one of its signatures, it logs
the pertinent aspects of the traffic or generates an alert, depending on the severity of the
activity and the configuration of the IDS sensor. Alerts can be delivered to intrusion
analysts in a variety of ways, including messages on the analyst console, emails, and
SNMP traps, depending on the product being used.

Reporting is another key element of intrusion detection. If you have only one sensor,
reporting should be simple. If you have dozens of sensors, you probably don't want
separate reports from each of them. Instead, you want all data to be collected in one place
because it's more convenient to view and easier to back up. It's also far easier to correlate
events that all sensors see. Reporting formats vary widely among IDS products; most also
permit sensor alerts and logs to be exported to other databases for further queries and
reporting.

Review IDS Sensor Status Regularly

I was helping an intrusion analyst tune the dozens of network IDS sensors
deployed in his environment. He told me he had noticed recently that the
number of alerts he was seeing on his analyst console had dropped
significantly. After a few days of this, he noticed that several sensors weren't
generating alerts. Puzzled, he finally checked the sensor status reports and
discovered that none of them were seeing packets. An investigation revealed
that a co-worker had reconfigured the switches to which the sensors were
connected.

Check the status of your sensors regularly. Most IDS sensors provide some sort
of status report that indicates how the sensor is functioning and what volume of
traffic it is seeing. If you notice unexpected drops in traffic levels, you need to
investigate the situation as quickly as possible; your sensor might no longer be
seeing traffic.

Intrusion Detection Software

Many different network IDSs are available, each with its own distinct features. Some of
the best-known and most popular products include Cisco Secure IDS, Enterasys Dragon
Network Sensor, ISS RealSecure Network Sensor, NFR Sentivist IDS, Snort, and Sourcefire
Intrusion Management System. They all provide alerting, logging, and reporting
capabilities. Signature sets are available through a variety of means, depending on the
product. Users of some products have written their own signatures and made them
publicly available. Other products must be purchased to get signatures; some vendors
hide the signature details, whereas others allow users to view and even modify their
signatures.

Network IDS sensors have other helpful features. For example, some systems can perform
network monitoring and traffic analysis, collecting statistics on connections, protocols in
use, and the like. This capability can be invaluable in identifying policy violations, such as
unauthorized services in use, and traffic oddities in general. We will discuss policy
violations later in this chapter. Another feature covered in more depth later is that of
intrusion prevention, in which an IDS sensor works with other network devices or acts on
its own to halt certain traffic from occurring. You can learn more about such features in
Chapter 11.

Some IDS products provide tiered solutions, which typically involve deploying multiple
IDS sensors on various network segments. Each sensor transmits its IDS data to a
centralized server that stores all the data. The individual sensors or the centralized box,
which is able to correlate events from all the sensors' data, can make alert decisions.

Many IDS solutions also have separate analyst consoles that connect to the centralized
system or the individual sensors; these enable analysts to view recorded data and alerts,
as well as reconfigure the sensors and update signatures. Some software vendors, such as
ArcSight, e-Security, GuardedNet, Intellitactics, and netForensics, offer console products
that can process and correlate data from various brands of IDS sensors, firewalls, and
other hosts; Chapter 20, "Network Log Analysis," discusses such products.

Intrusion-Related Services

Besides intrusion detection products, some intrusion detectionrelated services might be
able to assist you with the analysis of your intrusion detection data. Some organizations
choose to outsource the analysis of their IDS sensor data to specialized commercial
monitoring services. Other organizations elect to do their own analysis, but also submit
their data to free distributed IDS services for additional help.

Distributed IDS Services

As IDS products have become more popular, the use of free distributed IDS services has
also grown significantly. The basic concept is that administrators from organizations all
over the world submit logs to a distributed IDS service from their own IDS sensors,
firewalls, and other devices. These services analyze the data from all the sites and
perform correlations to identify likely attacks. Two of the best-known distributed IDS
services are Symantec's DeepSight Analyzer, located at http://analyzer.symantec.com,
and DShield, located at http://www.dshield.org.

Using a distributed IDS service has a few benefits. Because the service receives logs from
many environments, it has a wealth of data to use for its intrusion analysis. A distributed
IDS service finds patterns among all the attacks that individual sites cannot see. Another
great feature of some distributed IDS services is that if they conclude that a host at a
particular IP address attacked a substantial number of sites, they will email the technical
contact for that domain so that the activity can be investigated. Distributed IDS services
can reduce some of the burden placed on intrusion analysts by analyzing logs, correlating
events, and following up on highly suspicious activityessentially providing another tool
that can help analysts.

Outsourced Intrusion Detection System Monitoring

Many companies, such as Counterpane, ISS, and Symantec, offer managed security
services that include IDS monitoring capabilities. This generally entails 24-hour remote
monitoring of your IDS sensors, analysis of IDS data, and rapid notification of your staff in
case of serious attack or IDS failure. One advantage of using these services is staffing
related; they can provide trained intrusion analysts to monitor your sensors at all times.
Another advantage is that because these services collect data from so many networks,
they can correlate attacks among them. The disadvantage is their lack of knowledge about
your environment and their inability to correlate events unless they can access firewall
and host log files in near real time. (In addition to outsourcing IDS monitoring, many
organizations also outsource the monitoring of other security event sources, such as
firewalls and antivirus servers; in such cases, correlation is generally not an issue.)

At best, outsourced IDS monitoring can identify serious attacks and help your organization
respond to them quickly and appropriately. If your organization doesn't have the time or
expertise to analyze its own IDS sensor data properly and promptly, outsourcing that work
is important for maintaining a strong perimeter defense. At worst, such services add little
or nothing to the existing IDS solution, while requiring substantial financial commitments.
Because outsourced IDS monitoring is very resource-intensive, it can easily cost millions
of dollars a year for larger organizations.

The Roles of Network IDS in a Perimeter Defense

IDS sensors serve several purposes in a good perimeter defense. In some cases, they are
uniquely suited to the task they perform. Besides identifying attacks and suspicious
activity, you can use IDS data to identify security weaknesses and vulnerabilities,
including policy violations. IDS data is also an invaluable part of network forensics and
incident-handling efforts. Network IDS complements other perimeter defense components
by performing functions that they cannot, such as full protocol and payload analysis. IDS
sensors can also work with other defense components to halt active attacks. Network IDS
is valuable in most environments for creating and maintaining a strong overall security
solution.

Identifying Weaknesses

It is absolutely crucial that you identify vulnerabilities and weaknesses and reduce or
eliminate them. If you don't take care of them, attackers will most likely find and exploit
them, and hosts might be compromised. If a host is compromised, an attacker is likely to
use it as a jumping-off point for attacks against other hosts in your environment. By
preventing that host from being compromised, or by being alerted immediately after it has
been, you can achieve a much better outcome. You can use IDS proactively to find
vulnerabilities and weaknesses and identify early stages of attacks, and you can use it
reactively to detect attacks against hosts and log what occurs.

Security Auditing

Network IDS can assist in security auditing. You can use the IDS logs and alerts to
identify weaknesses in network defenses. For example, if a sensor sends alerts about
suspicious Telnet activity from an Internet-based host and your firewall is supposed to be
blocking all incoming Telnet activity, either your firewall is not blocking the traffic
properly or your network has an additional connection to the Internet that is not secured
properly.

Policy Violations

Some IDSs enable you to receive alerts when certain protocols or well-known port
numbers are used. For example, if your users are not permitted to use the Internet Relay
Chat (IRC) protocol, you could tune your IDS to alert you whenever it sees IRC traffic on
the network. Because many Trojans, such as Sdbot, and other malicious code use IRC for
communication, IRC traffic on your network could indicate that an incident has occurred.
It could also indicate a user who is violating your security policy. Either way, it's activity
you're likely to want to know about.

Along the same lines, IDS sensors can be useful in finding misconfigured systems on your
own networks, such as a host that isn't using your web proxy server and is reducing the
overall security level of your environment. Sensors can also help you find rogue systems
that unauthorized personnel are running; for example, a user might set up a web server
for her consulting business on her corporate workstation. When reviewing your IDS logs,
you would see port 80 traffic directed to this box. Identifying improperly configured hosts
and addressing their problems is a key part of reducing the vulnerabilities in your
environment.

Detecting Attacks from Your Own Hosts

Although network IDS sensors used to be thought of as only identifying suspicious activity
that enters a network from the Internet, it's important to consider that you can also use
IDS sensors to identify outgoing attacks. This use is particularly valuable in environments
where outbound access is largely unrestricted. You certainly want to be aware of attacks
that your internal hosts are performing on external entities; your users could be causing
these attacks, or the attacks could signal that another party or a worm is using
compromised machines to attack others.

In an environment where firewalls and packet filters are configured to let almost any
activity out of your organization, an IDS is probably the only method you have of
identifying such attacks. If your border devices place some restrictions on outbound
activity, you might identify an attack by reviewing your firewall logs, but this is far less
likely to happen because most firewalls have no signature capabilities and can't identify
most attacks. Also, reviewing firewall logs is much more resource-intensive than
reviewing the logs of an IDS sensor that checks outgoing traffic.

Incident Handling and Forensics

In an ideal world, your organization would have staff monitoring your IDS logs and alerts
24 hours a day and reacting immediately to suspicious activity. Although organizations are
increasingly implementing 24-hour monitoring, it's more likely than not that yours has
not. You probably receive a page when the most serious alerts occur, and you review your
IDS alerts and logs as often as you can, given all your other duties. It's important that
you review alerts as often as possible so that you can quickly identify serious attacks and
react appropriately to them.

Even if you don't notice that an attack is occurring until the damage has been done, the
IDS data can still be invaluable to you. It can show you which hosts were attacked and
what attacks were used against them. This critical information can help you recover from
incidents much more quickly and identify the likely source of an attack. It gives you the
basic information you need when starting to handle an incident, and it indicates other
hosts that might have related data, such as firewalls that the traffic passed through or
other hosts that were attacked.

Along the same lines, many people do not consider the forensic uses of IDS. You can use
IDS logs to investigate an incident. Also, some IDS products enable you to monitor and
log specified types of traffic. For example, if you don't permit IRC to be used on your
network, you might want to set your IDS to log all IRC traffic, which could then capture
IRC communications between malware on one of your machines and a remote IRC server.
Of course, you need to consider the privacy rights of your users before configuring your
IDS this way; legitimate users might be chatting with each other using IRC, and the IDS
might record their conversations.

Complementing Other Defense Components

Part of the purpose of network IDS is to correlate the activity that individual hosts might
see. If 100 hosts each record one failed Telnet attempt, no one might notice; but if an IDS
sensor records 100 failed Telnet attempts, it's much more likely to trigger an alert. IDS
sensors may work with perimeter defense components to stop attacks in progress. IDS
sensors can also perform functions that other perimeter defense components generally
can't.

For example, firewalls and packet filters have limited capabilities to examine traffic.
Typically, they do not look at the contents of packet payloads, although some might do
some basic protocol analysis. Firewalls generally look at some of the most basic
characteristics of traffic and accept, deny, or reject it accordingly. A firewall might try to
stop certain services from passing through by blocking certain port numbers, but it
generally does little or nothing to evaluate traffic that uses allowed port numbers. IDS
sensors are designed to examine the contents of packets; some IDS sensors are even

capable of doing full protocol analysis, which means that they can examine the contents of
an entire session as it occurs and alert you if the traffic does not match its expectations,
without matching the traffic against a known attack signature.

A simple example of this is the identification of applications that run on unexpected ports.
For example, a Trojan that is installed on a host might use TCP port 21 (usually associated
with FTP control connections) for all communications with its Trojan master. If your
firewall is configured to let internal users FTP to external sites, the Trojan could initiate a
connection to its master, and your firewall would respond as though it were an FTP
connection and permit it. However, the IDS sensor would actually analyze the content of
the packets and alert you that the traffic was not FTP. You could then review the IDS logs
for more information and investigate the host in question.

A more complex example of the value of protocol analysis is the identification of various
known and unknown attacks. One of the most commonly used attack techniques is the
buffer overflow, in which the attacker sets various fields or arguments to overly large or
long values to attempt to overwrite memory locations. By performing protocol analysisfor
example, validating the header and payload values in a DNS querythe IDS can identify
anomalous values that are possible signs of buffer overflow attempts. Although stateful
firewalls might do some protocol analysis, they are usually poor logging tools and have no
signature capabilities. Other types of firewalls generally don't do protocol analysis at all.

IDS Sensor Placement

Now that you're familiar with the basics of network intrusion detection, you're ready to
consider how it fits into your environment from a network architecture standpoint. It can
be difficult to balance your desire to monitor as much of your network as possible with
financial and staffing limitations. This section looks at the need for having multiple IDS
sensors and where they are typically placed in a network. We'll also discuss some issues
that can affect sensor placement, as well as the advantages of implementing a separate
IDS management network.

Deploying Multiple Network Sensors

In many environments, you should deploy multiple IDS sensors. Each sensor generally
monitors a single network segment. In a small organization with a simple network
architecture and limited traffic, a single sensor might be adequate, although more than
one might still be advisable in high-security situations. In larger environmentsparticularly
those with many network segments, those that offer substantial Internet-based services,
and those with multiple Internet access pointsmultiple sensors are almost certainly
needed to adequately monitor network traffic.

Deploying more intrusion detection sensors usually produces better results. By deploying
sensors on various network segments, you can tune each of them to the traffic you
typically see on that segmentthe type of hosts that use it and the services and protocols
that are traversing it. You would probably tune a sensor on an Internet-connected
segment much differently than you would tune one that is monitoring traffic between two
tightly secured internal portions of your network. If you deploy only one sensor, the
amount of tuning you can do is generally quite limited. Of course, if you deploy multiple
sensors, you need to be prepared to handle the increased number of alerts that will be
generated. Placing additional sensors on the network is not very helpful if administrators
do not have time to maintain and monitor them.

Another reason for using multiple sensors is the fault tolerance of your IDS. What if your
single sensor fails, for any reason, or the network segment that it's monitoring is
unexpectedly unavailable? If you have one sensor, you won't have a network intrusion
detection capability until the failure is corrected. Having more than one sensor provides a
more robust solution that can continue monitoring at least portions of your network during
a sensor failure or partial network outage.

Placing Sensors Near Filtering Devices

Typically, you deploy IDS sensors, which are often paired with firewalls or packet filters,
near Internet access points. Sometimes you place a sensor on one side of the filtering
device, and sometimes on both sides. For example, an Internet firewall might have an IDS
sensor on the external network segment to identify all suspicious activity, and a second
IDS sensor on the internal network segment that can identify all suspicious activity that
passes through the firewall from the outside.

If possible, deploy sensors on both sides of firewalls and packet filters. However, if
financial or other resource constraints limit you to one sensor per filtering device, you
have to decide on which side of the filtering device the sensor should be deployed. It's
often recommended that the sensor be placed on the outside network so that it can detect
all attacks, including those that don't get through the filtering.

However, in some cases, you might prefer to put the sensor on the inside network.
Sensors on an outside network, particularly one that is connected to the Internet, are

more likely to be attacked, and they're also going to process much more traffic than a
sensor on an inside network. In addition, if your staff has limited time to perform intrusion
analysis and can only address the most serious threats, putting the sensor on the inside
network collects data and generates alerts only on attacks that get into the network.
Another advantage to putting a sensor on the inside network is that it can help you
determine whether your filtering device is misconfigured.

If you're limited to one sensor, your firewall policies might be relevant to its placement.
We mentioned earlier that you should also consider issues involving outgoing traffic from
compromised or malicious hosts within your own environment. If your firewall has a
default deny policy for outgoing traffic, a sensor on the inside network is required to
identify attacks that your internal hosts attempt against external hosts but that your
firewall blocks. If your firewall has a default allow policy for outgoing traffic, the sensor's
location is much less important (as long as there's one near your firewall).

Another factor in sensor deployment is the volume of data to be processed. If a network
segment has an extremely high volume of data, you might want to deploy multiple
sensors with different configurations to split the traffic. After a sensor starts dropping
packets, you will almost certainly experience more false positives and negatives. If your
external network sees extremely high volumes of traffic, consider putting a sensor outside
the firewall that is tuned to identify only the most severe attacks, particularly flooding-
type attacks meant to cause a denial of service for your Internet connectivity or firewall.
Use a second sensor inside your firewall to do more detailed analysis; this sensor should
see a significantly smaller volume of data than the first sensor.

Note

Wherever there is a link to the Internet or to other external networks or hosts,
there should be an IDS sensor. This rule varies from environment to
environment, of course. Another great place to put a sensor is where a filtering
device should be but isn't.

Placing IDS Sensors on the Internal Network

In many environments, network IDS sensors are placed along the network perimeter only,
typically around Internet firewalls and packet filters. However, some environments also
benefit from the deployment of additional network IDS sensors. A classic example is a
company's research and development division. The company might have established a
firewall or packet filter that prevents users in other divisions from accessing the hosts in
R&D. Because the information on the R&D hosts is valuable to external attackers and
malicious insiders, it would be prudent to deploy an IDS sensor near the firewall or packet
filter.

Some companies are so security conscious that they deploy IDS sensors throughout their
networks to monitor all traffic. Of course, this requires considerable financial and staffing
resources, but it gives the intrusion analysts a great feel for what's happening throughout
their environment. If you only look at the activity occurring on your borders, you're
missing much of the picture. Remember that IDS sensors aren't limited to identifying
attacks against servers; many can also find signs of worms and other malware attempting
to spread through a network, sometimes before antivirus software can identify them.

Working with Encryption

When planning network IDS sensor placement, you must consider how to deal with
encrypted network traffic, such as VPN connections. IDS sensors certainly don't have the
capability to decrypt traffic, but that's a good thing! If all the traffic on a certain network

segment is encrypted, it still might be valuable to deploy a sensor to examine packet
headers and look for unencrypted traffic. To monitor the content of the traffic that was
encrypted, you should deploy IDS sensors at the first point in the network where the
decrypted traffic travels. In addition, you should put host-based IDS software on the host
decrypting the traffic because it's a likely target for attacks.

Processing in High-traffic Situations

Consider the volume of network traffic. The amount of traffic that IDS sensors can process
is dependent on many factors, including what product is being used, which protocols or
applications are most commonly used, and for which signatures the sensors have been
directed to look. Therefore, no simple answers exist as to what volume of traffic any
particular product can handle. In general, IDS sensors reach their capacity before firewalls
do, primarily because IDS sensors do much more examination of packets than other
network devices do. Also, the field of IDS sensor and signature development and
optimization is still fairly young, at least compared to other aspects of network security.

Configuring Switches

If portions of your network that you would like to monitor are switched, then ensure that
you configured your IDS sensors and switches appropriately. Switches must have their
spanning ports configured properly for network IDS sensors to see all the traffic passing
through the switches. This critical configuration has adversely affected many IDS
deployments. A sensor that tries to monitor traffic on an improperly configured switch
might see no traffic at allor it might see only parts of the traffic, such as only one side of
two-way TCP connections, which is only marginally better than seeing nothing. Thoroughly
test sensors in switched environments to confirm that they are seeing all the traffic
properly.

Note

In some cases, it is not feasible for an IDS to use spanning ports to monitor
network activity. Some switches stop sending some or all traffic to the spanning
port under peak usage. Also, a spanning port may only be able to see traffic for a
single VLAN on a switch. A better alternative may be to deploy a network tap.
Taps are available from several vendors, including Finisar (previously known as
Shomiti), Intrusion, Net Optics, and Network Critical.

Using an IDS Management Network

To improve the security of your network IDS sensors, you might want to create a separate
management network to use strictly for communication among IDS sensors, a centralized
IDS data collection box, and analyst consoles. In this model, each network IDS sensor has
at least two network interface cards (NICs). One or more NICs sniff traffic from monitored
networks as their sole function. These NICs do not transmit traffic. Instead, the last NIC is
connected to a separate management network, which is only used for transferring IDS
data and configuration updates. This is also known as performing out-of-band
management of the network IDS.

By implementing such an architecture, you make it much more difficult for attackers to
find and identify an IDS sensor because it will not answer requests directed toward its
monitoring NICs. Because the management NIC is on an isolated network, attackers
shouldn't be able to reach it. Also, most monitoring NICs are pure sniffers and do not use
an IP address. If an IDS sensor uses an IP address and an attacker knows what that

address is, the attacker could launch a DoS against it so that it couldn't see her attacks, or
she could otherwise try to hide or obfuscate her traffic from the sensor.

Implementing a separate management network has other advantages. It isolates
management traffic so that anyone else who is monitoring the same network doesn't see
your sensors' communications. It also prevents the sensors from monitoring their own
traffic. A separate network might also be a good way to deal with potential problems
related to passing sensor data through firewalls and over unencrypted public networks.

Maintaining Sensor Security

One important item that hasn't been addressed yet is that of sensor security. It's critical
that you harden your IDS sensors to make the risk of compromise as low as possible. If
attackers gain control of your IDS, they could shut it off or reconfigure it so that it can't
log or alert you about their activities. Attackers might also be able to use your IDS to
launch attacks against other hosts. However, if attackers can get access to your IDS
management network, they might be able to access all your sensors. Maintaining the
security of your sensors is key to creating a stable and valuable IDS solution.

Note

Most IDS vendors offer IDS appliances that have already been hardened.
Typically, appliances offer only the services necessary to support IDS functions,
and they are configured to minimize the possibility that they will be
compromised. Configuring and deploying an appliance-based sensor generally
requires much less effort than building a sensor. However, when a new OS or
service vulnerability occurs, it may not be possible to patch the appliance until
the vendor releases updated software, because many appliances do not provide
any OS access.

Case Studies

Now that we have discussed some of the factors that go into sensor placement, let's look
at three different scenarios. Each one is shown through a simplified diagram of the
relevant portions of the network. No right or wrong answers exist, only reasons why
certain locations might be more beneficial than others.

Case Study 1: Simple Network Infrastructure

Figure 8.1 shows a network diagram for a small organization with a simple network
infrastructure. It has only one connection point to the Internet. A firewall divides the
network into three segments:

An external DMZ segment that is connected to the Internet

A screened subnet that contains servers that are directly accessed by Internet-based
users or must directly access the Internet, such as email, web, web proxy, and
external DNS servers

An internal segment that contains servers that typically aren't directly connected to
the Internet, as well as workstations, printers, and other host devices

Figure 8.1. This is a simple network infrastructure that includes IDS
sensors and a separate IDS management network.

[View full size image]

In this environment, incoming connections from the Internet can only be made to hosts on
the screened subnet; those hosts can then initiate connections to the internal network.
Hosts on the internal network can initiate connections to hosts on the screened subnet or
directly to Internet-based hosts. Although the firewall has a default deny policy for
incoming traffic, it has a default allow policy for outgoing traffic. Little outgoing traffic is
restricted.

IDS Deployment Recommendations

Figure 8.1 shows the IDS management network as a separate entity from the monitored
networks. Each sensor contains two NICs: one sniffing packets on the monitored network,
and the other transmitting IDS data on the management network. The management
network is connected only to the sensors, a central IDS logging box, and the analyst
workstations.

Ideally, all three network IDS sensors shown in Figure 8.1 should be deployed. IDS 1 (on
the external segment) looks for any probes, scans, or attacks coming from the Internet.
IDS 2 (on the internal segment) shows you which malicious traffic got through the firewall
to your internal network. Both IDS 1 and IDS 2 can monitor outgoing traffic as well,
looking for attacks from your internal hosts. IDS 3 focuses on identifying attacks against
your externally exposed boxes, which are the most likely targets of attackers. The same
sensor is also able to monitor network activity between your external servers that doesn't
pass through the firewall. If one of your external hosts becomes compromised, this is the
only sensor that could see attempts from it to compromise other hosts on the same
segment.

Case Study 2: Multiple External Access Points

Figure 8.2 shows a more complicated network. This environment has multiple external
points of access: a dedicated connection to the Internet, a dial-up modem bank for remote
users, and multiple frame relay connections to remote offices and business partners.
Firewalls have been deployed at each access point to restrict the traffic that enters the
internal network.

Figure 8.2. A more complex corporate network has multiple external
points of access, which each need to be protected with IDS sensors.

IDS Deployment Recommendations

This scenario follows the same general rule as before: Whenever practical, deploy network
IDS sensors on both sides of firewalls and packet filters. The most interesting area to
consider is that of the external networks connected through the frame relay connections.
You will notice that no sensors monitor the connections on the external side. If your
budget permits, you can add sensors to those connections as well, although they might
not be needed. It depends on what is on the other side of the connection and what your
firewall is supposed to be doing.

You might feel that a remote office poses little threat and that a separate sensor to
monitor its connection is not necessary. Of course, you could also deploy a sensor at the
remote location, which would monitor traffic before it was sent over the frame relay
connection. If the remote site is a business partner's network, you might want to be more
cautious; however, your firewall might only be permitting a small, well-defined set of
traffic to pass through. The risk might be small enough that you can't justify the expense
of an additional sensor. Perhaps the connection to your business partner is largely
unrestricted, in which case you would want to monitor it much more closely. If you decide
to deploy sensors for the external links that enter the firewall, and the firewall has several
interfaces on separate network segments, you would probably want to deploy a sensor for
each segment. Each sensor can then be tuned for the nature of that particular connection.

Another item to consider is the risk that outgoing attacks and probes pose. If you are not
restricting outbound traffic very much, then sensor placement shouldn't be affected by it.
But if you do restrict outbound trafficfor example, you block all connection attempts from
the internal network to the modem bankthen having the sensor on the inside is necessary
to detect attempted attacks. The question is, how much do you care about that? In your
environment, is it sufficient for the firewall to report that a connection attempt was
blocked, or do you need to know what the nature of that attempt was? How important is
the resource on the other side of the connection? What are the consequences if you fail to
notice an attack from one of your hosts against your business partner's systems?

Case Study 3: Unrestricted Environment

Our final case study, shown in Figure 8.3, is a greatly simplified view of a university
network with three main groups of hosts: students, faculty and staff, and administration
(registrar, bursar, and so on). As is typical of many university environments, no firewalls
restrict traffic. A small amount of packet filtering might occur at routers throughout the
network, but otherwise, virtually any sort of traffic is permitted. The only exception is
some machines in the administration network that contain sensitive information, such as
student grades and financial information; these machines are somewhat protected through
router packet filtering. Because of the open nature of most universities, faculty and
student machines are usually vulnerable to exploitation, in part because just about any
sort of traffic is permitted. In addition, many servers are run by students or faculty, not
centralized IT staff, and are almost certainly not kept fully patched and secured.

Figure 8.3. In a university environment with little network security, it
is not easy to determine where to deploy IDS sensors.

We can expect many student and faculty machines to use modems or wireless network
cards. We can also expect that some of these machines run software such as pcAnywhere
to allow external hosts to dial in to them. In such an environment, it's impossible to
define the border of your network. It's also likely that the university offers dial-in services
for users. These services may require little or no authentication.

IDS Deployment Recommendations

As you might imagine, the security requirements of the groups of hosts shown in Figure
8.3 are quite different. In addition, staffing and financial resources are probably quite
limited, so you need to focus on the most important areas. Your first priority is protecting
the administrative computers, which are at high risk of being attacked. You want to
monitor these systems as closely as possible, through a combination of IDS sensors
deployed to the segments where the hosts reside, and host-based IDS software running on
all of them. If you can do nothing else, you need to regularly monitor IDS alerts and logs
related to these sensitive hosts.

Even if you have the resources to deploy and monitor additional sensors, will you have the
resources to react to what you see? These environments might contain tens of thousands
of largely unsecured machines that can be infected with viruses, Trojans, or other
malware. This is a similar problem to that seen by Internet service providers (ISPs), which
carry customer traffic but have little control over what their customers do. In fact,
portions of a university network can be thought of as an ISP for students. If network IDS
sensors are deployed, they need to be carefully tuned to only send alerts on the most
severe attacks. If the sensor sends an alert every time a port scan or host scan occurs,
the intrusion analyst will quickly be overwhelmed with alerts. Sensors might also be
unable to keep up with the high volumes of traffic if they are performing too much
analysis.

You might be asking yourself, "Why should I bother trying to monitor this traffic at all? If
users are permitted to do almost anything they want to, why should I try to deploy
sensors to the networks they use?" Here's a scenario that explains why some level of
network intrusion detection should be performed. Suppose that hundreds of hosts
throughout the university have been infected with the same Trojan and that these hosts
are used to launch DDoS attacks against other sites. Given the lack of other defense
devices, deploying an intrusion detection sensor to monitor outgoing traffic may be your
best chance of quickly detecting such an attack and collecting enough information about it

to identify the infected hosts.

Summary

In this chapter, you learned about the basics of network IDSs, particularly signatures and
how they cause false positives and negatives. We took a close look at where IDS sensors
and software can be located in various network environments and discussed the
advantages and disadvantages of various deployment architectures. The goal of this
chapter was not to teach you everything you will ever need to know about intrusion
detection. Several good books focus on that topic, such as Network Intrusion Detection: An
Analyst's Handbook , by Stephen Northcutt and Judy Novak, and Intrusion Signatures and
Analysis , by Stephen Northcutt, Mark Cooper, Matt Fearnow, and Karen Frederick. Instead,
we examined the role that IDS plays in a layered defense and how it has become a critical
component of a good security solution.

Chapter 9. Host Hardening
The term host hardening refers to taking a typical or default installation of an operating
system (OS) and associated applications and then modifying the configuration to decrease
the host's potential exposure to threats. The extent of hardening depends on the role the
system performs. A properly locked-down host can act as an effective contributor toward a
reliable network security perimeter.

This chapter presents core principles of the host-hardening process, with the goal of
helping you devise standards and procedures for locking down system configurations in
your organization. Rather than providing long checklists for every scenario and OS you
might encounter, we focus on concepts that are common to most host-hardening
scenarios, empowering you to customize publicly available checklists and guidelines for
your purposes. With this in mind, we go over key steps involved in stripping the system of
unnecessary OS components and tools as well as discuss the procedures for limiting user
access to unnecessary files and programs. We also offer guidance regarding auditing
issues and go over best practices related to applying patches. We complete the discussion
of host hardening by offering pointers to additional hardening resources. The topic of host-
level security continues in Chapter 10, "Host Defense Components," where we build on
this chapter's guidelines by explaining how to use hosts to help detect and isolate attacks
on the network security perimeter.

The Need for Host Hardening

Leaving the system in its default configuration provides attackers with too many
opportunities for obtaining unauthorized access to the host. Even if there is a well-tuned
firewall in front of the machine, it's hard to anticipate every way in which attackers may
access the protected system. This is why the material in this chapter is so critical to
ensuring the security of your infrastructure. When erecting a house, you want to make
sure that high-quality concrete is used to provide a robust foundation for the structure
built upon it so that the concrete will not crack under stress. In a network security
system, each measure we take to lock down the host's configuration provides us with the
basis for offering secure and reliable services to the system's users.

A significant issue in host-level security is the applications installed on the system. Of
course, a host is typically useless without the applications and OS components necessary
for it to fulfill its function. At the same time, any software enabled on a system may be
exploited due to vulnerabilities in the application or the underlying OS. A configuration
flaw or a coding error can provide the attacker with access to the underlying host, offering
an internal "island" from which to conduct further attacks. For example, buffer overflow
exploits against a vulnerable application can allow an attacker to execute privileged
commands on the targeted system. Operating systems and applications contain
vulnerabilities that attackers can exploit, even though some of these vulnerabilities might
not have been discovered yet or have not been publicly announced.

The NNTP Vulnerability in Windows, Circa 2004

The MS04-036 security bulletin and the associated patch, which Microsoft
released in October 2004, addressed a critical vulnerability in the Network
News Transfer Protocol (NNTP) component of Windows operating systems. If
exploited, the bug could allow a remote attacker to gain full control over the
affected host. Of course, the vulnerability existed before it was publicly
announced. If the attacker possessed a "private" version of the exploit, she
could have accessed the vulnerable system with little effort. Organizations that
removed or disabled the NNTP component from their hosts (if it was not
needed) protected themselves against this attack vector even without knowing
about the vulnerability.

From a security perspective, the most reliable way of locking down the host's
configuration is to begin with a minimalist systemjust the core OS (freshly patched, of
course) with only administrative accounts and tightly restricted access rights. You would
then add user accounts, install applications, and relax permissions only to the extent
needed for the system to function properly. Unfortunately, the installation process of
many operating systems and applications doesn't facilitate this process, installing
unnecessary components with loose permissions in a default configuration. In such
situations, you will need to carefully comb the system to disable, remove, and otherwise
lock down components that unnecessarily increase the host's risk profile.

Keep in mind that as you increase the extent to which the system is locked down, you
often end up decreasing the level of convenience it offers to its users. That might be one
of the reasons systems are frequently shipped with too many features enabled by default.
For example, Microsoft has, historically, shipped its products with userfriendly default
settings for ease of setup and use, with little regard to security implications of having too
many unnecessary components running on the system. With the release of Windows 2003

Server and Windows XP Service Pack 2, we have seen a shift toward tighter default
configurations of Windows; however, system administrators still need to review the
operating system's setup, tuning it to match their requirements.

When devising hardening procedures for hosts on your network, keep in mind the cost you
incur from applying the hardening techniques and maintaining the systems that have been
locked down. Not all hosts should be hardened to the same extent. If an end-user
workstation, a web server, and a VPN server have different responsibilities on the
network, their extent of appropriate hardening is different as well. You need to achieve the
right balance between security and functionality to determine what exposure to threat is
acceptable while still providing critical business services.

Securing Applications on the Host

Many of the principles discussed in this chapter in the context of OS hardening
apply, to a large extent, to applications that run on top of the OS. Especially
when dealing with more complicated applications such as databases and web
servers, you will need to get rid of unnecessary software components and
internal user accounts; establish access privileges; audit events; protect
accounts, data, and configuration parameters; and so on.

Consult vendor documentation when installing an application, in case the
vendor has provided best practices guidelines for locking down the program's
configuration. Such recommendations may explain how to install the application
so that it runs under a system account with limited privileges, and how to
change the default passwords assigned to the application's internal users during
the installation process. Keep in mind that you should not rely solely on the
vendor's documentationseek out books and guides that offer independent advice
on setting up the application in a secure manner.

An essential aspect of host hardening is ensuring the secure configuration of the
underlying OS. Securing the OS involves disabling or removing unnecessary services,
daemons, libraries, and other extraneous components that find their way onto the system
as part of the default OS installation.

Removing or Disabling of Unnecessary Programs

A modern operating system can provide a multitude of services, ranging from those
applicable to end-user workstations to those designed for high-end servers. When
installing Red Hat Linux, for example, you have the opportunity to pick a profile for the
system you wish to buildin response to your selection the installer ensures that the
resulting build contains the necessary program and configuration files. In Windows, you
make a similar decision when selecting the flavor of the OS to install (Home, Professional,
Server, and so on) as well as when configuring the machine after it boots up for the first
time. Keep in mind that the profiles OS installers present to you are generic, and they
only approximate the role the machine may play in your particular organization. As a
result, it is up to you to remove or disable the OS components you do not need.

Controlling Network Services

You should pay particular attention to programs that may be invoked over the network.
Attackers often scan networks in search of systems listening on commonly used ports,
especially those associated with known vulnerabilities. Leaving unnecessary network
services running on the host increases the risk that the system might be compromised.
Even if the host is located behind a firewall, attackers can gain access to the services
through ports that the firewall doesn't filter, or by finding ways to bypass the firewall
altogether.

Note

It is often difficult to stop an attacker once she gains access. Therefore, it is
crucial to be proactive to block the attacker from ever getting in.

You can use the netstat na command on most operating systems to list the ports on

which your system is listening. If this command presents you with a port number you do
not recognize, search the Web for that port number using your favorite search engine and
determine whether the associated application should remain running on your host. For
example, if you determine that your host is listening on TCP port 80, the system is
probably running a web server. If this is the desired behavior, great! Otherwise, be sure to
disable the offending service before releasing the system into production.

On UNIX platforms, the /etc/inetd.conf or /etc/xinetd.conf files control a large

number of network services, which are started by the Inetd process. You will need to edit
these text files to deactivate unneeded daemons. You may also need to look though
various files under the /etc directory to disable some services. The location of such files

differs across UNIX flavors. Here are some of the directories to look into:

/etc/xinetd.d

/etc/init.d/rc.d

/etc/rc.d

Under Windows, you can control many network services through Control Panel's applets
such as Services and Network Connections. For example, to disable the NetBIOS protocol,
which is ridden with legacy security weaknesses and is no longer needed in most
environments that use Windows 2000 or higher, you'll need to perform the following

steps:

1. Edit the properties of your Local Area Connection.

2. Select TCP/IP properties and click the Advanced button.

3. Select the WINS tab.

4. Activate the Disable NetBIOS over TCP/IP option.

This process is illustrated in Figure 9.1.

Figure 9.1. You can disable NetBIOS over TCP/IP in Windows 2000 or
higher by modifying properties of your network connection.

[View full size image]

In most Windows 2000 and XP environments, you will still be able to access files and
printers remotely through the built-in Server Message Block (SMB) protocol running
directly over TCP/IP, even if you disabled the NetBIOS protocol. Older Windows operating
systems, however, rely on NetBIOS for remote file and printer access.

Deactivating a network service decreases the likelihood that it will be used as a doorway
into the system, but it might complicate the task of remotely administrating the host. For
example, file-sharing services might not be directly related to a business function of an
Internet-accessible web server, but they might be helpful for administrators when
uploading or downloading the server's files. The more critical the system, the more likely
you will be willing to forego some administrative convenience for the sake of hardening its
configuration.

Let's take a look at some of the resource-sharing and remote access services you should
consider disabling on Windows and UNIX hosts.

Resource-Sharing Services

Resource-sharing services, sometimes called "file and print" services, allow a remote user
to access data on the host by connecting to it over the network. Sometimes default OS
installations provide too many opportunities for such access, leaving it up to you to
disable aspects of these services that you do not need.

Windows allows remote users to access files on a host using the SMB protocol through the
Server service, which the OS enables by default. Consider disabling this service on your
workstations if you do not require remote access to user workstations. The users will still
be able to connect to file shares on your serverssuch outgoing connections are established
by the Workstation service. If the system's purpose requires that the Server service
remain running, be sure to disable any unneeded file shares that the OS might activate by
default. For instance, Windows NT and higher automatically establishes "hidden"
administrative shares such as C$, ADMIN$, and PRINT$.

You can view, delete, and create hidden and regular Windows file shares through the
Computer Management applet in the Administrative Tools folder of the host's Control
Panel. For detailed information on managing Windows shares, take a look at Microsoft
Knowledgebase articles 314984 and 318751 at http://support.microsoft.com.

File sharing on UNIX operating systems is usually performed through Network File System
(NFS) services. It is a good idea to disable NFS-related daemons, such as nfsd and mountd
if you do not require the use of their services. If you will use NFS for providing remote
access to the system's file, carefully review the entries in the appropriate configuration
files, such as /etc/exports (under Linux) or /etc/dfs/dfstab (under Solaris).

NFS and RPC Services

NFS expects Remote Procedure Call (RPC) services to be running on the host.
On many critical UNIX systems, NFS may be the only service that requires RPC.
Therefore, if you disable NFS altogether on your system, check whether you can
deactivate RPC as well. Attackers often target RPC to obtain reconnaissance
information about the host or to attempt exploiting vulnerabilities that have
plagued many implementations of these services over the years.

Remote Access Services

In addition to providing resource-sharing services, modern operating systems often give
administrators the ability to remotely configure the host as well as to execute commands
on the machine without sitting directly in front of its console. Such services are attractive
targets for attackers, because, if compromised, they can grant unrestrained access to the
host.

Administrators can access Windows workstations remotely through Remote Desktop
service, which is part of Windows XP or and higher. They can access Windows servers
through Terminal Services, which run on Windows 2000 Server or higher. Although these
services require that the user be authenticated before connecting to the host, they provide
remote attackers with another network attack vector. If you will not use the Remote
Desktop or Terminal Services, you should disable them on your hosts. (For additional
information regarding Terminal Services, please see Chapter 10.)

In addition to providing full access to the remote system through Remote Desktop or
Terminal Services, Windows offers the Remote Registry Service, which allows
authenticated users to remotely manage the system's Registry. (Windows uses the
Registry to store critical configuration data for the OS and its applications.) In the spirit of

disabling network components that you do not need, you should deactivate this service
unless you are actually going to use it to remotely maintain the machine.

UNIX platforms support numerous services that can be used for remotely accessing the
host and that can be misused by an attacker. The most vulnerable of such programs are
the so-called r-commands , which include rsh and rlogin. These two programs allow users
to execute remote commands, but they do not encrypt the communications. Telnet is
another popular mechanism for remotely accessing UNIX systems. Much like the r-
commands, Telnet is gradually being phased out in favor of Secure Shell (SSH), which
encrypts the session and provides stronger authentication options.

It is possible set up a trust relationship between UNIX systems so that a remote user can
execute a command on another host without providing a password. Such trust
relationships are useful and might be required for the system's business purpose. Most r-
commands use IP addresses as the basis of verifying the identity of the trusted system;
therefore, it is relatively easy to spoof the trusted host's identity. Remote access
mechanisms, such as SSH, support the establishment of trust relationships based on
cryptographic keys, which are much more dependable for authenticating users and
systems. With all trust relationships, keep in mind that if it is easy for a legitimate user to
jump from host to host, it is just as easy for an attacker who compromises just a single
trusted host to do the same.

TCP Wrappers

TCP Wrappers (ftp://ftp.porcupine.org/pub/security) is a time-tested
mechanism for letting a UNIX system restrict and log access to its network-
accessible services. In basic terms, TCP Wrappers works by checking whether a
remote system is allowed to connect to a specific service before the connection
is passed to the application. Hosts that are allowed to connect are listed in the
hosts.allow file, and hosts that should be blocked are specified in the
hosts.deny file. In a way, this resembles the functionality of the host-centric

firewalls we discuss in Chapter 10.

TCP Wrappers has been used primarily to control access to services launched
through Inetd; however, TCP Wrappers functionality can also be compiled into
many standalone daemons. For example, SSH servers from OpenSSH as well as
from SSH Communications can be configured via a compile-time option to use
TCP Wrappers libraries. (The SSH version of the daemon also supports the use
of AllowHosts and DenyHosts tags in the server's configuration file.)

TCP Wrappers can provide access control functionality at a level that is
independent of the application's internal authentication mechanism. As a result,
TCP Wrappers can be used to block undesired networks or hosts before they
have an opportunity to target the application. This functionality contributes to
defense in depth by reinforcing the application's internal access control
mechanisms.

In addition to controlling the host's network-accessible services, it is important to remove
or disable other services and applications that the system does not require to fulfill its
tasks.

Information Leakage

A network access mechanism that has serious implications for information leakage in
Windows is known as a null session , which may allow remote users to anonymously
access sensitive data. One of the legitimate uses of null sessions is to list users from

another domain when granting them access to local resources. Some older third-party
tools also use null sessions for similar purposes. Unfortunately, an attacker can use the
same mechanism to query the remote system for usernames, shares, and services without
authenticating to the host. Although environments based on Windows 2000 or higher often
do not require null sessions for proper operation, they are commonly left enabled without
regard to their security risk.

If you disable the Server service, null session connections will be disabled as well. If the
Server service has to remain running, you can limit null session access through the Local
Security Policy editor, which you can access through the Administrative Tools folder in
Control Panel, or through Group Policy in environments that use Active Directory. The
relevant policy entry is called "Additional restrictions for anonymous connections,"
illustrated in Figure 9.2. You will find this setting under Local Policies, Security Options.
The most secure option is "No access without explicit anonymous permissions," which
eliminates most risks associated with null sessions, but might break some legacy
applications.

Figure 9.2. You can limit null session connections by restricting
anonymous actions using the Local Security Policy editor or through

Group Policy.

Another network service that often provides attackers with sensitive information is Simple
Network Management Protocol (SNMP). As we discuss in Chapter 19, "Maintaining a
Security Perimeter," administrators can use SNMP for remotely querying and modifying
configuration parameters of a wide range of hosts and network devices. In most SNMP
installations, SNMP-based access is restricted to those who know the proper passwords,
which SNMP calls community strings . Unfortunately, community strings are often set to
the words private and public in many default installations. If you cannot disable SNMP on
your host, be sure to at least change its community strings. Numerous SNMP tools can be
used to retrieve a wealth of information about the host running SNMP services, much more
than the information leakage associated with null sessions on Windows systems.

Removing Extraneous Software Components

Removing extraneous software components, even if they are not network services, is
important regardless whether you are installing an OS from scratch or locking down a
system that has been already installed. For example, a C compiler such as GCC might be
installed on a Linux-based web server by default, but it is rarely required for the web
server to operate properly. When a system is compromised and a utility such as GCC is
available to the attacker, it will be easier for her to compile additional attack tools or to

install a backdoor to the system that will allow future access.

To remove unnecessary software components from Windows hosts, use the Add/Remove
Programs applet in the Control Panel. Clicking the Add/Remove Windows Components tab
will result in the window depicted in Figure 9.3. By removing unnecessary OS components
in this manner, you will slow down the progress of an attacker should she find her way
onto your system.

Figure 9.3. The Windows Component Wizard allows you to remove
unnecessary software components from the host.

UNIX operating systems typically include package management tools that allow you to
remove unnecessary software components with relative ease. For instance, many Linux
distributions offer the rpm utility to remove unwanted packages that come with the OS,
whereas Solaris comes with the pkgrm program, which can be used to fulfill the same
purpose.

It is sometimes tricky to figure out which package to uninstall in order to get rid of a
particular program. To make this determination, you can usually query the package
management database on the host with the program's file path. For instance, in Linux you
would use the following command to determine that gcc-3.2-7 is the package that "owns"
the GCC program file:

rpm q f /usr/bin/gcc
gcc-3.2-7

You should remove unnecessary administrative tools and OS components from critical
servers, especially those that act as bastion hosts firewalls, VPNs, and other security
services. You may encounter situations where removing a software component is too
difficult: It may be embedded too deeply into the OS, or you may need to use it once in a
while for administrative purposes. Whatever tools you elect to keep, be sure to modify file
system permissions on their files to make it difficult for non-administrative users to get to
them. You can usually accomplish this by setting the appropriate file system permissions
so that only those authorized to use the tools will have access to the files.

Now that we've covered the principles behind disabling or removing unnecessary
programs, let's take a look at the steps involved in limiting local access to sensitive data
and configuration files.

Limiting Access to Data and Configuration Files

Should an attacker obtain remote access to the system through a non-administrative
account, he will often look for ways to elevate his privileges to gain full control over the
host and to access sensitive data or configuration files. By taking the time to set the
appropriate access restrictions on such files, you can significantly impede the attacker's
progress. In this section we take a brief look at defining file systemlevel permissions for
UNIX and Windows, as well as limiting permissions to the Registry on Windows systems.

In order to implement file access restrictions, you need to make sure the host uses a file
system that supports security permissions. Legacy file systems for DOS and Windows,
such as FAT and FAT32, cannot restrict file access, granting all local users full control over
any file on the host. Microsoft has since equipped Windows with a much more powerful file
system, called NTFS, that allows administrators to control who can access a local file and
what that user can do with it. At this point, NTFS and the associated management and
recovery tools are sufficiently mature that situations where it would make sense to deploy
a FAT-based file system, rather than NTFS, are very rare.

Like NTFS, UNIX-based file systems allow administrators to restrict file access based on
the user's identity. Although UNIX platforms are typically more careful about grant-ing file
permissions than Windows, attackers may still exploit vulnerabilities because of loose file
permissions on default installations of UNIX operating systems.

File Permissions and Race Conditions

One type of vulnerability often associated with incorrect file permissions, in
conjunction with coding errors, is a race condition . In a common incarnation of
this attack, during a brief window of opportunity, files are temporarily assigned
file permissions that allow anyone to access them. Attackers can then
manipulate these files to elevate their access on the host. For example, a race
condition in FreeBSD's rmuser script allowed a local user to extract all password
hashes from the system while the administrator removes a user
(http://www.securityfocus.com/advisories/3544). This attack was possible
because rmuser created a temporary file that was world-readable.

Default installations of both Windows and UNIX operating systems usually result in
settings that are overly permissive. Host-hardening checklists, which we reference at the
end of this chapter, offer detailed guidelines for protecting specific files and directories
after installing the OS. The general idea behind such steps is to provide users with only
the minimum access required to perform their tasks.

Be sure to carefully test the system's configuration after tightening its file system
permissions to verify that the necessary applications continue to function. For example, if
you restrict default permissions in the %SystemRoot% directory on Windows, this might
create a problem when a user attempts to print. The %SystemRoot%\system32\spool\
printers folder requires read and write access for users to be able to print successfully.

UNIX operating systems typically use files for storing OS and application-related
configuration details. Limiting access to such data involves manipulating file systemlevel
access restrictions. Although Windows also uses files for storing some configuration
parameters, it increasingly relies on the Registry database for maintaining local system
information. You can use the Regedit32 and Regedit utilities that come with Windows to
set access control restrictions on Registry keys, just like you would set them on files. If

your organization is using Active Directory, you can also distribute Registry permission
settings through Group Policy.

Note

Applying file and Registry access restrictions can be a tedious task. You will be
most effective at completing this step of the hardening process if you automate
it, as we discuss in the "Automating Host-Hardening Steps" section later in this
chapter.

The process of limiting access to powerful programs and sensitive files goes hand in hand
with user and group management practices, which we cover in the following section.

Controlling User and Privileges

Attempting to gain access to user accounts on the targeted host is a step common to many
network-based attacks. To protect the system against this attack vector, it is important to
control user access through the following measures:

Managing unattended accounts

Protecting administrative accounts

Enforcing strong passwords

Controlling group membership

Let's begin this discussion by looking at the threats posed by unattended accounts.

Managing Unattended Accounts

Some of the most vulnerable accounts on a host are those assigned to the system's
services, as opposed to human users. Such accounts are often left unattended, without a
legitimate user available to notice attempts to misuse the account. Examples of
unattended accounts in Windows that should be disabled, unless they are actually used,
are Guest and IIS_servername , where servername is the name of the machine. UNIX
platforms often come with unattended accounts that many hosts end up not using as well,
such as sys, lp, and bin.

You should delete or disable unattended accounts if you do not need them. Deleting,
rather than disabling, such accounts is often a more attractive option because it
eliminates the likelihood that the account will be accidentally enabled. However, removing
an account may result in orphan files owned by a UID that may get reassigned to another
user by accident, particularly on UNIX platforms. Additionally, it is more difficult to restore
an account that you deleted, rather than simply disabled, should you later find the need
for using this account.

Note

It's important to verify regularly that unused user accounts are disabled or
deleted to ensure that they are not accidentally reactivated.

If possible, unattended accounts should be deactivated in a way that logs any attempts to
access them over the network. In UNIX you can easily accomplish this by setting the shell
of the disabled account to noshell, which disconnects any user attempting to log in to the
disabled account and creates an appropriate entry in the system's log. (The noshell utility
is part of the Titan hardening package and can be downloaded free from
http://www.fish.com/titan.)

Unattended accounts are often created with more privileges than they require or are
assigned easy-to-guess passwords. You may need to leave some of these accounts on the
system so that the applications that use them continue to function. In this case, you may
still be able to limit access rights assigned to them and to change their password.
Unattended accounts that remain on the system should be configured with the least
necessary amount of privileges, and they should have complex passwords.

Protecting Administrative Accounts

Administrative accounts, such as root in UNIX and Administrator in Windows, may be even
more attractive to attackers than unattended accounts. After all, administrative users are
known to possess the greatest access level to the targeted host. You can protect
administrative accounts by making them available to as few individuals in your
organization as possible and by being careful about the actions these persons take while
using such accounts.

Traditionally, UNIX systems have a single administrative user named root, which has a
user identifier (UID) of 0. The root account is special because UNIX grants special
privileges to any account that has UID 0. The Administrator account on Windows systems
has a security identifier (SID) that ends with the suffix 500. This SID belongs to the
Administrators group by default; any account you add to this group will have
administrative privileges.

If the machine is maintained by multiple administrators, we recommend assigning
dedicated nonprivileged accounts to these users. You should ask the administrators to use
privileged accounts only when their actions require such access. They can accomplish this
without logging out of their primary account by using the su utility in UNIX or the runas
tool in Windows. Limiting the users of administrative accounts in this way will minimize
the chance that these accounts will be compromised (for instance, when the administrator
browses a malicious website while using a vulnerable browser). Using administrative
accounts in this manner also helps provide an audit trail for detecting and investigating
the compromise of such accounts.

Tip

Consider renaming the original root or Administrator account, and placing a
dummy account in its place that has no privileges and a very long and complex
password. A naïve attacker will attempt targeting this account, wasting time on
an attack that is bound to fail. Creating a dummy administrative account and
enabling auditing on it allows you to detect when someone is attempting to
target your privileged accounts.

Enforcing Strong Passwords

Even a password for a nonprivileged account can act as an entry point for launching
further attacks against the host as well as for accessing information available through the
user's account. User accounts with poor passwords are one of the most commonly
exploited security weaknesses. After an attacker obtains access to a user account, he
often seeks to elevate the user's permissions to administrative permissions. The attacker
gains full access to the system by taking advantage of a vulnerability in the OS or in one
of the installed applications.

The system's users need to be educated to understand that they are responsible for
safeguarding their passwords. Knowing that even security-conscious people have a
tendency to select passwords that are easily guessable, administrators should implement
mechanisms that enforce the desired password guidelines. On the one hand, a person may
have a difficult time remembering cryptic passwords required by an organization that has
unreasonable password strength requirements. On the other hand, increasing the
complexity of a user's password makes it much harder for an attacker to "crack" the
password with a tool that guesses passwords based on a dictionary file. Some of the tools
attackers can use for this purpose are listed here:

L0pht Crack (http://www.atstake.com/products/lc)

Crack (ftp://ftp.cerias.purdue.edu/pub/tools/unix/pwdutils/crack)

John the Ripper (http://www.openwall.com/john)

Just as the attackers can use these tools to locate accounts with weak passwords, so can
you. In fact, you should routinely audit the strength of your users' passwords so that you
have an opportunity to address the issue before attackers can take advantage of it. Before
auditing system passwords, it is very important that you obtain documented authorization
from your organization's management to perform this task. Jobs have been lost, and
administrators have even gone to jail due to apparent misunderstandings over the purpose
of their password-auditing activities.

Establishing an effective password policy and educating the users about proper ways to
select and remember strong passwords goes a long way toward helping to prevent
unauthorized system access. Another way to help ensure the integrity of the
authentication process is to use tokens such as RSA's SecurID. SecurID is a small
hardware device or a software module that generates a different access code
approximately every minute and works in conjunction with RSA back-end software. When
logging in, users are asked to supply a password that they remember as well as the
temporary access code that the SecurID token has generated.

Another challenge in securing access to user accounts is the administrative complexity of
assigning initial passwords to new user accounts. Many organizations use the same
default password for all new users, and many individuals in the organization generally
know this password. Using a random initial password is an effective way to protect new
user accounts. Many attackers, especially insiders, attempt to compromise newly created
accounts by trying typical first-time passwords such as "password," "test," or the
username of the user. Other important password policies include a minimum password
length of eight characters, password aging, password history, and account lockout after a
certain number of consecutive failed login attempts.

Note

Enforcing the account lockout policy might open your organization to a denial of
service (DoS) attack if attackers can attempt to log in to your system over the
network as the user whom they want to lock out.

Password aging limits the amount of time a password is valid before the user must select
another password. This option is critical for preventing an attacker who knows an
account's password from being able to access the host months later because the user
doesn't want to and doesn't have to change the password.

Maintaining password history is important because users often inadvertently circumvent
security policies. Password history will remember the prior n number of passwords used
for an account and prevent these passwords from being used again. Although password
history is helpful, users can frequently bypass this restriction by incrementing the number
that they add at the beginning or the end of the password. If possible, consider
implementing mechanisms that require that a new password differ from the previous
password by a certain number of characters.

Password Games Users Play

In some environments, password aging only sets the maximum age for a
password, not a minimum age. A minimum age says that after a password has
been set, a user cannot change it for a certain number of days. If you do not
establish a minimum password age, but you require passwords to be changed
regularly, some of your users will play a fun password game. For example, a
user might change his password "raiders" to "newpass" and then immediately
change it back from "newpass" to "raiders." If you have password history
enabled, some users will rapidly change their password several times, then
change it back to what it originally was. Change the rules of the game by
implementing a minimum password age of at least a few days.

You can help prevent users from picking weak passwords by implementing password-
filtering mechanisms that verify the strength of the password before allowing the user to
set it. You can use the ntpassword tool to accomplish this on UNIX platforms
(http://www.utexas.edu/cc/unix/software/npasswd). Windows 2000 and above come with
such capabilities built in, whereas Windows NT requires you to install the passfilt.dll utility
before you can enable this functionality (see Microsoft Knowledgebase article 225230).

A compromise of the password's confidentiality might grant a remote attacker local access
to the system, whether the password belongs to a user or service account. Password-
related issues can be mitigated through user awareness and through enforceable policies
that encourage good password practices. By developing and implementing a password
policy that balances security needs, business requirements, and human limitations, you
can alleviate many of the risks associated with password misuse.

Controlling Group Membership

Another aspect of controlling user access involves examining groups that user accounts
belong to and limiting access permissions assigned to those groups. One reason for
assigning access permissions to groups instead of individual users is that group
permissions automatically apply for each user in the group. By managing permissions for
groups and assigning users to groups, administrators can keep much better control of
security in their environments. You should grant groups the minimum access rights that
the group's members need to fulfill required tasks.

A common configuration mistake when placing users into groups is having too many users
assigned to highest-privilege groups. Although it's natural to think of placing users who
need to perform certain administrative functions in the Domain Administrators group in
Windows or in the root group in Linux, you should determine whether another
administrative group has lesser permissions that are still adequate for performing the
required tasks. For example, if you have to change the time on a host, what would be the
preferred group membership? The recommended group for Windows would be Server
Operators or Power Users. It's important to determine which group would provide the most
restrictive level of permissions while still supporting the task.

UNIX groups such as sysadmin, sys, and root should also have a controlled membership.
The permissions granted to these groups might allow their members to access sensitive
files and executables. Instead of adding user accounts to these critical groups, consider
using tools such as Sudo to allow specific users to execute privileged commands without
having full root privileges (http://www.courtesan.com/sudo). Using Sudo is an effective
security measure because it restricts administrative privileges and records the invocation
of Sudo privileges into a log; this is terrific for determining accountability for restricted
tasks.

Keeping an eye on how your administrative accounts and groups are used is an important

aspect of protecting a host against attacks. You can quickly detect the misuse of user
accounts, and investigate other security-related problems, if you maintain and monitor
security logs as we discuss in the following section.

Maintaining Host Security Logs

Security logs are invaluable for verifying whether the host's defenses are operating
properly. Another reason to maintain logs is to ensure that forensics evidence is available
when you need to figure out what happened, even if you already determined that
something went wrong. Of course, each security safeguard is only as good as the actions
taken upon it. A log file is of minimal value if you never look at it. As we discuss in
Chapter 10, it is often wise to utilize software, such as host-based intrusion detection
systems (IDSs), that can automatically notify the administrator when a suspicious event
occurs. This helps provide effective responses to potential security threats.

Note

A common alternative to having in-house staff monitor logs for signs of malicious
activity is outsourcing this task to a company that provides security-monitoring
services.

We devote Chapter 20, "Network Log Analysis," to the guidelines relevant to processing
log entries from the network security device's perimeter. The following section looks at
issues specific to Windows and UNIX hosts.

Windows Logging and Auditing

Windows offers built-in tools that help administrators capture security-related events and
audit the resulting log files. By default, Windows logs only general system events aimed at
resolving system and application faults. To capture security-related information, you must
enable auditing through the Local Security Policy editor (on a standalone system) or
Group Policy (when using Active Directory). You can use the Event Viewer program to
examine security log entries collected by the Windows auditing facility.

Figure 9.4 illustrates reasonable settings for a Windows workstation, although the
specifics of the configuration will depend on your organization's requirements. As you can
see, Windows allows you to log successful and failed actions associated with several
categories of events. The more event types you choose to log, the more thorough your
understanding will be of what takes place on the system. On the other hand, excessive
auditing can degrade the host's performance, fill up its file system, and overwhelm you
with superfluous log entries. Striking the right balance for event logging may require
several different settings until you achieve the desired configuration.

Figure 9.4. You can use the Local Security Policy editor or Group
Policy to enable security auditing in Windows.

[View full size image]

UNIX Logging and Auditing

Like Windows, UNIX can gather detailed information regarding security events on the
system, such as logon and logoff times, occurrences of failed logons, the use of privileged
accounts, and even the commands users execute. The configuration of UNIX logging
facilities is flexible and varies across UNIX flavors. However, here are some of the more
standard log files:

utmp Maintains a snapshot listing of users who are currently logged in. Viewable using
the who and users commands.

wtmp Maintains a historical record of users' login and logout activity. Viewable using
the who and last commands.

btmp Maintains a historical record for failed user logins. Viewable using the lastb

command.

A UNIX system stores event records in these log files using a binary format. As a result,
you need to use the appropriate tools, specified in the preceding list, to view their
contents.

Note

Although the utmp and wtmp files exist by default on most UNIX platforms, you
may need to explicitly create the btmp file for the system to log failed logon

activity to that file.

In addition to maintaining the binary log files just mentioned, UNIX systems rely on the
Syslog facility to centralize logging of security and other system events. Syslog typically
uses the /etc/syslog.conf configuration file to determine what types of events to log

and where to store the log files. Depending on how you configure it, Syslog can record
messages from the kernel, user processes, the mail system, locally defined events, and so
on. Syslog stores its records in text-based log files, which can be examined by regular text
file viewers as well as through the use of the automated monitoring tools we mention in
Chapter 10.

Following best practices when configuring the host's security logging mechanisms helps
detect malicious activity during the early stages of an attack. This also allows
administrators to determine what happened in the event of a successful compromise.

Another critical aspect of host hardening, which we discuss in the following section,
involves installing patches to address security vulnerabilities.

Applying Patches

The never-ending probes that reach our systems in an attempt to bypass perimeter
defenses have taught us, the hard way, that we must take extreme care in making sure
the host's applications and the underlying OS are patched on a timely basis. Vendors
routinely release software patches to address vulnerabilities discovered during the lifetime
of their software products. Keeping up to date with patches can be time intensive, but it is
necessary in order to address the vulnerabilities before an attacker exploits them. At
times, a serious vulnerability may be known, but the patch may not be yet available; you
must be prepared to compensate for this exposure by temporarily adjusting other
components of your security perimeter.

Tracking a System's Survival Time

SANS Internet Storm Center (ISC) keeps track of the average time between
probes directed at individual IP addresses (http://isc.sans.org). Many such
connection requests are initiated by worms, as they scan the network in search
for new victims. ISC calls the time between such probes the "survival time" of a
system. If the OS or its applications are not patched, the probe is likely to lead
to a successful compromise of the machine. The scary trend is that the survival
time is rapidly decreasing. At the time of this writing, this interval is at 16
minutes, approximately half of what it was a year earlier.

When deploying a fresh system, it is a good idea to install its OS and applications on an
isolated network segment. You should not release the system to production before it is
fully patched up. Otherwise, you run the risk of having the host compromised even before
you finish setting it up.

In order to apply patches in a timely manner, you need to monitor security announcement
forums used to post notices about discovered vulnerabilities and released patches. Some
of our favorite notification newsletters, which provide information in a concise format, are
listed here:

Subscribe to the Microsoft Security Notification Service at
https://profile.microsoft.com/RegSysSubscriptionCnt.

Subscribe to the Sun Customer Warning System by sending an email message to
security-alert@sun.com with the subject "subscribe cws."

Subscribe to the weekly bulletin SANS @RISK: The Consensus Security Alert, at
http://www.sans.org/newsletters. This newsletter summarizes critical vulnerabilities
and explains how to protect yourself from them.

Subscribe to the Windows and Linux weekly newsletters at
http://www.securityfocus.com/newsletters. These newsletters document notable
security events of the week.

In addition to these resources are numerous other mailing lists that provide cutting-edge
vulnerability information. The most notable of these announcement forums are Buqtraq
(http://www.securityfocus.com) and Full-Disclosure
(http://lists.netsys.com/mailman/listinfo/full-disclosure). When signing up for these
mailing lists, keep in mind that they are highly volume intensive.

Patch installation resolves several key security concerns, but reckless patching practices
can have disastrous consequences. Although a patch typically corrects the faulty OS or
application code, resolving the security issue, a patch could have side effects that prevent
your custom scripts or applications from working properly. As we discuss in Chapter 19,
you should test any patches before applying them to your production systems. By testing
in a controlled environment, you can verify that the patch will resolve your security issues
without breaking critical functions.

Additional Hardening Guidelines

To conclude this chapter, let's look at some valuable resources that provide hardening
guidelines and automation techniques. Such documents and tools can assist in
implementing the hardening best practices described throughout this chapter. Using a
checklist or a script to harden hosts helps ensure that they are built in a consistent
manner every time and that the extent of hardening applied to the systems is properly
documented.

Automating Host-Hardening Steps

If you expect to deploy more than one system in your organization, it often makes sense
to automate the OS installation process, configuring the OS in a locked-down manner as
part of the base build. You can accomplish this with Windows through the use of
techniques such as Unattended Answer Files (UAF) and Remote Installation Services
(RIS). A similar approach works with UNIX-based systems as well. For instance, the Sun
Solaris "JumpStart" mechanism allows you to create a custom profile for the system that
begins with Solaris Core System Support Software Group (abbreviated as SUNWCreq),
along with any additional packages your host may require.

In situations where beginning with a minimalist OS build is impossible or impractical, you
will have to remove unneeded programs, libraries, and configuration files after installing
the OS. We suggest carefully documenting and, when possible, automating this procedure
to ensure that you end up with a setup that is predictable, reliable, and consistent with
your intentions.

A number of freely available tools can help you automate these host-hardening steps as
well as those discussed throughout this chapter. The following list includes some of the
more popular utilities of this nature that are available for free:

Security Configuration and Analysis snap-in for the Microsoft Management Console
(MMC)

The Center for Internet Security's tools and benchmarks for tuning your host's
configuration to industry best practices (http://www.cisecurity.org)

Titan Security Toolkit, for Solaris, Linux, and Free BSD (http://www.fish.com/titan)

Bastille Hardening System, for Linux, HP-UX, and Mac OS X (http://www.bastille-
linux.org)

Solaris Security Toolkit (JASS), for Solaris
(http://wwws.sun.com/software/security/jass)

If a hardening toolkit does not meet your needs, you can replace or augment it with a
collection of your own scripts that perform the steps you would need to take if locking
down the host's configuration by hand.

Common Security Vulnerabilities

The SANS Top 20 Vulnerabilities list (http://www.sans.org/top20) provides a concise and
authoritative summary of the most often compromised vulnerabilities. The purpose of
creating this list was to help administrators start securing their hosts against the most
common threats, without feeling overwhelmed by the task. We recommend that you
review this list to verify that your hardening procedures account for the top 20
weaknesses and that your hosts' configurations do not match this "most wanted" list.

Understanding the vulnerabilities in the system's configuration goes a long way toward
helping to arm your hosts against them.

Hardening Checklists

Many great resources on the Internet contain detailed information on hardening various
operating systems. For example, numerous software vendors provide security guidelines
or step-by-step instructions on their websites. A general resource with many papers
related to operating system, network, and application security is the SANS Reading Room,
located at http://www.sans.org/rr.

You can also find the following free OS hardening documents, helpful in defining
procedures for securing your own hosts:

National Security Agency (NSA) publishes well-researched security configuration
guides for a variety of operating systems, applications, and network devices
(http://www.nsa.gov/snac).

The Center for Internet Security offers several checklists and benchmarking tools to
rate security of Windows and UNIX hosts (http://www.cisecurity.org).

Microsoft offers a number of checklists and guides for hardening Windows-based
systems (http://www.microsoft.com/technet/security/topics/hardsys).

Sun provides a variety of guidelines for securing Solaris and Linux-based
environments (http://wwws.sun.com/software/security/blueprints).

SANS Institute publishes several step-by-step guides for hardening Windows and
UNIX-based hosts (http://store.sans.org).

Summary

Hardening the configuration of host computers allows us to reinforce the security of the
network perimeter by following the principles of defense in depth. As with all components
of a defense infrastructure, we rely on multiple security components to protect resources
against attacks. This notion can be applied at the network and at the host level. The
extent to which a system should be hardened depends on its role on the network and also
accounts for the resources you have available to maintain the locked-down configuration.
As we discussed in this chapter, default operating system installations rarely implement
hardening best practices that allow us to build systems that are highly resistant to
attacks. You can significantly improve the host's defenses if you take the time to disable
or remove unnecessary services and applications, limit access to data, control user access
and privileges, maintain logs, and apply patches.

Chapter 10. Host Defense Components
The host's perimeter, operating system (OS), and applications are our last line of defense
against network attacks. If an attacker manages to get through or around your firewall, or
if you are defending against malicious code or an insider, it is up to the host to limit the
scope of the potential compromise. In Chapter 9, "Host Hardening," we explained how to
configure the system's OS and related applications to help the host withstand local and
network-based attacks. We locked down the file system, disabled unnecessary accounts
and services, enforced strong passwords, fine-tuned group membership, and applied
patches. This chapter builds on the concepts of hardening by demonstrating how hosts can
play an active role in protecting data and services. In a layered security architecture,
hosts that are configured according to the risks they might face and to the tasks they need
to fulfill reinforce perimeter components such as routers, firewalls, and network intrusion
detection systems.

In this chapter, we explain how to use hosts to help detect and isolate attacks, and we
discuss tools and approaches that will help you strengthen the system's defenses. We look
at differences in needs of host categories and describe best-fit roles for antivirus software,
host-based intrusion detection products, and other host-based tools. We also talk about
host-based firewalls and how they compare to the gateway firewalls you have seen in the
book so far. We examine the strengths and weaknesses of each type of host defense
component to allow you to effectively incorporate any of them into the design of the
overall network security perimeter.

Hosts and the Perimeter

Any system that is operating as part of a network infrastructure has the potential of falling
victim to a remote attack. A successful compromise might come as the result of a system
misconfiguration or vulnerabilities in the OS or installed applications. As you know,
administrators can help mitigate the risks associated with known vulnerabilities by
routinely applying software patches and ensuring that hosts are hardened sufficiently. To
effectively protect systems against attacks that might yet be unknown to us, we have
been using the defense-in-depth approach, relying on multiple layers in the defense
perimeter's architecture to reinforce its resilience.

Red Hat and the WU-FTPD "File Globbing" Vulnerability

An unknown vulnerability and one that has been announced to the world are
different. For example, Red Hat issued a security advisory about a bug in the
Washington University File Transport Protocol Daemon (WU-FTPD).1 The
vulnerability could allow a remote attacker to obtain root access to the server
running WU-FTPD, which is bundled with many Linux distributions.
Unfortunately, the statement was erroneously published days before the date
on which Linux vendors had agreed to issue the advisory and release
appropriate patches. Red Hat's announcement accidentally undermined efforts
to coordinate the announcement with the availability of the fix, leaving
thousands of users of nonRed Hat distributions vulnerable.2

Of course, the WU-FTPD vulnerability existed before Red Hat's announcement;
those who were aware of its technicalities might have been quietly exploiting it.
The security advisory, albeit unfair to Red Hat's competitors, allowed
administrators to consider ways to protect against the vulnerability, possibly by
disabling the vulnerable daemon until the patch became available. On the other
hand, by prematurely publicizing the information, Red Hat increased the
chances that a skilled attacker could develop an exploit to take advantage of
the vulnerability before administrators could protect their hosts against it.

The nature in which the system is being used impacts the risks it might need to be
protected against and the ways in which the host's defense components need to be
deployed and configured. To help you understand the applicability of host-based security
software, we have classified systems into two general categories:

Workstations

Servers

Although the distinctions between these types of hosts are often intuitive, let's formalize
the security challenges associated with each category to lay groundwork for subsequent
discussions.

Workstation Considerations

Workstations, which include laptops and desktops, are used by end users to interactively
run local applications and to access services on the network. Workstations routinely
interact with potentially unsafe resources on the Internet as users connect to external

sites that provide services such as web, file sharing, and instant messaging. Because of
the unpredictable nature of human behavior, it is difficult to foresee the problems that
might arise when a user connects to an external system that is not under your control.
The same workstations are also used to connect to resources that are more trusted:
internal file and mail servers, Human Resources systems, and other applications that are
specific to your organization's business. Interactions with partner and supplier networks
carry a degree of risk as well. In these cases, although you cannot directly control the
security of third-party resources, you can often define accountability and liability through
the use of legal agreements with your partners and suppliers, as well as by inquiring
about their security posture when formalizing the business relationship.

In most companies, workstationsparticularly laptopsare no longer just located behind the
reinforced security perimeter of your network. Traveling and telecommuting users may
reach the company's network by first connecting to the Internet through dial-up,
broadband, or wireless hot spots. In these cases, the workstations are not protected by
the company's central security components, such as network firewalls and intrusion
detection systems (IDSs). Chapter 13, "Separating Resources," discusses the need to
apply different degrees of protective measures to systems based on their roles, from LAN-
connected desktops to wireless clients.

The Qaz Worm and Microsoft

Around October 2000, an attacker was able to gain unauthorized access to
Microsoft's internal systems and, reportedly, view source code for upcoming
product releases. Investigators surmised that the attacker succeeded at
compromising Microsoft's perimeter defenses by first infecting an employee's
home workstation with the Qaz worm by emailing him a Trojanized attachment.

Qaz propagates by scanning the subnet for Windows shares that are not
password protected. When a vulnerable system is found, Qaz copies itself to the
system's Windows directory via NetBIOS as notepad.exe, while renaming the
original notepad to note.com. The worm also modifies the infected system's

Registry key to ensure that the host automatically launches the worm upon
startup. The worm also establishes a backdoor on TCP port 7597 on the infected
system, allowing the attacker to run arbitrary commands, upload new files, or
terminate the worm's program. To announce the IP address that the attacker
can use to access the backdoor, the worm sends an email message to
202.106.185.107, which corresponds to a system located in China.3

The attacker probably used the backdoor the Trojan established to access
Microsoft's systems when the employee connected to the company's internal
network. If Microsoft's corporate firewall did not block inbound connections on
TCP port 7597, the attacker also could have waited for Qaz to infect the
company's internal systems and then connected to them directly.

One of the challenges in maintaining workstations is the sheer number of them, generally
one per employee in a company. This makes it difficult to effectively monitor workstations
for suspicious events, install OS and application patches, update virus definitions, and
enforce security policies, in addition to other tasks.

A useful tool for determining the current patch level of systems distributed throughout
your network is Microsoft Baseline Security Analyzer (MBSA), available as a free download
from http://www.microsoft.com/technet/security/tools/mbsahome.mspx. For local or
remote systems, MBSA can determine which patches are missing from several versions of
Windows, as well as Internet Explorer, Exchange, SQL Server, Internet Information Server
(IIS), and other common Windows components. By default, it operates by downloading
from the Microsoft website a digitally signed file that contains information about available

patches and then querying the Registry and the file system of the local system or remote
machines to see whether the patches have been applied. It provides specific details on
each issue, including its relative priority, corrective guidance, and pointers for more
information, such as Microsoft Knowledge Base articles. Before using MBSA, you should
first ensure that your environment supports its requirements. For example, MBSA must be
able to log on remotely with administrative rights to target systems, and the systems
must be running certain services.4

Server Considerations

Server systems are typically dedicated to running services that are accessed by client
systems over the network; they do not allow users to directly execute local processes. In
such cases, only the server's administrators can log on to the system. This decreases the
likelihood that a user who is logged on to the server will launch a local copy of Internet
Explorer and start browsing through dubious websites. To further reduce that likelihood,
your security policy should restrict the kind of actions administrators can take when
maintaining such servers.

Dedicating a server to a particular task allows you to strip the system of many
components, leaving only software that is required for the server to perform its business
task. In this case, security of the local system can be improved because the usability of
the server does not need to be as full featured as that of a workstation. For example, a
Solaris 8 server with 64-bit support running Check Point FireWall-1 requires only 83
packages5, out of hundreds that would be needed if the system were used as a
workstation.

Multiuser hosts form another class of servers, because they allow multiple users to be
simultaneously logged in to and running interactive processes on the system. For
example, such servers can be implemented by deploying Windows Terminal Services or by
creating multiple accounts on a UNIX system and allowing users to log in using SSH.
Universities frequently offer such services to students and faculty by allowing them to log
in to the multiuser server and run shell-based as well as X Window System applications.

When defending against vulnerabilities that can be exploited over the network, you can
deploy multiple firewalls, fine-tune packet filters on your routers, and configure network
IDSs to detect the attacks. These measures are not effective, however, at defending the
multiuser server against a user who already has local access to the system. For instance,
incorrect path usage by stmkfont under HP-UX B.11 could allow a local user to execute
arbitrary code (http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0965). This
condition could not be directly exploited over the network without first obtaining local
access to the server. System hardening, patch management, host-based intrusion
detection, and security policy are probably your best bets for protecting multiuser servers.

Servers are usually considered to be more sensitive than individual workstations. Whether
the attacker compromises a multiuser server or a dedicated server, she is likely to have
an immediate impact on numerous users who rely on the services of that host. Consider
the influence an attacker might have if she manages to compromise a domain controller in
a Microsoft Windows Active Directory. Another prominent attack of this sort is a web
server defacement that announces to the world that the company's public web server has
been compromised. Attacks on the more sensitive servers located within a company are
likely to inflict larger financial harm to the victim, but are generally not widely publicized.

Antivirus Software

Antivirus software is the most widespread mechanism for defending individual hosts
against threats associated with malicious software, or malware . Malware threats take
many forms, including viruses that are carried via infected files, worms that spread
autonomously over the network, and humans who use malicious software as agents to
remotely control or monitor victims' systems. Many established vendors, such as
Symantec, McAfee, Sophos, Trend Micro, and F-Secure, offer products that detect and, in
many cases, eradicate malware from the system. This is accomplished by monitoring the
local host's boot sector, memory, and file system for signatures of known instances of
malware. Another detection mechanism that is often used in conjunction with the
database of malware signatures monitors programs for behavior patterns frequently
associated with malware. When properly deployed, antivirus software can be effective at
helping to establish an in-depth security architecture.

Note

Software for defending hosts against malicious software is called antivirus
primarily for historical reasons, even though it protects the system against
several categories of malware, including viruses, worms, Trojans, and malicious
mobile code. Antivirus software can also detect some forms of spyware,
particularly those that use traditional malware mechanisms.

Strengths of Antivirus Software

Antivirus software establishes a significant layer in a reinforced security perimeter. Just
like all defense components, antivirus software has its strengths and weaknesses. Some of
the core strengths of antivirus software are listed next:

Antivirus software is effective at identifying numerous popular malware specimensfor
most products, tens of thousands. Antivirus companies enjoy the benefit of significant
research investments and can analyze malicious software relatively quickly to the
extent that it allows them to produce a signature for a specific instance of malware.

Antivirus software can monitor many client applications for malware activity, such as
email clients, web browsers, instant messaging clients, and other common
mechanisms for receiving and transmitting malware.

Antivirus software is unobtrusive partly because it has a relatively low rate of false
positives. Even when configured to operate in a "real-time" protection mode, antivirus
software runs in the background, rarely drawing attention to an event that should not
require the user's attention. As a result, end users do not mind having virus protection
enabled on their workstations.

Antivirus software is affordable and has been accepted as a necessity by many
budgetary decision makers. It is not easy to find a person who is unaware of the
dangers associated with malicious code. Antivirus software has been around long
enough that it has become an accepted part of the corporate lifestyle.

The EICAR Test File: The Ultimate False Positive

Although antivirus software may be installed on systems, it may not be enabled
or configured properly. Take care to verify that virus protection is active on
your systems and that it operates as expected. One of the quickest ways to
check this is through the use of the EICAR test file. Most antivirus products are
programmed to recognize this file's content as a virus, even though it does not
actually contain malicious code. The file, which can be downloaded from
http://www.eicar.org/anti_virus_test_file.htm, consists of 68 ASCII characters.
If saved with the .com extension, it actually executes on Windows platforms to

print the message "EICAR-STANDARD-ANTIVIRUS-TEST-FILE" to standard
output. Of course, if your antivirus software is active, it should not let you
execute this file in the first place.

In addition to protecting individual hosts, antivirus software is effective when integrated
with gateways that process network traffic for common application protocols such as
SMTP, HTTP, and FTP. Most major antivirus vendors offer specific software products for
these protocols that can be quite effective at removing known malware threats from
network traffic before they reach individual hosts.

As you can see, malware protection can take place at several different locations on the
network. You do not need to limit yourself to any one of these. In fact, it is generally
advantageous to perform such scans on individual workstations, as well as on file servers
and Internet gateways. If malware is a large concern for your business, consider
deploying one vendor's antivirus product on your hosts and another vendor's product on
the gateways. This configuration increases the likelihood that a malware specimen will be
blocked. Such redundancy can be justified because antivirus software has many significant
limitations that impact the design of the security perimeter.

Limitations of Antivirus Software

In most cases, the effectiveness of the antivirus product depends on the extensiveness of
its malware signatures. When a major new worm emerges, it typically spreads so rapidly
that most organizations are affected by it in a matter of hours, before antivirus vendors
have time to analyze the worm and create, test, and distribute signatures. Even when a
signature is available, not all companies are capable of automatically distributing the
latest signatures to their hosts. As you might recall, we discussed some of the ways of
preparing for such incidents at the end of Chapter 1, "Perimeter Security Fundamentals."
As one of the measures, be sure to set up your systems to routinely poll the signature
distribution server for updates. Most antivirus products allow you to configure the software
to automatically download the latest signature database from the vendor's website or FTP
site. Enterprise versions of such software allow you to distribute signature updates from
your own server within the organization. This approach allows you to centrally monitor
infection-related alerts across many systems and allows you to force remote hosts to
retrieve the latest updates outside of the routine schedule, especially when you know
about a worm outbreak.

Another limitation of current antivirus products focuses on their effectiveness at detecting
mutations of known malware specimens. For instance, if you receive an email attachment
with a known Trojan, your antivirus software is likely to detect it and display a warning.
Unfortunately, it might be sufficient to modify a particular byte in the Trojan's executable
using a plain text editor to prevent antivirus software from recognizing it as malicious. If
you know what you are doing, this change would not affect the Trojan's core functionality.
By modifying the executable in a relatively trivial manner, you might alter one of the
characteristics that antivirus software uses for the Trojan's signature.

Another way of mutating a malware specimen is to use one of the many packers that

compress and often encrypt the compiled executable. The encoded version of the
executable is self-contained and contains a small decoding routine that is triggered during
runtime to extract the original program into memory. For example, another way of
mutating the Trojan without changing its functionality would be to use a freely available
packer called UPX. When the Trojan's original executable is compressed, its size and
content are altered. Antivirus software may no longer recognize the Trojan, and the
compression may complicate the analysis of the Trojan's functionality.

Of course, individuals who possess the source code for malicious software have the luxury
of modifying it directly with the specific goal of bypassing signature-matching antivirus
engines. Malware mutations are not as effective against behavior-based scanners, but
behavior-based techniques are not as accurate at identifying known threats as signature
matching.

Packers for Executables

Many packers are available for compressing and possibly encrypting
executables. Some of these allow you to reverse the packing process to recover
the original executable; others purposefully do not make such a facility
available. In some cases, antivirus software might be able to automatically
reverse the encoding to compare the original version of the program to malware
signatures. Some of the more popular packers include these:

ASPack (http://www.aspack.com/)

PECompact (http://www.collakesoftware.com/pecompact.htm)

UPX (http://upx.sourceforge.net/)

Polymorphic malware, which changes itself on the fly, is another challenge that antivirus
vendors have been working to overcome with a varying degree of success. One of the first
mechanisms that facilitated the creation of polymorphic malicious code was created in
1993 under the name Dark Avenger's Mutation Engine (DAME).6 Although modern
antivirus products easily uncover the polymorphic tricks DAME performs, other techniques
can significantly complicate the detection of malware. The evolution of malicious software
is running its course in parallel with advancements in antivirus technologies. Ways to
bypass controls enforced by antivirus software will probably always exist.

Antivirus applications, just like any other software, can have vulnerabilities that expose
its host to attacks while helping to combat malware. For example, some versions of Norton
AntiVirus allowed a remote attacker to perform denial of service (DoS) attacks against
hosts (CAN-2004-0487, CAN-2004-0683) by creating a file containing many compressed
directories. There are dozens of CVE entries for antivirus software vulnerabilities, many of
which are common flaws that have affected several products.

Spyware

When spyware threats began growing exponentially, most antivirus products did
not have spyware signatures or the capability to detect some forms of spyware.
In part, this was because some spyware mechanisms, such as tracking cookies,
do not use any malicious code, even though they have similar effects to
malware-based spyware. Antivirus vendors are starting to make progress
against spyware threats by adding new capabilities and signatures to their
products. Also, several specialized spyware detection and removal utilities are
freely available, including Ad-aware and SpybotSearch & Destroy, that can
provide more protection against spyware.

Despite the limitations, antivirus software remains one of the most effective ways to
control the spread of common malware specimens across multiple systems. Many
instances of malware are difficult to block using traffic-filtering devices alone because
they can enter the network through legitimate network channels, such as email and web
browsing, as well as non-network means such as CDs, floppy disks, and flash drives. After
malware is inside the organization, it can be programmed to communicate with its author
via outbound connections that are often allowed to pass through the firewall unchallenged,
whether to announce its presence via SMTP or to retrieve additional instructions through
an HTTP request. An attacker can use malware as an agent working inside the targeted
network, facilitating further, more directed attacks on internal resources. Host-based
firewalls, deployed on systems throughout the network, are another part of an in-depth
security architecture that can mitigate some of the risks network-based and host-based
antivirus software doesn't cover.

Host-Based Firewalls

The firewalls we have been discussing in this book so far are network based. We placed them on the
borders between subnets to regulate how network traffic crosses from one segment to another.
Similar processes can be applied at the host level to control how packets enter and leave the system
that the host-based firewall is protecting.

Most host-based firewalls enforce access policies bidirectionally by monitoring packets that enter and
leave the system. Controlling network access at the host level is effective, whether the host is
located behind layers of traffic-screening devices or is directly connected to the Internet. Host-based
firewalls reinforce the system's defenses by addressing threats that antivirus products don't cover:

Unrestricted access to the system's file shares

Anonymous access to the system

Undetected malicious code

Port scans and other types of reconnaissance probes

Vulnerable network services running on the system

Host-based firewalls are often referred to as personal firewalls because they aim to protect individual
systems instead of whole networks. We would like to use the term personal firewall solely when
discussing traffic-screening functionality on workstations. Although such software can be installed on
servers, referring to it as "personal" might be misleading because server systems are rarely used just
for personal computing.

In this section, we examine a number of popular host-based firewall software choices, some of which
are available for free. To help you plan and deploy appropriate host-level defenses, we discuss the
capabilities of firewalls that are optimized to run on workstations and compare them to the features
of products that are more suited to protect individual servers.

Firewalls for Workstations

Host-based firewalls are often geared to run on workstations and are particularly critical for roaming
laptops that do not always enjoy the protection of network firewalls and other network-based security
controls. The number of products that fit into the category of such personal firewalls has been
increasing, and in this section, we discuss only a few of them to illustrate important concepts. Some
of the more popular products in this sector are listed next:

ZoneAlarm (http://www.zonelabs.com/)

Tiny Firewall (http://www.tinysoftware.com/)

Norton Personal Firewall (http://www.symantec.com/)

Sygate Personal Firewall Pro (http://www.sygate.com/)

Windows Firewall
(http://www.microsoft.com/windowsxp/using/security/internet/sp2_wfintro.mspx)

Many of these products are inexpensive, and ZoneAlarm is available free of charge for personal use.
Also, Windows Firewall is provided as part of Windows XP starting with Service Pack 2. (Earlier
versions of Windows XP offer the Internet Connection Firewall, which lacks many of the features of
Windows Firewall.) Many other products provide host-based firewall functionality for the workstation.
Some of these can be used on servers as well. For example, firewall functionality is often combined
with host-based intrusion detection systems (IDSs), which we discuss in the "Host-Based Intrusion

Detection" section of this chapter.

Most personal firewalls that run on Windows-based workstations are capable of imposing access
restrictions based on the local application attempting to send or receive packets. Before an
application is allowed to connect to another host, or before the application is allowed to accept a
network connection from another host, the personal firewall must consult its rule set to determine
whether access should be granted. Figure 10.1 shows an excerpt of the application rule configuration
for Norton Personal Firewall. By default, the firewall uses the vendor's knowledge of applications to
determine which actions should be permitted or denied. You may also override the default settings by
manually setting the appropriate action for each application. As Figure 10.1 shows, the alternatives
are to permit all, block all, or create custom settings.

Figure 10.1. Norton Personal Firewall allows users to define permitted and
denied activity for specific applications.

[View full size image]

In addition to application-specific rules, many personal firewalls also allow you to define access
restrictions using the same parameters as traditional network firewalls: protocol, destination IP, and
port number. Figure 10.2 shows an excerpt of the default general rule set for Norton Personal
Firewall, which includes dozens of types of network traffic. Note that each rule permits you to specify
which network interfaces it applies to, and whether the rule should apply to inbound and/or outbound
traffic.

Figure 10.2. Norton Personal Firewall offers a default set of filter rules for
network and application protocols.

[View full size image]

Others products, such as ZoneAlarm Pro, take a different approach that might not be as intuitive for
firewall administrators, but are aimed at simplifying firewall configuration for less tech-savvy users.
As you can see in Figure 10.3, ZoneAlarm Pro allows users to group external systems into those that
are trusted and those that are not. Each of the two zones can have its own set of access restrictions,
which are applied depending on the remote host's category. For example, you can allow file and print
protocols such as NetBIOS/SMB going to, and possibly from, systems in the Trusted zone. By placing
the internal subnet into the Trusted zone, you allow the workstation to connect to Windows-based file
and print services on the internal network. Other networks would be placed in the Internet zone,
which is generally much more restrictive and does not allow NetBIOS connections.

Figure 10.3. ZoneAlarm Pro groups network resources into two zones,

depending on how trustworthy the resources are.

[View full size image]

Most personal firewalls ship with a default rule set that improves the security of the workstation
compared to its state without a firewall, but is still overly permissive. We suggest customizing the
default firewall policy by backing it up and then clearing the original rule set. Personal firewalls that
do not have a rule set usually default to prompting the user for every new communication attempt to
or from the host. Figure 10.4 shows such a prompt as presented by Norton Personal Firewall, asking
whether Mozilla Firefox should be allowed to access the Internet. This allows you to build the rule set
by letting the firewall "remember" your responses to communication attempts. When going through
the initial "learning" period, you might become frustrated by a seemingly unending stream of
questions regarding applications that seem to want to initiate network connections. Don't worry; the
rule set tends to reach a stable state after a couple of days.

Figure 10.4. Norton Personal Firewall can be configured to prompt the user if
an unfamiliar application attempts to initiate a network connection.

Keep in mind that although you might be willing to answer the firewall's questions while it "gets to
know" your system, other users at your organization might not be as patient or might not know how
to answer some of the firewall's questions. Incorrect answers could inadvertently block legitimate
activity or allow unauthorized activity to pass through the firewall. This is a major obstacle to the
adoption of host-based firewalls by the general population of users. As we discuss in the section
"Controlling Distributed Host Defense Components" at the end of this chapter, personal firewall
vendors offer software that centralizes the creation and distribution of the firewall policy across the
organization's workstations. Deploying host-based firewalls on servers is not as dependent on the
product's user friendliness and carries its own set of advantages and challenges.

Firewalls for Servers

Host-based firewalls are also effective at helping to protect individual servers; they function similarly
to firewalls that run on workstations. Although servers are often located behind traffic-screening
devices, the critical nature of their data and services might warrant this additional layer of protection
that does not usually come at a large expense. Host-based firewalls are also useful for protecting
servers that cannot be located on a screened subnet or a DMZ, or that are at an increased risk of
insider attacks. In many cases, the same software used to protect workstations could be used for
servers. The major differences in requirements between firewalls for workstations and for servers are
as follows:

The performance impact of installing the host-based firewall is more critical for servers. Network
latency is generally not as high of a concern on a workstation as it is on a server.

The need to focus on inbound connections to the system is more critical for servers. Outbound
connections made by servers are usually not as unpredictable as those exhibited by workstation
users; in fact, many servers only initiate outbound connections for standard maintenance
activities, such as downloading patches. Accordingly, it is typically much simpler to control
outbound activity for servers on a per-application basis than workstations.

The need to eliminate interactions between the firewall software and the system's user is more
critical for servers. Host-based firewalls installed on servers cannot be expected to prompt the
user with rule set questions or alerts because most of the time, no one is logged in to the server
locally to answer the questions.

Because you have already seen host-based firewalls that are optimized to protect workstations, this
section examines products that address server-specific requirements. Instead of focusing on
protecting whole networks, host-based firewalls are tuned to provide protection for a single system.
This section provides two examples of methods to protect individual servers: the PF firewall and
packet filtering via IPSec on Windows.

As you may recall, in Chapter 9 we mentioned TCP Wrappers as one of the tools used for controlling
inbound connections to individual systems. TCP Wrappers is an effective way to control access to the
server's network services, especially those that were started through inetd. However, TCP Wrappers
lacks some of the features available in full-fledged firewalls that we can install on the network as
well as on a host. One such "true" firewall, which we discuss next, is PF. It is available for free and
runs on numerous UNIX platforms.

PF

In Chapter 3, "Stateful Firewalls," we discussed IPTables, which is a stateful firewall designed for
Linux hosts. Many BSD systems use a firewall with similar capabilities called PF
(http://www.openbsd.org/faq/pf/). PF is an excellent firewall for protecting whole networks, as well
as individual hosts. The syntax of PF is based on another popular firewall, IPFilter. Let us see how to
use PF for implementing some of the tasks typical for host-centric firewalls that run on servers.

PF obtains its rule set from a plain-text configuration file, pf.conf. By default, PF reads through all

entries in the file before making a final decision about whether to block a packet. This differs from
the default behavior of most firewalls we encountered, which stop processing the rule set after
locating the first rule applicable to the packet in question. To force PF to stop iterating through the
rule set as soon as it makes a match, we need to use the quick keyword in the rule's definition. For

example, when a system receives an undesired attempt to initiate an SMTP connection, PF stops
processing the rule set after encountering the following rule:

block in quick proto tcp from any to any port 25

Like most modern firewall packages, PF is a stateful firewall. It can monitor the state of TCP sessions
and, to a limited extent, the "state" of UDP and ICMP connections. Use the keep state keyword in

the rule to specify that PF should keep track of a session's state. For example, when running PF on a
web server, you could use the following statements to allow inbound HTTP and HTTPS traffic in a
stateful manner:

pass in quick on fxp0 proto tcp from any to host.ip.addr port = 80 keep state
pass in quick on fxp0 proto tcp from any to host.ip.addr port = 443 keep state

In this case, fxp0 is the server's NIC where inbound requests will be originating, and host.ip.addr

represents the web server's IP address. Of course, these web server rules assume that at the end of
the rule set, you have specified the following rule, which blocks (and probably logs) all traffic that
has not matched any other rule in the policy:

block in quick on fxp0 log all

We can fine-tune HTTP and HTTPS rules presented previously by ensuring that PF creates a state
table entry only for TCP packets that have a SYN flag set. Packets with any other TCP flags should not
be allowed to initiate a connection, and they could constitute attempts to mangle the system's state
table. To account for such packets, we would use the flags keyword like this:

pass in quick on fxp0 proto tcp from any to host.ip.addr port = 80 flags S keep state
pass in quick on fxp0 proto tcp from any to host.ip.addr port = 443 flags S keep state

If PF isconfigured to block and log all inbound packets that are not explicitly allowed, then the
preceding web server rules can help detect port scans against the server that manipulate TCP flags in
an attempt to avoid detection.

Note

PF offers "scrub" capabilities, which means that it can reassemble packet fragments and
perform sanity checks on certain aspects of packets to identify anomalous ones. For more
information on PF scrubbing, see the documentation at
http://www.openbsd.org/faq/pf/scrub.html.

Even though UDP packet exchanges are effectively stateless, a UDP request is expected to have a
reply with inverse port and IP address parameters. This can allow PF to offer basic stateful protection
for UDP packets that are targeting a DNS server:

pass in quick on fxp0 proto udp from any to host.ip.addr port = 53 keep state

To control outbound connections made by the server, you could use the following rule, which blocks
and logs outbound traffic that has not been explicitly allowed:

block out log quick on fxp0 all

Because inbound traffic is controlled through the use of stateful rules, it is wise to keep outbound
connections made by the server to a minimum. This is more challenging on a workstation, which
tends to make outbound connections much more often than it accepts inbound traffic. As a result,
host-based firewalls that are optimized for workstation usage generally pay more attention to offering
a granular and user-friendly approach to controlling outbound connections.

Responding to Ident Requests

By default, when blocking a connection, PF does not return a response to the sender to let
it know that the packet was not allowed through. As mentioned in Chapter 3, this
behavior is often advantageous for defending the system against reconnaissance probes.
In some cases, however, lack of a response from your server might introduce delays as
the peer's system waits for the timeout or attempts to re-send the packet. For example, if
your server is configured to send outbound email, the recipient's mail server might try to
connect back to your ident daemon in an attempt to confirm the identity of the user who
is connecting from your system. If your server is hardened, it is probably not running the
ident daemon and blocks all packets destined to ident's port 113. However, the delivery
of your outbound email is likely to be suspended until the recipient's mail server's ident
request times out.

To speed up this process, you could configure your server to respond with a TCP RST
packet to all connection attempts to ident's TCP port, or with an ICMP "port-unreachable"
packet to its UDP port. (UDP connections rely on ICMP for the equivalent of a TCP RST.)
The following PF rules cause your server to block connections to TCP and UDP port 113
and respond with an appropriate "error" packet:

[View full width]
block return-rst in quick on fxp0 proto tcp from any to host.ip
.addr port = 113
block in quick on fxp0 return-icmp(port-unr) proto udp from any
 to host.ip.addr port = 113

PF is effective at protecting networks when it is installed on a gateway system. When installed on an
individual server, it offers robust protection against network-based attacks that target the individual
host. This can also be said for other UNIX firewalls in PF's class, such as IPTables, which we covered
in Chapter 3.

We have numerous choices when it comes to installing firewalls on servers. We can use products
marketed for use on workstations, as well as software that is not as user friendly and is catered more
toward the needs of a server. As the last mechanism in the discussion of host-based firewalls for
servers, let's examine an inexpensive way of achieving packet-filtering functionality on Windows
servers through the use of IPSec policies.

Packet Filtering via IPSec on Windows

One of the most powerful network security components built in to Windows servers is IPSec. In
Chapter 7, "Virtual Private Networks," we described how to use IPSec to secure communications
between remote systems. We used the Microsoft Management Console (MMC) to define IPSec policies
on VPN endpoints. IPSec policies can also be configured to filter out unwanted network traffic that is
targeting the Windows server. Built-in packet-filtering capabilities allow us to specify which local
ports can be accessed without authentication and encryption, which should be limited to valid
Authentication Header (AH) or Encapsulating Security Payload (ESP) peers, and which should be
blocked altogether. This technique allows us to mimic basic functionality offered by many host-based
firewalls for servers, without deploying additional products.

For example, we can use built-in IPSec filtering capabilities to permit administrative traffic from
authenticated remote systems. We could create a new IPSec rule that accepts ESP-protected
administration traffic from specific hosts. If worried about the added load on the server, we could use
AH instead of ESP to remotely authenticate the host without encrypting the administrative traffic. Of
course, we would need to configure IPSec policies on administrative workstations to match IPSec
connection parameters on the hardened server. Environments that have deployed Active Directory

can use Group Policy to centrally distribute IPSec policies, avoiding the time-consuming and error-
prone process of manually configuring policies on numerous systems.

Tip

Remotely administrating a Windows-based bastion host is often a challenge because it
frequently opens the server to attacks on native Windows protocols. One of the ways to
address such concerns is to configure the Windows server to block all administrative
connections that are not secured with ESP. This provides an easy way to tunnel traffic
across the firewall without using native and potentially vulnerable Windows protocols if the
server is located on a screened subnet.

IPSec-based filtering is based on basic packet filtering, and accordingly it is prone to similar
limitations as other non-stateful traffic-filtering devices that we described in Chapter 2, "Packet
Filtering." IPSec-based filtering should not be used as the only firewall protection for a system;
instead, it can best be used to add an extra layer of defense to Windows servers with relative ease.

So far, we have discussed two primary defense components that we can use to reinforce the security
of individual systems: antivirus software and host-based firewalls. As we have shown, each
component category, as well as each tool within the categories, is optimized for different
environments and is best at mitigating different risks. In the next section, we examine host-based
IDS products, which are optimized for detecting and investigating malicious behavior on the host.

Host-Based Intrusion Detection

As you saw in the previous section, firewalls can be used to defend whole networks, as well as
individual servers. Similarly, IDSs exist in two varieties: network-based and host-based. We introduced
the notion of intrusion detection in Chapter 8, "Network Intrusion Detection," where we examined
optimal uses of IDS components for monitoring a network for malicious events. We deployed network
IDS sensors in a way that allowed us to sniff traffic going between hosts and network devices. Network
IDS enabled us to apply certain criteria to captured traffic to single out events that were likely to be
indicative of an attack.

Much like their network counterparts, host-based IDS products also exist primarily to detect and
examine malicious activity at various stages of an attack, but they are optimized for monitoring
individual hosts. Additionally, many host-based IDS products can be configured to integrate their
findings, providing a unified view of multiple systems throughout the network. Some host-based IDS
products also provide intrusion prevention capabilities, stopping attacks before they can cause damage;
such products are described in Chapter 11, "Intrusion Prevention Systems." In this section, we examine
key aspects of the host-based intrusion detection process and look at several categories of host-based
IDS products.

The Role of Host-Based IDS

At its core, host-based intrusion detection involves monitoring the system's network activity, file
system, log files, and user actions. (Most host-based IDS products typically monitor only one or a few
of these categories, not all.) This allows a host-based IDS to identify activities that network-based IDS
may not be able to see or understand, because the actions take place on the host itself. For example, a
host-based IDS could alert if accounts such as guest or nobody suddenly possessed administrative
privileges. Specifically, host-based IDS software has the following key advantages over its network
counterparts:

Host-based IDS software can monitor user-specific activity on the system. The software can
observe the user's local activity because it has access to such host-specific information as process
and service listings, local log files, and system calls. Network IDS sensors, on the other hand, have
a hard time associating packets to specific users, especially when they need to determine whether
commands in the traffic stream violate a specific user's access privileges.

Host-based IDS programs can monitor data exchanges of encrypted network streams by tapping in
at the connection's endpoint. Running on the VPN's endpoint allows host-based IDS to examine
packets in their clear-text form, before the host encrypts outbound packets, or after it decrypts
inbound packets. A network IDS sensor, on the other hand, cannot examine the payload of an IPSec
packet or the contents of a packet that is part of an SSL session. The need to perform content
analysis of network traffic at the hosts continues to increase as companies continue to deploy VPN
solutions.

Host-based IDS programs can detect attacks that utilize network IDS evasion techniques. As we
discussed in Chapter 8, such techniques exploit inconsistencies in the way a network IDS interprets
the packet's intentions from the effect that the packet might have on the targeted host.7 For
example, unusual packet fragmentation might confuse a network IDS sensor, but would have no
effect on host-based IDS products.

Host-based intrusion detection is also useful for correlating attacks that are picked up by network
sensors. If a network IDS sensor detected an attack that was directed at one of your hosts, how would
you know whether the attack was successful? The host's IDS software can help you determine the
effect of the attack on the targeted system. Of course, if the host is compromised, its logs might be
altered or deleted. But if you are automatically relaying all host IDS data to a central, dedicated log
server, you can use that data instead of the original IDS logs if they are unavailable or untrusted. From
an incident-handling perspective, host-based IDS logs are also vitally important in reconstructing an

attack or determining the severity of an incident.

Ideally, you would deploy host-based IDS software on every host in your organization. However, that
might not be a viable option for your company, considering the amount of resources involved in
deployment, maintenance, and monitoring. When deciding whether to deploy host-based IDS software
on a system, consider the host's risk level. Critical servers that store sensitive data and are accessible
from the Internet will surely benefit from the extra layer of protection that host-based IDS provides.
You might consider deploying such products on workstations as well, depending on the nature of threats
to which they are exposed.

Host-based IDS products can watch over the channels that need to remain open for the host to perform
its business function. If a host needs to function as a public web server, its firewall cannot block
inbound connection attempts to TCP port 80, but its host-based IDS can be tuned to monitor HTTP
traffic or other host attributes for malicious activity. Additionally, some host-based IDS products can
interact with host-based firewall software to shun the attacker if an intrusion attempt is detected.

Host-Based IDS Categories

Now that you understand the roles that host-based IDS plays when operating as part of a network's
security perimeter, let's examine different types of host-based IDS solutions. As you know, multiple
sources for data can be used to perform intrusion detection at the host level. The primary reason for
wanting to look at the host's file system, log files, and network connections is because the malicious
activity on a host can exhibit itself in multiple ways. Some commercial products, such as ISS Proventia
Intrusion Detection and Enterasys Dragon Intrusion Defense System, can monitor several data sources
on the host. Other products are optimized to perform host-based intrusion detection based on a specific
data source:

The host's file system: AIDE, OSIRIS, Samhain, Tripwire

The host's network connections: BlackICE, PortSentry

The host's log files: LANguard, Logcheck, OsHids, Swatch

Note

Chapter 11 describes host-based intrusion prevention products that monitor another type of
data source: application behavior. Products such as Finjan SurfinGuard and Cisco Security
Agent monitor the behavior of locally running programs to detect and block malicious actions.
Some host-based antivirus and firewall products also offer limited application behavior
controls, such as not allowing web browsers to run programs stored in temporary directories.

Checking the File System's Integrity

A category of host-based IDS tools known as file integrity checkers work by detecting unauthorized
changes to the host's file system. They operate by taking a "snapshot" of the file system in a trusted
state, when all the files are considered to be valid. During subsequent scans, these tools compare the
system's files to the initial baseline and report noteworthy deviations. To tune the integrity checking
mechanism so that it only monitors relevant aspects of files, you can specify what file attributes are
allowed to change, or what files can be ignored altogether. For example, applications frequently create
temporary files in C:\WINNT\Temp or /tmp directories; alerting the administrator every time a new file

appears or disappears from these directories would generate too many false positives. On the other
hand, contents of core system libraries rarely change, and it is normal for the host's log files to grow in
size while retaining initial ownership and access permissions.

Note

The AIDE software we discuss in this chapter is a free integrity verification tool. This is
different from the commercial AIDE software that carries the same name, but is an intrusion
detection tool for correlating log information from different firewall and IDS products. Litton
PRC developed the commercial AIDE program; it has no relation to the freeware AIDE utility
discussed here.

Integrity checking tools are able to detect changes to a file's contents by calculating the file's
checksum or cryptographic hash during the scan and comparing it to the file's "signature" that was
obtained when creating the baseline. An alternative method, which is impractical in many situations
due to space requirements, is to make an actual copy of each file to be monitored. Increasing the
difficulty of tampering with the database of baseline signatures can be accomplished in several ways:

Obfuscate the contents of the baseline database by using a proprietary binary format instead of
plain text when saving the database to disk. Although this mechanism makes it more difficult to
tamper with the database, it hardly prevents the attacker from discovering the obfuscation scheme
or from using the integrity checker to update the baseline.

Place the baseline database onto read-only media, such as a write-protected floppy disk or a CD-
ROM. This method requires that the disk or the CD be accessible to the integrity checker when it
performs the verification scan. This method is reliable and is most useful for hosts whose baseline
does not need to be frequently updated. Keep in mind, though, that even if the attacker is unable to
modify the baseline database, he might be able to change the integrity checker or modify its
configuration to use an unauthorized baseline. Placing the checker onto the read-only media helps
defend against some attacks of this nature, but having access to the host might allow the attacker
to modify the system's kernel or file system drivers to conceal his presence on the host anyway.

Digitally sign the baseline database. In this scenario, updating the program's baseline typically
requires the administrator to present the appropriate cryptographic keys and supply the necessary
passwords. This technique achieves a good balance between the first two approaches. It is
frequently used in environments that need to be able to remotely update the baseline periodically,
such as when installing system patches or otherwise updating the host's configuration.

Tripwire is the best-known file integrity checking utility. In many ways, Tripwire is a benchmark
against which other tools in this category are measured. The original version of Tripwire was developed
in 1992 at Purdue University in West Lafayette, Indiana, and it is still available free under the name
Tripwire Academic Source Release (http://www.tripwire.com/products/tripwire_asr/). This version of
Tripwire runs only on UNIX platforms. Despite its age, this version of Tripwire is still effective at
detecting unauthorized changes to the host's files, although it is no longer being actively maintained.
Full commercial versions of Tripwire for servers and network devices
(http://www.tripwire.com/products/servers/) are not free, but they boast a number of improvements
over the initial version:

The commercial software Tripwire for Servers runs on both Windows and UNIX hosts. The Windows
version of the tool can monitor the system's Registry in addition to the file system.

The commercial software Tripwire for Network Devices can monitor the integrity of configuration
files on routers and switches.

Multiple hosts and devices monitored by the commercial versions of Tripwire can be controlled
centrally through a unified configuration and reporting interface through Tripwire Manager.

Note

An open source version of Tripwire for Linux is available for free at http://www.tripwire.org. It
is included with many Linux distributions, including Red Hat Linux. The open source version of

Tripwire was derived from the commercial product, but it is not being actively maintained.

Tripwire Manager is a console available with the commercial version of Tripwire that offers the ability to
centrally manage multiple Tripwire "agents" that are deployed on remote hosts and devices across
different operating systems. Tripwire Manager is the key difference between the commercial version of
Tripwire and free tools that exist in the same category of host-based IDS products. When you need to
support many Tripwire instances, this feature alone can help justify purchasing Tripwire instead of
using the freeware alternatives.

AIDE (http://sourceforge.net/projects/aide), which stands for Advanced Intrusion Detection
Environment, is a free integrity checker with similar features to the academic release of Tripwire. Some
of the key differences between AIDE and various Tripwire versions are listed next:

AIDE is free, just like the academic version of Tripwire and the Linux version of Tripwire Open
Source.

AIDE is maintained through a steadier development cycle than the academic version of Tripwire,
which is no longer maintained. At the same time, the commercial version of Tripwire is being
developed much more actively.

AIDE runs on a wide range of UNIX platforms but, unlike the commercial version of Tripwire, it does
not run on Windows.

AIDE does not cryptographically sign its baseline database, making it more difficult to ensure the
integrity of its findings. (The academic version of Tripwire does not do this either.)

Overall, organizations that cannot justify paying for the commercial version of Tripwire will probably
benefit from installing AIDE instead of the academic version of Tripwire. Another free alternative is
Samhain (http:/samhain.sourceforge.net/), which offers file integrity checking capabilities for various
versions of UNIX. Samhain provides the ability to cryptographically sign not only the baseline database,
but also its configuration file. Samhain can be configured to monitor files for a single host or for a
group of hosts through a secure log server. It also offers stealth capabilities, which assist in concealing
the presence of Samhain from attackers.

Those who need to perform file system integrity verification for critical Windows systems will not find
many robust alternatives to the commercial version of Tripwire, but they might consider taking
advantage of similar features built in to some other host-based products, such as personal firewalls that
monitor changes to executables. On older Windows platforms, the sysdiff utility from the Windows
Resource Kit can be used to detect added or deleted files and changes to configuration files and
Registry entries. Sysdiff does not use cryptographic techniques enjoyed by tools such as AIDE and
Tripwire, and it is not available starting with Windows XP. A more powerful alternative to the sysdiff
tool is a relatively inexpensive monitoring utility for Windows called Winalysis
(http://www.winalysis.com/). Winalysis has a graphical interface, supports the collection of SHA-1
digital signatures, and can be scheduled to observe remote hosts from a central location.

File integrity checking software typically relies on the administrator supplying a policy file that defines
which attributes of which files need to be monitored for changes. One of the ways to go about defining
this policy is to list a limited number of critical files on the system that you know are supposed to
change infrequently. A more comprehensive approach, applicable primarily to hardened server systems,
calls for monitoring all files on the host with the exception of those that change frequently. Defining
such a policy is a time-consuming process because each server is configured slightly differently and
can modify different files during normal operation.

When defining a comprehensive file monitoring policy, it is recommended that you start by specifying
that the program should monitor all files and directories recursively from the root of the file system,
with the exception of files that are expected to change constantly (such as swap files and logs). You
can then run the integrity checker, see which attributes of which files changed during the system's
normal operation, and modify the policy appropriately. After several iterations, you should be able to
achieve a stable state that will save you from having to constantly update your policy and the baseline
database, while monitoring as many aspects of the host's file system as possible.

Network Connection Monitors

Now that you know how to detect unauthorized changes to the host's file system, let's switch our
attention to monitoring another critical aspect of the host's operation: its network connectivity.
Specifically, we want to use available data about network connections that attempts to initiate or
terminate on the host to detect malicious behavior. The impetus behind connection monitoring is
similar to the one in network IDS products that run in promiscuous mode to examine network streams
for multiple hosts and devices. A host-based IDS, however, can also associate network sockets with
specific processes and users on the system, and it can be tuned to the exact characteristics of the host.
Additionally, host-based network-monitoring software is unlikely to be overwhelmed by the voluminous
network traffic that continues to push the limits of network IDS performance.

One popular host-based IDS product for monitoring the system's network connections is BlackICE
(http://blackice.iss.net/), produced by Internet Security Systems (ISS). There are two versions of the
software: BlackICE PC Protection runs on Windows-based operating systems and is optimized for
protecting a workstation, whereas BlackICE Server Protection offers similar capabilities for servers.

Whenever BlackICE observes a suspicious network connection that targets its host, it creates a log for
this event. A host-based firewall would typically create an individual record for each blocked packet.
The IDS mechanism in BlackICE is able to group events associated with multiple offending packets into
a single log entry that identifies the attack. For example, BlackICE can correlate several suspicious
packets as being a single port scan. Instead of logging each packet that comprised the scan, BlackICE
creates a single entry in the log. However, BlackICE can be configured to capture full packets that it
identifies as belonging to an attack sequence and log them for future analysis. In addition to
performing IDS services, BlackICE comes with a built-in host-based firewall that can block
unauthorized inbound and outbound connections.

Host-based IDS products that monitor network connections frequently have the option of responding to
detected attacks by blocking the attacker's host from accessing ports on the protected system. This
capability is known as intrusion prevention , and we described it in the context of network IDS sensors
in Chapter 8. Host-based IDS products, such as BlackICE, can perform intrusion prevention by
automatically reconfiguring its host-based firewall component to shun the attacking IP address for
some time period. This capability is useful for blocking an attack at an early stage, such as during a
port scan, before it escalates into something more forceful, such as a buffer overflow attempt.

PortSentry (http://sourceforge.net/projects/sentrytools/) is another host-based IDS product that can
detect port scans and other unauthorized connection attempts to the system. PortSentry is free and can
run on most UNIX operating systems. When PortSentry detects a network-based attack, it can block the
attacking host by automatically reconfiguring the compatible firewall on the local host or by placing an
appropriate entry into the hosts.deny file used by TCP Wrappers. For example, the following are Syslog

records that document PortSentry actions when it detects a port scan coming from 192.168.44.1:

[View full width]
Jan 19 10:35:57 localhost portsentry[1252]: attackalert: TCP SYN/Normal scan from host:
 192.168.44.1/192.168.44.1 to TCP port: 13
Jan 19 10:35:57 localhost portsentry[1252]: attackalert: Host 192.168.44.1 has been
 blocked via wrappers with string: "ALL: 192.168.44.1"
Jan 19 10:35:57 localhost portsentry[1252]: attackalert: TCP SYN/Normal scan from host:
 192.168.44.1/192.168.44.1 to TCP port: 21
Jan 19 10:35:57 localhost portsentry[1252]: attackalert: Host: 192.168.44.1/192.168.44.1
 is already blocked Ignoring

In this example, PortSentry detected an unauthorized connection to TCP port 13 on the local host. It
responded by reconfiguring TCP Wrappers in an attempt to block subsequent connections from the
offender.

As useful as active response capabilities can be in a host-based network connection monitor, they are
also dangerous because the supposed offender might get blocked based on a false positive. As a result,
this functionality is much more appropriate for workstations than it is for servers. Workstations are
usually not accessed via inbound connections as often as servers are, and they are less likely to

receive a slew of benevolent inbound connections that look like a port scan.

Log File Monitors

So far, we have examined host-based intrusion detection techniques that involve examining the
system's network connections and its file system. Another core data source for useful security
information is the host's log files, which may include system, audit, authentication, and application
events. Log file monitors observe the contents of logs and alert administrators when suspicious events
are detected. One such host-based IDS product is called Swatch (its name stands for "simple watcher")
and is available at http://swatch.sourceforge.net/. Swatch is free and runs on most UNIX operating
systems. We could use Swatch, for example, to stay abreast of attacks that PortSentry detects. To set
this up, we would configure Swatch to email the administrator when it locates a line with the string
attackalert in a Syslog record.

Another free UNIX-based tool for monitoring log files is Logcheck
(http://sourceforge.net/projects/sentrytools/). Unlike Swatch, Logcheck does not monitor logs in real
time; it runs periodically and emails alerts in batches. This helps the administrator to limit the number
of email messages that he receives, but it might also delay the administrator's response to an attack.

Log file monitoring utilities are available for Windows platforms as well. The following represent a
couple of the products worth your look:

TNT ELM Log Manager (http://www.tntsoftware.com/)

LANguard Security Event Log Monitor (http://www.gfi.com/lanselm)

Log file monitors have the benefit of being able to observe events generated by multiple security
components on the host. Moreover, in scenarios in which logs from several systems are submitted to a
single host, log file monitors can perform intrusion detection based on data from multiple perimeter
security hosts and devices. This is a powerful technique that transcends the boundaries of defense
components of a single host, and we discuss it in greater detail in Chapter 19, "Maintaining a Security
Perimeter," and in Chapter 20, "Network Log Analysis."

Challenges of Host Defense Components

We have examined host defense components that help provide defense in depth at the
level of an individual host and allow us to treat the host as an active member of the
overall security perimeter. We have discussed individual strengths and weaknesses of
each component type. In this section, we look at major challenges that face host defense
components as a unified product category. Some of these challenges, which impact the
deployment of antivirus software, host-based firewalls, and host IDS components, are
listed next:

Ensuring the component's effectiveness and trustworthiness after a system is
compromised

Configuring and monitoring host defense components that run on systems

Let's take a closer look at these challenges so that we are prepared to adjust the design of
the overall security perimeter accordingly.

Defense Components on Compromised Hosts

As you probably realize, systems that are protected by host defense components can still
be compromised. The attacker can deploy a malicious agent that is not recognized by the
antivirus software or can bypass the host's firewall protection via an open port or through
another compromised route. As a result, an attacker can delete security logs, create new
accounts, install backdoor programs, and disable locally installed security components. To
minimize the likelihood that such an attack will succeed, we deploy multiple security
components that work in unison, but we need to be prepared for the possibility that our
controls will be bypassed.

The host-hardening procedures we discussed in Chapter 9 offer an effective way to limit
the scope of the attacker's influence on the compromised host. A constraining mechanism
that we mention in Chapter 13 calls for the use of chroot to create a "jail" around an

application on a UNIX system. Additionally, a host-based firewall on the compromised host
has not necessarily outlived its usefulness; it can still assist the administrator in detecting
the compromise, and it can help restrict a host's access to other systems on the network.

Although these measures can help dampen the attacker's progress, the effectiveness of
host defense components drastically decreases after the intruder has gained access to the
system. Having access to the host gives that attacker the capability to target the system's
defense components from within. Malware specimens, for example, have been known to
proactively fortify their positions on the infected system. Many worms automatically kill
processes of common antivirus products, personal firewalls, and other host-based security
controls. These actions make it more difficult for the victim to determine that the system
has been compromised, make it easier for the infection to spread to other systems, and
allow attackers to use the system without the interference of host-based firewalls that
would otherwise stop unauthorized incoming and outgoing activity.

Controlling Distributed Host Defense Components

Another challenge to the deployment of host defense components lies in the ability to
centrally manage large numbers of them. Any participant of the security perimeterwhether
it is a router, a firewall, or an IDSneeds to be watched over after it has been installed.
This often involves fine-tuning its configuration, installing software updates, reviewing
activity logs, and responding to alerts. The more security components we have to manage,
the more challenging it is to do so effectively. Manually maintaining a limited number of

servers is something that is possible with a relatively small staff, but the challenges
increase as we consider deploying host defense components on workstations throughout
the organization.

Note

Attackers have developed effective mechanisms for centrally controlling
thousands of victimized computers in an efficient manner. Copies of the Leaves
worm, for example, knew to retrieve encrypted instructions for operation from a
network of publicly accessible websites. Instances of the SRVCP Trojan were
programmed to log in to specific Internet Relay Chat (IRC) channels and sit there
waiting for instructions from the attacker.

Antivirus products are the oldest among the host defense components we discussed in this
chapter. As a result, their means of effectively operating in large numbers are the most
mature. Nearly every antivirus product has the ability to automatically retrieve virus
signature and antivirus software updates from the vendor's site, without special
modifications to the organization's existing infrastructure. This helps ensure that antivirus
software is up to date, but it does not really assist the company's system administrators in
keeping an eye on the effectiveness of virus protection. Major antivirus vendors offer
products that centrally manage distributed antivirus software installations. For example,
Symantec System Center allows the administrator to use Microsoft Management Console
to see what, if any, viruses were found on Norton AntiVirus installations throughout the
company, obtain copies of infected files, and remotely install and update antivirus
software on multiple hosts.

Makers of commercial host-based firewalls and IDS software also offer products for
centrally managing their defense components that are installed on multiple hosts. These
enterprise-centric products are typically structured to consist of the following major tiers:

The policy enforcement agent, such as the host-based firewall or the host-based IDS
sensor.

The central management server, used by administrators to control remote instances of
policy enforcement agents. This server pushes software and configuration updates to
enforcement agents and collects events that enforcement agents report.

The back-end database, used by the management server to archive events that
enforcement agents submit to the server. Some products rely on a built-in data store
for this functionality, whereas others can interoperate with external relational
databases.

A client application, such as a web browser, that the administrators can use to
communicate with the management server.

Most of the commercial products we discussed in this chapter follow this architecture.
Also, most commercial host-based products have been merging into host-based product
suites. For example, Tiny Firewall originally offered only personal firewall capabilities; it
has been expanded to provide file integrity protection, network traffic intrusion detection
and prevention, and Windows-specific monitoring, such as file and Registry key access.
The Norton Internet Security suite offers antivirus, personal firewall, pop-up blocking,
spam and website filtering, and privacy protection for hosts. Using a single product suite
that provides adequate host-based protection is much easier to administer than several
separate products, each with its own configuration and maintenance needs.

Summary

In this chapter, we looked at reinforcing the security of the network perimeter by
equipping hosts with defense components of three types: antivirus products, host-based
firewalls, and host-based IDS software. We examined the strengths and weaknesses of
each category of host defense components, and you learned to take them into account
when designing and implementing a defense-in-depth architecture.

We rely on antivirus products to defend hosts against malicious software, with the
understanding that they cannot detect every malware specimen that can find its way onto
the system. We use host-based firewalls to protect the system from network attacks that
are not blocked by traditional network firewalls. Host-based firewalls are configured based
on the business requirements of the individual host on which they run, and they can
usually block inbound as well as outbound network traffic. Some potentially vulnerable
channels might need to remain open for the host to perform its function; these can be
watched over with the use of a host-based IDS. Host-based intrusion detection further
complements network IDS by monitoring the host's internal parameters, such as critical
files, logs, and local user activity.

As a category of security tools, host defense components possess several limitations that
need to be accounted for in the overall design of the network perimeter. We examined
some of these at the end of the chapter. You learned what to expect from a host defense
component running on a compromised system, as well as how to manage host defense
components installed on systems throughout the organization. We will take advantage of
our knowledge of the strengths and weaknesses of host and network defense components
in Part III, "Designing a Secure Network Perimeter," where we concentrate on architecture
considerations of the network security perimeter.

References

1 Red Hat . "Updated wu-ftpd Packages Are Available." November 20, 2001.
http://www.redhat.com/support/errata/RHSA-2001-157.html. November 2004.

2 ARIS Incident Analyst Team Wu-Ftpd Report. "Wu-ftpd Incident Alert." November 28,
2001. http://aris.securityfocus.com/alerts/wuftpd/. November 2004.

3 McAfee Virus Information Library. "W32/QAZ.worm." October 27, 2000.
http://us.mcafee.com/virusInfo/default.asp?id=description&virus_k=98775. November
2004.

4 Microsoft. "Microsoft Baseline Security Analyzer (MBSA) 1.2.1 Q&A." August 24, 2004.
http://www.microsoft.com/technet/security/tools/mbsaqa.mspx. November 2004.

5 Lance Spitzner . "Armoring Solaris: II." July 20, 2002.
http://www.spitzner.net/armoring2.html. November 2004.

6 Mikko Hypponen . "F-Secure Computer Virus Information Pages: DAME."
http://www.europe.f-secure.com/v-descs/dame.shtml. November 2004.

7 Thomas H. Ptacek and Timothy N. Newsham . "Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection." January 1998.
http://secinf.net/info/ids/idspaper/idspaper.html. November 2004.

Chapter 11. Intrusion Prevention
Systems

Note

The material in this chapter is the basis for the "Intrusion Prevention System"
chapter in the SANS Institute course, "SANS Security Leadership Essentials," and
is used here with the permission of the SANS Institute.

Though intrusion prevention system (IPS) began life as a marketing term, IPS is one of
the fastest changing areas in perimeter protection. As an active defense measure, IPS
gives us more options in our primary Internet/intranet perimeter as well as the ability to
extend perimeter defenses across the internal switches and host systems. In this chapter
you will see how the IPS concepts we discussed in Chapter 1, "Perimeter Security
Fundamentals," and Chapter 8, "Network Intrusion Detection," are becoming fully mature
with products available from a number of vendors. We focus our attention on both
emerging and fairly mature intrusion prevention technologies that hold a lot of promise for
helping organizations defend against a variety of attacks.

Rapid Changes in the Marketplace

Until 2004, intrusion prevention was primarily hype. As recently as June 11, 2003, when
the famous Gartner "IDS Is Dead" report was released, following its advice to give up on
your IDS and trust in the latest generation of "intrusion prevention" firewalls was almost
impossible because the IPS products were still too immature and firewalls were not
sufficiently advanced to run within internal networks in a blind and unprotected manner.
Although the criticisms of IDS were certainly truethey have a high false-positive rate and
can be bandwidth challengedthat did not support the conclusion of investing in a better
firewall.

However, no one can deny that this paper was the nexus of a lot of change, especially in
the IDS industry. The most positive effect was a significant improvement in false-positive
handling. NFR started working on a network intrusion prevention system (NIPS); SoureFire
ditched Snorty the pig and became Realtime Network Awareness (RNA), a passive sensor
and visualization tool company in terms of primary internal focus. Symantec and
Enterasys were quick to point out the Gartner report was simplistic; you really should buy
both an IDS and an IPS, and you should buy both from them. And, of course, every
firewall vendor, no matter how lame, immediately found a way to get intrusion prevention
onto its home page somehow. The entire industry reformed itself in a year's time, but not
always for the better.

The Classic Response to the Gartner "IDS Is Dead" Report

The Gartner report stirred up a considerable amount of anger, and there were
some pretty steamy postings on newsgroups. My favorite is the tongue-in-cheek
reply by the Chief Technology Officer of the intrusion detection company NFR
(who now also has an IPS):

"How about the demise of current generation industry analysts by 2005.
Reason? Excessive false positives and lack of corporate value. They will be
supplanted next-gen analysts who will deliver outrageous claims with no loss of
performance. After all, if you can make stuff up, why bother with thoughtful
analysis. :-)

Andre Yee, NFR Security, Inc."

You can view Andre's report at http://seclists.org/lists/focus-
ids/2003/Jun/0184.html.

The biggest problem with the "IDS Is Dead" report is that it ignores the value of
sensors. We would never ask a pilot to fly in visual blackout conditions without
instrumentation, nor would we ask a CFO to run a company's finances without
up-to-date, validated financial information. If you agree with these examples,
would you ask the Chief Security Officer of an organization with high-value
intellectual property assets to turn off or minimize his IDS sensors? Scarcely a
week after the Gartner report, The SANS Institute was receiving email from
people being asked by senior management if they should still be running their
IDS systems.

Today, we have an industry where everyone has a product labeled "intrusion prevention."
However, there is no definition of what intrusion prevention is. It is no longer just hype;
there are some powerful trends afoot, even though the functionality provided by industry

products varies significantly. Therefore, as we work our way through the chapter, we will
classify the products into two major groups:

Network intrusion prevention systems (NIPS) Devices that sit on the network
and help prevent intrusions

Host-based intrusion prevention systems (HIPS) Software that runs on a host
system and helps prevent intrusions

What Is IPS?

Simply stated, intrusion prevention technology adds an active layer of defensive
technology. Intrusion detection technology generally only reports attacks against
monitored systems, although since 1997 active responses have been available, such as
forging resets to blow away TCP connections (the so-called session sniping or reset kill).
Intrusion prevention technology, by contrast, will attempt to stop the attacks before they
are successful.

As IPS continues to mature, it will probably evolve to be something more like a capability
than a single product. For instance, consider the logic behind Cisco Secure IDS,
CiscoWorks Management Center for firewalls and VPNs, and Cisco Security Agent (CSA). A
suspicious packet enters the network and is perhaps detected with the Cisco Secure IDS
technology. The attack is classified by the operating systems vulnerable to that attack.
The CiscoWorks Security Information Management (SIM) console is consulted to see if the
attack and the destination are a match. For instance, if the attack is a Solaris exploit and
the target system is a Sun Microsystems workstation running that version of Solaris, it
would constitute a match.

To double-check, an agent on the target can be consulted in case the console is out of
date. If the attack does not match the target (for example, an SGI attack against a
Windows XP box), the alert is deprecated.

However, if there is a match, the agent can be consulted to determine the potential for an
active vulnerability. If the box is patched and not vulnerable, again, we can deprecate, or
reduce the priority of the alert. If the box is vulnerable, we can test to see if a
compromise has occurred. If the file system has changed, we can begin forensics and
incident response.

To be sure, this doesn't sound like intrusion prevention; it is more like modern SIM-
enabled intrusion detection. This capabilitymodern intrusion detection with strong
multiproduct coordination featuresis exactly what well-funded organizations across the
globe are trying to implement using Intellitactics, netForensics, Huntsman, ArcSight, and
other database-driven consoles. However, next we add the defensive layers based on the
former Okena StormWatch product purchased by Cisco and renamed Cisco Security Agent
(CSA) , a host intrusion prevention system (HIPS). CSA can stop the attack in the network,
just like a personal firewall does. However, what if the user is surfing the web using
Internet Explorer and malicious code compromises the system via an Internet Explorer
vulnerability? CSA also has an operating system shim so that if the malicious code
activates in the file system and misbehaves, CSA can detect and stop the application.
Wrong behavior, as we discussed in Chapter 10, "Host Defense Components," could range
from trying to initiate a network connection to making a call for interrupt 13H to make a
direct write to the hard disk. You can expect to see similar console and agent capabilities
from Symantec and possibly Guidance Software. Encase, by Guidance, is a fully capable
incident-handling tool already; it gives you the ability to detect signatures of malicious
activity and to quarantine a file.

Because both host-based and network-based intrusion prevention systems are active
technologies in the sense they directly interact with packets and are extremely capable of
causing denial of service conditions, we can easily deduce the requirements for a
successful product:

It has to be fast.

It has to keep state.

It has to have some knowledge of application protocol or application behavior.

It has to be accurate and up to date.

It has to nullify an attack.

Let's take a look at these requirements in greater detail.

An IPS Must Be Fast

Perhaps you remember the early days of routers and a company named Cisco that offered
a router that operated at "wire speed." Once they had wire speed, nothing else would do.
The same is true for a NIPS. If it starts adding latency, it becomes a denial of service
deviceand companies do not intentionally purchase denial of service devices. This likely
means doing as much processing in hardware as possible and even better processing in
parallel, which is going to add to the cost of the device. Cheaper, single-threaded NIPS
may be able to perform much of their processing in kernel space to gain speed. Does a
HIPS have to be fast? Certainly. Who would tolerate a security layer that slowed down his
or her machine?

An IPS Must Keep State

The state of a communication flow affects the correct interpretation of a packet. This is
fairly simple at the IP/TCP/UDP header level, but the IPS must be able to create state
tables so that sufficient state is available to interpret packets. Perhaps you will recall that
the original stateful firewallsCheck Point FireWall-1 and Cisco PIXhad gobs and gobs of
problems with state. It is a lot harder than it sounds because various TCP stacks do not
always perfectly implement RFCs, and state is not always easy to predict and requires lots
of memory and processing.

Perhaps you have heard the marketing term Deep Packet Inspection . If such a thing
exists, it stands to reason there must also be "Shallow Packet Inspection"and there is.
Shallow Packet Inspection is a field-by-field analysis of the IP/TCP/UDP header. Because
all these fields are fixed length, we can do this very fast, and anomalous values can be
detected with a high degree of accuracy. The craft of Shallow Packet Inspection was first
created by Stephen Northcutt with the DoD Shadow team and brought to maturity by Judy
Novak at the Army Research Laboratory. It's now incorporated by most network analysis
tools. Deep Packet Inspection requires understanding of the protocol itself and dealing
with fields that may not be fixed-length. The earliest significant work was the BRO
freeware intrusion detection system by Vern Paxton. Although there are application-
specific IPSs especially for web servers, as a general rule of thumb you can expect it will
be several years until an IPS that can actually monitor a large number of protocols
becomes available.

You can see the reason why we were careful to point out the hype in the intrusion
prevention space. This is very hard stuff to do, and there are significant limitations that
affect the performance possible at a given price point.

An IPS Must Be Accurate and Up to Date

Because it is an active device, an IPS runs the risk of creating a "self-inflicted" denial of
service condition. Therefore, it must be nearly 100% accurate for the attack signature it
takes an active role in defending. This difference may be one reason the pre-Gartner
report IDS vendors were a bit sloppy with their signatures; if they were wrong, nothing
broke. Clearly keeping state is a large part of that; knowing how the application is
supposed to perform is also important. However, the accuracy of the signatures depends
on far more than that. The signature language and rule-processing engine must be fully
industrial strength. Also, they have to be up to date. The rule of IPS signatures is simple:
The cycle time from the moment a vulnerability is announced to develop and distribute a
new signature with a prescription must be less than the cycle time to develop a worm to

take advantage of the vulnerability.

An IPS Must Have the Ability to Nullify an Attack

We realize this is a stretch, but there actually are products that meet the acid test
requiring an IPS to be fast, keep state, know the application protocol or behavior, be
accurate, and be up to date. Now we come to the core issue: Can an IPS reliably stop
attacks? There are two basic methods: eliminate only the very awful packets and kill the
stream. One approach, as you will learn later, is a "bump in the wire" approach to
network-based intrusion prevention. For a NIPS to nullify an attack, all the packets to a
segment of the network must pass through the network deviceeither a switch or a
chokepoint next-generation firewall-type device. IPS must be fast, stateful, and hopefully
accurate and up to date.

Ideally, IPS see the attack set up and drop only the payload of the buffer overflow or shell
code. This approach has the minimum possible impact on network traffic yet keeps you
safe. In contrast, there are NIPS and HIPS technologies that look for signatures of
problems and, at the first sign of trouble, terminate (or refuse to pass) the communication
stream. The classic example of this approach is the UNIX Sentry Tools
(http://sourceforge.net/projects/sentrytools). PortSentry, one of the most employed HIPS
ever, detects an attack, can disallow the attacking IP from making further connections,
and can null-route the path back to the attacker. Both approaches are fine, but the bottom
line is that to be truly considered an IPS, it must implement a far more robust active
mechanism than a TCP reset kill.

Note

We mentioned PortSentry in Chapter 10 in the context of an IDS with active
response capabilities and that one could classify it as an IPS as well.

IPS Limitations

One of the truly overused clichés of our industry is the line, "there is no such thing as a
silver bullet." Possibly the reason that expression will not go away is that we really do
need to keep reminding ourselves of that fact. Everyone who has deployed or managed a
firewall has heard someone ask, "Why do we have to patch? We are behind a firewall." In
this section of the chapter, we take some time to consider the things that an IPS cannot
possibly do for you. As an informed technical professional, when you hear that an IPS
must be a fast, keep state, know the application protocol or behavior, be accurate and up
to date, and be able to nullify an attack, you understand there are discrete technical limits
to the implementation. A NIPS might be able to defend against 800 different attacks well,
but there could be thousands more it doesn't have a signature for. An IPS is a useful tool,
but it is only one part of our overall defensive capability.

An Excuse to Ignore Sound Practice

A major focus of this book is sound practice. IPS technology is a step forward, which is
good, but we are in a game of measures and countermeasures. You cannot employ IPS
technology and fail to implement the guidance contained in the other chapters of this
book. The attackers will likely find ways to circumvent the protections an IPS provides.
The 1998 paper "Insertion, Evasion, and Denial of Service: Eluding Network Intrusion
Detection," by Thomas Ptacek and Timothy Newsham, is still valuable as a reminder of the
potential weaknesses NIPS may have. The paper is available at
http://www.insecure.org/stf/secnet_ids/secnet_ids.html. In addition, worms such as
Goner and Gokar directly targeted host security tools such as antivirus. It is clear
attackers will attempt to circumvent or even directly attack our IPS tools, so we need to
create an architecture that can survive even if the IPS fails.

An IPS Simply Buys You Time

Deploying an intrusion prevention system is not a replacement for patch management and
system hardening. Instead, you are hoping it buys you a valuable asset: time in the race
before the next worm is released. Organizations using IPSs are often able to extend the
amount of time they have to deploy patches to resolve operating system and application
flaws, potentially delaying the deployment of fixes until several patches have accumulated
and a window for scheduled maintenance of equipment is available. And we need all the
time we can get. What's more, sometimes patching is not possible.

Sometimes You Cannot Patch

Although patching is necessary, as we show in Chapter 19, "Maintaining a
Security Perimeter," there are serious constraints to patching, and sometimes it
can be a difficult problem. Dr. Marc Willebeek-LeMair, CTO of TippingPoint
Technologies, points out, "It is important to understand what it takes to patch a
vulnerable system." Here are some points to consider:

Is a patch available? Vulnerabilities are often disclosed in advance of a
vendor patch being available. Sometimes vendors don't bother creating
patches for older versions of software.

Are you aware of all systems to which the patch applies? Mobile systems,
embedded software within bundled applications, and the sheer size of some
organizations make it very difficult to identify all vulnerable systems.
Telecommuters and trusted partner connections further complicates
matters.

Do you have access to all affected systems? Owners must often be
contacted to apply a patch and some may not be available during the
patching interval or their systems may be temporarily inaccessible.

Is there an opportunity to bring down critical systems to apply the patch?
Fully redundant systems are costly and not always possible. There is never
a good time to bring down critical systems.

After testing in the lab and on development systems, can you afford the risk
to then test the patch on critical systems to verify that it works and does
not adversely affect business-critical applications? Thorough testing can be
very time consuming. Besides the fact that the patch may be faulty, custom
applications may interact unfavorably with the new software patch.

Should you wait until next week and apply multiple patches at the same
time? The frequency of new vulnerabilities being discovered and patches
being made available is so high that IT managers are challenged to keep
up. They would rather batch fixes to minimize IT overhead and system
downtime.

Finally, do you have the resources to apply a patch? The number of patches
multiplied by the number of machines multiplied by the time to patch each
machine ("patch-hours" of work) may exceed IT capacity.

Like IDS, IPS is not a fire-and-forget technology. It requires significant maintenance and
monitoring to be an effective defense tool. IPS is also not an inexpensive tool for
enterprisewide deployment.

Next, we will consider the best known form of IPS, network-based IPS devices, or NIPS.

NIPS

In this section we will discuss NIPS technology. NIPS essentially breaks down into two
categories:

Chokepoint devices These are conceptually similar to firewalls; you generally have
one or more pairs of interfaces and you use these to segment traffic in a network. One
common application of these devices is to place them in front of firewalls to keep
common attacks from ever reaching them. They can also be used to segment internal
LANs.

Intelligent switches These are the so-called "bump in the wire" solutions. You plug
in your internal network to an intelligent switch and it stops attacks. For instance, two
of the most common ways for worms to spread internally involve users double-clicking
on attachments and laptops leaving the facility, getting infected at home, and then
being plugged back into the corporate network. A "bump in the wire" solution helps
moderate the damage from these sorts of worm infections.

In addition to these architectural classes, NIPS designers make a choice between two
types of technology: general-purpose CPUs and application-specific integrated circuits
(ASICs). General-purpose CPUs tend to be the easier choice from a development
standpoint because you can build on a ready-to-deploy appliance such as the Nokia IP130.
ASICs have the ability to support much higher performance because the chip can be
optimized for a particular application. However, products built on ASICs require much
more development. The good news is that a lot of the work has already been done; a
number of off-the-shelf ASICs have been designed for TCP/IP processing. If a developer
chooses an ASIC solution, he still needs to decide whether to implement a single ASIC
"board-level" solution or a parallel implementation. If you can devote a processor to each
IP flow, you have a massive speed and latency advantage. A single Adaptec TCP Offload
Engine (TOE) ASIC can maintain sustained performance at rates above 900Mbps.

Note

ASIC-based devices still have general-purpose CPUs. The performance increases
only apply when processing can be done on the ASIC. If you have to signal the
bus to transfer the packet(s) to the general-purpose CPU(s), the NIPS will
probably suffer a significant drop in performance.

How Chokepoint NIPS Work

A chokepoint NIPS could be located outside of your firewall or on your screened subnet in
front of a device you want to protect, such as your web server. They will often be
configured without an IP address on either of the chokepoint interfaces to minimize their
impact on the network's architecture. Traffic that originates from the Internet is passed
through the NIPS to your corporate firewall and beyond if it does not generate any alerts.
In IPS mode, traffic that does generate an alert can be dropped or rejected by the NIPS
and never delivered inside your network. These can also be run in IDS mode, where a
report is generated but the packet is not dropped. These tend to either be a "firewall plus
something" or an "IDS plus something."

Firewall Plus Something

Firewalls fall into three major categories, listed in increasing security protection: packet
filter, stateful, and proxy or application gateway. The overwhelming majority of deployed
firewalls are stateful. Firewalls are the original IPS; the first time you heard the term
intrusion prevention system you were probably wondering if the person was talking about
a firewall. To be credible as an IPS, the firewall needs to add additional functionality, such
as the ability to run IDS-type rules. Stateful firewall inspection has been a very strong
technology for many organizations. The next logical progression for many firewall vendors
is to add intrusion detection capacity to their firewalls. Because the firewall is an inline
network device, it is in an excellent position to identify malicious events on the network,
performing analysis at the transport through application layers to identify attacks.
Because the firewall must collect and retransmit each packet that flows through it, a
logical advancement would be to allow policy to define whether traffic identified as
malicious should generate an alert and be forwarded to the destination or whether it
should generate an alert and be dropped, thereby preventing the attack from being
successful.

Note

A fourth category of firewallscircuit firewallshas you authenticate once and then
use a path through the firewall conceptually to nullify intrusion prevention. They
were never widely deployed, so though it is doubtful you would find a large
number of SOCKS protocol connections in your network, you might well find
internal VPNs that are conceptually similar. It is okay to bypass a perimeter or
chokepoint control as long as you have equivalent controls on both of the
endpoints.

Vendors such as Cisco, Jupiter (Jupiter acquired NetScreen), and Check Point have been
rapidly acquiring intrusion prevention technology for integration into their product lines, or
they have been developing their own tools for the job. The resultant products are often
classified as "smarter" firewalls instead of classic intrusion prevention devices, but we
expect this trend to change as more organizations become comfortable with the term
intrusion prevention as well as the benefits and limitations of the technology. Let's take a
quick look at some of the firewall-plus-something implementations, including FireWall-1,
Border Guard, and modwall.

Check Point FireWall-1 NG

Check Point's central product is FireWall-1, which is the best-known example of a "firewall
plus something" positioned as a NIPS.

Check Point FireWall-1 NG has the following IPS features:

Attack protection with "Application Intelligence," a rudimentary content-inspection
capability that blocks many well-known, well-defined attacks.

Access control based on stateful inspection, the capability this firewall is best known
for.

Choice of software and appliance deployments. The software is available on a number
of platforms to balance needs versus costs. The high end is based on the high-
performance, secure, and expensive Nokia appliance.

FireWall-1 protects network resources against attacks and unauthorized access at both the
network and, increasingly, the application level. Enterprises attain this degree of security
by defining and enforcing a single, comprehensive security policy. What makes Check

Point stand out in the industry is the advantage of utilizing the Open Platform for Security
(OPSEC), the most widely used application programming interface (API) of any security
device. Instead of trying to be the best at everything, Check Point has focused well on
partnering. Third-party products can access the Check Point security policy using the
OPSEC Management Interface (OMI). Intrusion detectionstyle capabilities are available via
the Suspicious Activity Monitoring Protocol (SAMP). Also, Check Point has been doing
content inspection for years with the Content Vectoring Protocol (CVP).

Check Point and OPSEC

The OPSEC Alliance was founded in April of 1997. OPSEC has since grown to
over 350 partners, making it the leading platform alliance by far for integrated
Internet security solutions. Programmers find the interface very workable,
which is probably the reason for the large number of partners.

OPSEC has enabled FireWall-1 to be extended into a number of areas outside of
Check Point's core competency, including the following:

Authentication

Authorization

Content security

Intrusion detection and protection

Wireless

modwall

Modwall was developed by Bill Stearns and is available from
http://www.stearns.org/modwall. Modwall is a set of firewall/IPS modules that can be
inserted into an existing IPTables firewall on Linux. Rather than focusing on the normal
"allow this kind of traffic from here to here" firewall rules, modwall focuses on illegal
packet traffic, which includes invalid or unassigned source or destination IP addresses,
invalid TCP flag combinations, and packets that have been intentionally fragmented.
Modwall then allows the administrator to define what action to take, including dropping
the traffic, logging it, and blocking traffic from the source for a limited amount of time.
Let's use the L (list rules) option of IPTables to examine the rules in the "address check"

module (one of 38 modules in the package) as an example:

[root@sparrow modwall]# ./address start
Starting address
[root@sparrow modwall]# iptables -L address -n
Chain address (3 references)
target prot opt source destination
DROP all -- 127.0.0.0/8 0.0.0.0/0
DROP all -- 0.0.0.0/0 127.0.0.0/8
DROP all -- 224.0.0.0/4 0.0.0.0/0
DROP !udp -- 0.0.0.0/0 224.0.0.0/4
DROP all -- 240.0.0.0/4 0.0.0.0/0
DROP all -- 0.0.0.0/0 240.0.0.0/4
DROP all -- 255.255.255.255 0.0.0.0/0

After it is started using the command address start (like IPTables, modwall also

supports start, stop, and restart command-line directives), the following default

address checks are performed on all non-loopback traffic (that is, traffic on all real
network interfaces). Note the keyword DROP, which means just what you think: If the

packet matches the rule, it will be dropped.

The first and second DROP entries drop all traffic found on the real network with loopback

addresses. Note that 0.0.0.0 simply means the default network, whereas 0.0.0.0/0 would
match anything, essentially serving as a wildcard. The reason the first and second entries
are paired is to manage traffic in both directions (that is, the first one in the case of 127
in the source address and the second in the destination address). However, there is a very
remote possibility this rule pair could have unintended consequences because 0.0.0.0
could also indicate a legacy broadcast. (In the early days of the Internet, BSD UNIX
systems used 0 for broadcast.) However, that would mean the machine is very old.

In the third and fourth rule pairs, DROP is for network 224, which is multicast. Before you

filter out multicast internally, you might want to sniff for a while and make sure you are
not using it (some enterprise backup systems rely on it). The reason for !udp (meaning

not UDP) is that UDP might legally multicast, but TCP should never multicast. Therefore, a
safer rule, one that is less likely to cause a self-inflicted denial of service, might be this:

DROP tcp -- 0.0.0.0/0 224.0.0.0/

The fifth and sixth DROP rule pairs are for the IP addresses reserved for experimental

applications (240).

The final rule is used to quench directed broadcasts.

The "firewall plus something" concept in intrusion prevention is here to stay. As time goes
on, firewalls will continue to add packet-scrubbing functionality and decrease in latency as
they benefit from Moore's law.

Note

Moore's law is based on an observation by Gordon Moore from Intel in 1965. He
said that computer processing capability would double every 18 months or so. It
has proven to be remarkably accurate, and most analysts believe it will continue
to hold true at least until the end of the decade.

Next we will take a look at another category of the early intrusion prevention devices: IDS
plus something.

IDS Plus Something

The "IDS plus something" classification for IPS products refers to those vendors who have
traditionally had strong IDS tools and have added active functionality to stop the activity
that generates an alert before it is delivered on the network or executed on a host. An IDS
plus somethingstyle IPS would generally be referred to as a NIPS, where blocking is done
at the network level.

False-positive detects can be a nuisance with IDS technology, but they are a much more
significant problem in IPS technology. A false positive from an IDS generates an alert that
may be false, but the activity from the IDS is benign. A false positive from an IPS stops
legitimate services from being delivered. This could be intended functionality of a
production application on a database server or it could be a customer visiting your
website. False positives in the IPS realm have a significant cost to the organization

because they can ultimately lead to self-imposed denial of service on production
resources.

IntruShield

IntruShield is an example of a commercial IDS plus somethingstyle of NIPS. In 2002,
McAfee (McAfee was formerly named Network Associates) acquired the IPS company
Entercept for integration into its product line. The Entercept product line merged with the
IDS products previously available from Network Associates to offer both NIPS appliances
and a host-based IPS suite of products to protect desktops and servers.

IntruShield is a chokepoint architecture that uses classic IDS signature and anomaly
techniques to identify attacks. The standard product is shipped with a base rule set that
can be customized. You can enable or disable features to best meet the demands of your
network. A lot of work has been put into the IntruShield user interface, and it is easy to
switch between IDS (passive) mode and IPS (active) mode.

NFR Sentivist

A NIPS that is directly positioned against IntruShield is NFR's Sentivist appliance.
Intrusion prevention is designed and built with a focus on three distinctive areas in this
"IDS plus something" NIPS technology:

NFR detection engine

Fine-grained blocking

Resistance to self-inflicted DoS

Sentivist's IPS leverages NFR's historical detection capability and advanced but difficult to
customize signature engine to offer a combination of pattern-matching signatures,
protocol anomaly detection, and heuristics. It is able to perform context-based detection
of attacks via the use of OS or application fingerprinting techniques, a capability you
should insist on seeing demonstrated before purchasing any NIPS.

Instead of blocking only by IP address or port, NFR Sentivist's IPS is able to block discrete
attack traffic carried in the application layer. Fine-grained blocking should be enabled by
attack type, by impact, or by a qualitative confidence score. Blocking by confidence score
is critical because it allows the user to block attacks on the basis of a system's confidence
that the detected event is truly an attack. Users can choose to calibrate the level of
prevention appropriate to their risk tolerance.

NFR Sentivist provides resistance to self-inflicted DoS by using multiple techniques such
as whitelisting and graceful session termination.

HogWash and Snort-Inline

HogWash was originally developed by Jed Haile and was the first to use Snort rules in a
security gateway device. This development effort seems to have stalled, and the work is
being continued by Snort-Inline. Rob Mcmillen was the next to lead the effort, hosted at
http://snort-inline.sourceforge.net/.

With Snort 2.3, Snort-Inline became part of the Snort distribution. The huge new change
is that Snort-Inline gets its packets from the kernel using IPTables instead of libpcap, just
like modwall. The Snort rule language has been extended for three new types of rules:
drop (standard IPTables drop and log), sdrop (silent drop, no logging), and reject, the

noisiest rule (drop, log, forge a TCP reset or "ICMP Port Unreachable" message, as
appropriate). Because it is open source and part of a wildly popular distribution, Snort-
Inline will probably accelerate the understanding and acceptance of active response.

LaBrea Technologies Sentry

We end the discussion of external NIPS with a fascinating product that is neither a firewall
or an IDS at its heart. Perhaps the best classification would be to call it a deception
device . Sentry was developed by Tom Liston, author of the famous Code Red tarpit. At the
time of this writing, this is primarily a proof of concept for an appliance that uses
attempted connections to unused IP address space as an indicator of an attack. The logic
is that any ARP request for an unassigned IP address can be considered hostile. Sentry
responds by forging an ARP response, claiming Sentry is the IP address. It then uses a
variety of techniques to tie the attacker up for as long as possible. It is fairly simple and
would only cause a self-inflicted denial of service if its information about the unused
address space is incorrect. Liston hopes to roll it out with an additional capability using an
Internet Storm Centerlike correlation database so that whenever one of the devices learns
about an attacking address or attack pattern, that information can be passed to all
Sentries.

Switch-Type NIPS

So far we have discussed chokepoint-style systems with roots as firewalls and similar
devices with roots as IDS systems. We have also mentioned the use of a deception
system. The fourth classification of NIPS is an intelligent switch you plug your network in
to. This is probably the most effective of the NIPS products available on the market place
today, making the best use of firewalls, IDS tools, and routers/switches, ideally in a single
parallel-processing, high-performance, low-latency device.

These switches have enough processing power to do more than just enhance the
performance of a network by preventing Ethernet collisions. Expect to see antivirus,
traffic-shaping, load-balancing, and intrusion prevention in the network itself. Of course,
this next generation of switches that use massive arrays of parallel ASICs to connect the
internal and external segments of your network together are going to be expensive. By
using many of the techniques employed by advanced NIDS tools, the NIPS device can
identify events on the network that are hostile. Because of its position (inline with the
traffic of your entire network), the NIPS device can stop the hostile activity from ever
being delivered to the target system. This also strongly enhances anomaly detection and
network learning because all the traffic passes through the switch.

Protocol Scrubbing, Rate Limiting, and Policy Enforcement

Sitting inline has some advantages that aren't always directly related to thwarting
malicious attacks. In some cases, a NIPS device can be used to clean garbage from the
traffic stream, thus reducing the overall network load. For example, a server that is
attempting to close a connection with a workstation that has shut down may continue to
send packets to the destination waiting for a response saying "I'm done." The NIPS tool
can use intelligence to recognize that the conversation is finished and then either drop the
traffic received from the server or send a spoofed packet to the server on behalf of the
nonresponsive workstation to stop the traffic altogether.

Another feature of switch-type NIPS devices is the ability to use rate limiting to apply
Quality of Service (QoS) mechanisms to network traffic. The administrator can identify
traffic on the network that should receive higher or lower priority than other traffic, or he
can limit the total amount of traffic from a particular network, host, or specific application.
This feature is particularly useful when trying to manage throughput on Internet
connections, where the administrator can limit the ability for a single application or host
to consume all the available bandwidth for the organization.

Because the NIPS device is already classifying traffic based on application, administrators
can use this functionality to enforce organizational policy to drop traffic from unauthorized
applications. A common use of this feature is to stop the activity of peer-to-peer

applications on the network. Because the switch type NIPS device already recognizes
peer-to-peer applications, it doesn't require any additional processing requirements to
apply the policy and drop the traffic, generating alerts to indicate the policy violation from
a specific workstation.

Environmental Anomaly Analysis

What is anomalous with a given application or protocol in one environment may not be
anomalous in the next environment. One organization may utilize a busy public web
server farm, with hundreds of web requests per minute. Another organization may utilize a
single internal-use-only web server for the finance department. If the finance department
network receives hundreds of web requests per minute, that dramatic short-term change
in network behavior would be considered anomalous for that environment, but not for the
server farm.

One of the immediate benefits of this capability is the support of an active change control
program. NIDS and NIPS tools alike can detect a new version of an operating system or
application and raise an alert, or even modify the rule set to take the new information into
account. This could help the operations administrators manage unauthorized change.
Obviously, you can only process so many alerts, so this would be managed by the analyst
or administrator to help determine where appropriate thresholds should be set. Because
the NIPS device is simultaneously tracking connection state for thousands or even millions
of connections, it can take a "broad perspective" view to detect anomalies that involve
many connections across an entire enterprise.

NIPS Challenges

In order for NIPS devices to be deployed as reliable, effective devices, they must
overcome several challenges:

Detection capabilities

Evasion resistance

Stable performance

High throughput

Low-latency, built-in security

The ability to passively determine operating systems and application versions

Let's examine each of these in turn.

Detection Capabilities and Evasion Resistance

NIPS devices must utilize the same techniques of traditional network IDS tools to reduce
the risk of false negatives. At the same time, they have to be extraordinarily careful not to
generate false positives on the network because these types of mistakes would lead to a
denial of service condition. A NIPS device uses a combination of application analysis,
anomaly analysis, and signature-based rules to identify events that are malicious on the
network. Traffic that is identified as malicious is dropped and may also be logged for
review by the analyst to ensure it should have been dropped. A switch-type, "bump in the
wire" NIPS must also use many of the same evasion-resistance techniques, such as
normalizing traffic employed by IDS to reduce the threat of attackers obfuscating data in
an effort to bypass the NIPS's detection capability. After all, because the switch-based
NIPS is going to see all the traffic, evasion techniques and attacks for which there are no
signatures (zero day) are going to be the most successful tools for attackers. This is a
significant challenge for the NIPS to overcome, and the end result is that for the near

future it will not be possible for NIPS devices to have as many active signature as IDSs
are able to employ in passive sniffing mode.

In order to detect the greatest number of attacks without false positives, effective NIPS
tools use passive OS and vulnerability assessment, as you will see later in this chapter.

Stability Demands

Because the NIPS is inline with network traffic, it represents a single point of failure for
the network. NIPS devices must be as stable as a firewall or switch to gain market
acceptance. They must also be resistant to malformed traffic and cannot break existing
network protocols. This is a very similar risk to that of false positives by the NIPSif a NIPS
cannot properly interpret traffic or should fail in any way, it causes a failure on the
network and denies legitimate requests. These failures can be accidental (as in the case of
hardware or software failures) or intentionally performed by an attacker executing a
denial of service on a network. One of the critical design features to understand when
considering the purchase of a NIPS is whether it is designed to fail open or fail closed, or
if this is user configurable. If network availability is critical to your organization, you want
to be pretty certain that if the NIPS application should crash, the switch part of the
product continues to pass traffic.

Throughput Demands

NIPS devices must be able to keep up with the throughput of network traffic, and in
modern networks that means Gigabit Ethernet speeds. It is important to understand how
the device degrades when it reaches its limits. For instance, when switches reach their
limits, they may simply cease to forward traffic to a spanning or monitoring port and
concentrate their resources on their core function. With a NIPS, traffic forwarding may
well be more important than monitoring or protecting.

Latency Requirements

Despite the requirements to use extensive analysis techniques on network traffic to
identify attacks, the NIPS must also provide low latency for network traffic. Additional
latency on traffic that is analyzed should be in the low millisecond range. In general,
latency will prove to be the primary difference between higher priced solutions and more
moderately priced solutions because the easiest way to reduce latency is by adding more
ASICs in parallel.

Security

The NIPS device must be secured against compromise because a compromised NIPS would
give an attacker the ability to establish a man-in-the-middle attack against all the traffic
entering or leaving the network. This is typically performed by configuring the NIPS
without IP or MAC addresses on data interfaces, using a hardened operating system that
resists common attacks, and using a secured management interface that strictly defines
who is permitted to connect to and administer the system. Attackers will seek
opportunities to break NIPS, whether using denial of service or to circumvent the
protection the NIPS provides, so the NIPS device must be able to withstand any direct
attacks.

Although not specifically an innovative advancement through NIPS technology, many NIPS
vendors are looking for ways to properly classify and identity malicious activity with fewer
demands on system processing and memory capacity. One technique is the use of a rule
classification scheme to quickly sort through traffic in order to rapidly identify malicious
events. Some vendors have coined the term multiresolution filtering for this technique,
where simple analysis tests are first applied to traffic. The simple tests represent a portion

of the overall detection capacity of the NIPS device, where a packet that matches a simple
test is then processed using the more thorough tests.

For example, a NIPS device may require traffic to have data on the payload of the device
for analysis. If this simple test fails (overall length packet header length = 0), the NIPS
device does not attempt to further classify this packet and sends it onto the network. This
way, the NIPS can reserve its available system resources for more complex analysis.

After applying the simple rules, the NIPS device proceeds to apply more rule sets of
additional complexity, including the examination of packet header information, transport
layer session state information, application layer session state information, context-
sensitive string matches against the packet payload, application layer analysis, and,
finally, complex regular expression matching. The NIPS device is able to quickly and
effectively classify traffic using only the required processing to complete the analysis,
thereby allowing itself to process additional traffic.

Passive Analysis

In order to help the NIPS identify false-positive traffic, vendors make use of passive
analysis techniques to identify host operating systems, network architecture, and what
vulnerabilities are present on the network. Three of the most well-known standalone tools
for this purpose are P0f (available at http://www.stearns.org), RNA by SourceFire, and
NeVO from Tenable Security, and they should be available to some extent on every NIPS.
Figure 11.1 provides a sample analysis using the NeVO system. Once this information is
gathered, the NIPS can use it to classify attacks against internal systems based on their
operating system and vulnerabilities.

Figure 11.1. The screenshot shows the types of analysis data that can
be captured and displayed by the NeVO system.

[View full size image]

Increased Security Intelligence in the Switch Products

Switch-based, "bump in the wire" NIPS is a fast growing market segment, and there is no
possible way to predict what all the players will do. By the time this book hits the
marketplace, expect to see a large number of switch products with intelligence, ranging

from antivirus and malware detection to network signature detection, from Symantec,
TippingPoint, Enterasys, and Radware. All our efforts to get Cisco to share its plans have
failed; however, between the existing Cisco Security Agent, the Network Admissions
Program, and educational efforts to help network administrators get more security out of
their existing IOS products, it seems certain Cisco will be a player. A subset of these
products includes the true NIPS devices, which are categorized as wire-speed switches,
have IPS capability, and, in general, are based on parallel ASICs. These products include
TippingPoint's UnityOne IPS and TopLayer Attack Mitigator.

TippingPoint's UnityOne IPS

At the time this chapter was written, TippingPoint's UnityOne IPS product was currently
the overwhelming market leader for a switch-type NIPS. It offers an inline NIDS that
provides multigigabit performance, low latency, and multiple mechanisms to detect known
and unknown attacks on the network. In addition to providing IPS features, UnityOne
provides the ability to traffic-shape or rate-limit traffic for QoS measures. It also provides
policy enforcement by blocking applications that are prohibited by your organization's
acceptable-use policy (such as peer-to-peer apps, web mail, or instant messaging).

When the UnityOne device identifies malicious activity or activities that violate policy
rules, the engine uses one of four available response mechanisms:

Monitor The UnityOne device monitors the activity, generating a log for later
analysis.

Report The UnityOne device simply reports the event without detailed logging data.

Limit The UnityOne device restricts the throughput or rate of the malicious activity.

Block The UnityOne device simply drops the traffic before it is delivered to the
destination.

Whenever you are speaking with a vendor and he says, "We are the only company in the
space that can provide X," it is always a good lead in to ask, "Why are you the only
company in the space?" If the vendor cannot provide a good answer, you know the
company is either marketing fluff or it has put in some silly feature that no one else finds
important. However, sometimes you learn the vendor you are talking with has a patent or
other legal device so that it is very hard for others to effectively compete with the
company he represents. This may prove to be the case with switch-based NIPS. 3Com
(TippingPoint) has applied for patent on a technology it calls a "Threat Suppression
Engine," which uses massively parallel ASIC hardware to perform packet inspection on
traffic. If TippingPoint is granted this patent and it withstands the almost certain legal
challenge, it could really change the future of the NIPS marketplace. One unique twist is
that 3Com (TippingPoint) implements the "looks like a duck, walks like a duck, quacks, so
it must be a duck" logic in hardware. The UnityOne uses "vulnerability filters" that identify
attack behavior, not just specific exploits or vulnerabilities. This way, TippingPoint is able
to identify and stop some attacks that exploit applications in an observable fashionthrough
buffer overflows, SQL injection, and other common exploitative techniques. TippingPoint
sells a "Digital Vaccine" subscription service, similar to an antivirus subscription service,
to its customers, who then receive regular updates for their UnityOne device so it can
defend against emerging threats.

TopLayer Attack Mitigator

In the days before true gigabit IDS, TopLayer gained fame as the solution for high-
bandwidth monitoring via load balancing. Like TippingPoint's product, this is a very fast
box with high availability, hot-swappable components, parallel ASICs, and a price tag to
match the performance. Attack Mitigator's roots are more from quelling distributed denial
of service resource exhaustion and protocol anomaly attacks than a true IPS, but it
certainly has the chassis to build on and, like FireWall-1, is very good at well-known,

well-understood attacks. TopLayer calls its inspection technology TopInspect.

Switch NIPS Deployment Recommendations

Deploying a NIPS solution is a major project, and we recommend you begin planning for it
now. Start off with reporting-only mode, study the false positives and negatives for your
chosen solution carefully, invest the time in creating a sustainable process for
configuration management, make sure Operations is a full partner in the process of NIPS
deployment, and remember that your NIDS is still a valuable source of information.

Begin Budgeting Now

You will probably be strongly considering the next generation of switches with security
intelligence sometime in the next two years. This is going to be expensive, so speak to
your manager and see what can be done to plan for this expense in a technology refresh
cycle.

Review Products in Report-Only Mode

Before you start using a NIPS device to start blocking attacks on your network, run the
device in report-only mode. Use this information to identify what events the NIPS would
have dropped on your network, and what the impact would have been to the network.

Work with Vendors Identifying Test Procedures for False Positives and False
Negatives

Ask your vendor to detail its testing procedure for new rules and anomaly analysis
techniques. Ensure the vendor uses a combination of "live" and "attack" scenarios at rates
that are appropriate for your network environment before shipping you updates. Ask your
vendor what techniques it uses to eliminate false-positive traffic, and how it exercises
auditing to ensure it isn't missing attacks.

Be Wary of Absence of Auto-Update Mechanisms

In 2004, we saw a decrease in the time from a vulnerability announcement to the release
of a worm. Instead of the month we were used to, the Witty worm was released three days
after the vulnerability announcement. Because one of the main reasons an organization
would consider the purchase of expensive switch NIPS is worm management, this makes
being able to keep the device up to date with the latest signatures critical.

Be Wary of Auto-Update Mechanisms

The technology for automated analysis or signature database updates has been around for
various products for a while, with NIPS vendors touting this feature for the ability to
quickly respond to new threats. The ability to respond to new threats is certainly
desirable, but with it comes the risk of poor traffic-identification patterns that lead to false
positives on the network. Exercise caution when implementing such features, using
organizational policy to dictate the tradeoff between the risks of new threats and the risks
for dropped traffic.

Auto-update mechanisms ease the implementation and deployment of NIPS products but
can assert a new set of challenges on your organization. Ask your vendor to support a
mixed-reporting mechanism, where new rules are placed in report-only mode for a
specified amount of time. This way, the organization can take advantage of existing
functionality in the NIPS while the analyst has the ability to identify false-positive alerts

or performance burdens that affect throughput and latency on the network.

Document a Change-Management Mechanism

Identify who should be responsible for managing updates to NIPS software, and how often
the software should be updated. Include information about how the organization should
react to updates based on new Internet threats, such as a new worm or other exploitative
threat. Having this policy in place before a new threat emerges will define how well your
organization will be able to leverage NIPS technology.

Expect the NIPS to Be Blamed for All Problems

Veterans of network security will remember that when they first installed a firewall, every
time anyone had a problem, the firewall administrator's phone rang. A new product like a
NIPS is potentially invasive toward network operations. At some point, someone in the
organization is bound to experience a problem and cast blame on the NIPS device. The
best way to mitigate this problem is to clearly document the use and functionality of the
NIPS device and utilize the logging features that come with the NIPS to identify traffic that
is dropped, shaped, or altered in any way. Over time, other people in the organization will
come to understand the benefits and limitations of the technology, and they will accept
the NIPS device as a critical security component for the network.

Use a Combination of NIPS and NIDS Where Appropriate

NIDS investments don't go out the window after a NIPS device is deployed. We can still
leverage the technology of NIDS devices to aid in assessing threats, baselining attack
statistics, and troubleshooting network problems with the addition of a NIPS device. After
deploying a NIPS tool, many organizations focus their NIDS tools to monitor internal
networks, to aid in identifying attacks that make it past the NIPS device, and to identify
insider threats. We don't expect NIDS technology to go away anytime soon; instead, we
expect the technology to continue to mature and add value to organizations that take full
advantage of the functionality available.

Host-Based Intrusion Prevention Systems

We'll now investigate the technology supporting HIPS products in more detail. Essentially,
they are an iterative improvement on personal firewalls. We expect most vendors that are
offering personal firewalls or host-based intrusion detection systems (HIDSs) today to be
offering HIPSs by 2005. One of the major benefits to HIPS technology is the ability to
identify and stop known and unknown attacks, both at the network layer where personal
firewalls operate and in the operating system. It is this functionality that lets enterprises
have a wider window to deploy patches to systems, because already deployed HIPS
software is able to prevent common attack techniques, including worm activity.

Currently, all commercial HIPS software uses a technique called system call interception
(which is very similar to what antivirus vendors have been doing for many years). The
HIPS software uses something called an OS shim to insert its own processes between
applications, accessing resources on the host and the actual OS resources. This way, the
HIPS software has the ability to deny or permit those requests based on whether the
request is identified as malicious or benign. For instance, if Internet Explorer was to
initiate interrupt call 13H to make a direct write to the boot sector of the hard drive, which
is a signature of a boot sector virus, the HIPS would intercept the call. Another approach
might be to implement HIPS via a device driver. The SANS Institute was testing Windows
software based on this approach as early as 2002, but it is still not ready for commercial
use as of this writing. Finally, Computer Associates' eTrust Access Control resembles a
HIPS in that it offers server-based access control at a higher degree of granularity than
most operating systems support.

HIPS tools use a combination of signature analysis and anomaly analysis to identify
attacksthis is performed by monitoring traffic from network interfaces, the integrity of
files, and application behavior. Let's take a detailed look at each of these functions as well
as how each monitoring mechanism can stop common attack techniques.

Real-world Defense Scenarios

HIPS products such as Cisco Security Agent, Security Architect's Ozone, and Platform
Logic's AppFire have been deployed in enough organizations to start getting some "real-
world" experience in defending against attacks from worms and other exploits, including
Blaster, Nachi/Welchia, Sobig, IIS WebDAV, and so on. The organizations that have
deployed HIPS software have reported favorably about their vendor's ability to stop
unknown attacks against systems. The best defenses in this area are from vendors that
offer intrusion prevention that is not solely based on signature or rule-based analysis.
Because rules have to be updated to detect and catch new exploits, organizations are in a
race to deploy signature updates to the HIPS agents to defend against new attacks. Using
application analysis techniques, the best-in-class vendors are able to stop attacks that
have common exploit methods (such as buffer overflows) without requiring updates to the
software.

Dynamic Rule Creation for Custom Applications

Another development in the HIPS market is being designed to support customers who are
using applications that have not been thoroughly analyzed by the vendor for application
analysisdetection techniques as well as those organizations using custom applications.
HIPS vendors are readying tools that monitor how an application operates in a learning
mode, identifying what files are opened, what Registry keys are accessed, what system
calls are made, and so on. An organization using this technology would "train" the HIPS
software in learning mode to recognize the traditional behavior of the production software
and use the results of this training later in production to identify and stop anomalous

events.

This functionality is helpful for both vendors and customers. Vendors can use this method
of analyzing applications to reduce the amount of resources needed to add an application
to their list of supported applications for monitoring, and customers can use this tool to
monitor custom or unsupported applications. An organization using this technology should
always use caution before wide-scale deployment, preferably starting with applications
such as instant messaging and email before moving on to protecting ERP applications from
misuse.

Monitoring File Integrity

Whereas traditional file integrity analysis tools use cryptographic hashes on files to
determine if changes have been made (at a later date), HIPS software uses its operating
system shim functionality to monitor any files that are opened as read/write or write-only
on the operating system. When a program or process attempts to call a function that
would change the contents of a file, such as write(), fwrite(), or fsync(), or use any

other file-modification system calls, the operating system checks whether the file handle
corresponds to a list of files that should be monitored for change. If the file is supposed to
be monitored for change, the HIPS software then checks to determine if the user or
application requesting the change is authorized to do so.

The lack of authorization to change the contents of a file causes the HIPS software to drop
the request to write to the file and then to generate an alert. When authorization is
granted to make changes to the file, the HIPS software honors the request by passing the
necessary information to the requested operating system calls.

A significant advantage of HIPS software is the ability to define authorized users in real
time for monitoring the integrity of files. For instance, you could utilize HIPS software on a
web server to prevent unauthorized people from making changes to web pages (such as
the user account running the web server, which is IUSR_HOSTNAME on Windows IIS
servers), but permit your web developers to make changes when necessary.

Monitoring Application Behavior

Application behavior monitoring is a feature of HIPS software where a manufacturer
selects a supported application and records the intended functionality of the application in
normal use. For example, if a vendor has provided application behavior monitoring for
Microsoft Word, it would record how Microsoft Word interacts with the operating system
and other applications, identifying all the product functionality. After collecting all the data
about how the application should work, the vendor creates a database that details the
functionality of the application to feed to the HIPS software. Once installed, the HIPS
software identifies and monitors the use of the supported application. If Microsoft Word
were to open a file from the file system and print the document, the HIPS software would
recognize this as intended functionality. If Microsoft Word started parsing through each
contact in the Outlook Contact Book to send repeated email to each recipient, the HIPS
software would recognize that as anomalous activity and shut down the application,
generating an alert for the analyst.

Another example of application behavior monitoring involves a web server product such as
the Apache web server. If the HIPS software sees the request GET /index.html, it would

recognize this as intended functionality and let the web server respond to the request. If
the HIPS software sees a request for ./././././././././././././././. repeated 100

times, it would recognize the request as unintended functionality for the application and
stop the request from being delivered to the application.

In practice, application behavior monitoring is difficult to get right because applications
are constantly changing functionality with updates and new releases. Most vendors are
developing hybrid solutions that utilize a combination of application behavior monitoring
and anomaly analysis, using a specified list of anomalous events that should not be

allowed on the system.

It is important to remember that application behavior analysis only works for supported
applications. If your vendor supports Microsoft Exchange and the Microsoft IIS web server,
and you run the IIS SMTP engine, the HIPS software offers no protection for the SMTP
engine.

HIPS Advantages

Now that you have a better understanding of how HIPS software functions and what it can
do, let's take a look at the advantages of using HIPS.

HIPS software includes nearly all the capabilities of HIDS software. Identifying
unauthorized change to files, monitoring network activity, and the ability to see the
results of network-encrypted traffic are all advantages to using HIPS software as well. The
added benefit for HIPS, of course, is the ability to stop attacks from being successful. This
is a welcome advantage for many organizations that struggle with patch management
challenges and the short window of time between when a vulnerability is announced and
when it is actively being exploited. HIPS is one more tool that might help the problem of
the so-called zero-day exploit , an attack that occurs before the vulnerability is published.

Organizations are further challenged with an expanding network perimeter. Years ago we
only had to worry about attacks from our Internet connections; now attacks come from
wireless networks, modems, VPN connections, malware introduced by traveling users to
our networks, and more. HIPS software provides a better method of defending our
perimeter when distributed throughout the enterprise than traditional tools allow.

HIPS Challenges

HIPS deployments have implementation and maintenance challenges that include testing
updates, deploying updates, troubleshooting updates…all the joys of complex operational
software. False positives are a major challenge in the IPS market as well, although they
are slightly less significant with HIPS because a false positive is this risk, however,
because the false positive you experience may be how your web server responds to HTTP
requests, thus limiting your ability to serve pages to people on the Internet.

The ability to detect unknown attacks is a big advantage for IPS technology, but it is often
tied to specific application functionality such as IIS, Apache, or Exchange. The ability to
monitor for anomalous behavior from applications is limited to those applications selected
by your vendor, with almost no support for protecting custom applications. Hardening
operating systems and secure coding practices are still good ideas for protecting custom
application software.

More HIPS Challenges

Despite the ability for HIPS software to identify and stop attacks, it is not a replacement
for regular system patching or antivirus defenses. IPS software is still in an early stage of
maturity, and it isn't yet clear what weaknesses attackers will discover and exploit in this
technology. It is best to use HIPS software as another piece of defense for your
organization's security.

With all the advantages and detection techniques offered by HIPS software comes the
additional burden of processing requirements on servers and workstations. This will
contribute to the total cost of ownership (TCO) of HIPS software, possibly reducing the life
cycle of your current server and workstation investments. Expect HIPS software to utilize
about 20MB of RAM and between 2% and 3% of available CPU power, depending on
configuration and analysis options.

Finally, the need for a management console to oversee HIPS software throughout the

organization is obvious, just as many organizations use it to manage antivirus software
updates and signature data files. Vendors are struggling with the extensibility of managing
large numbers of nodes from a management console. Though it is growing, version 4.5 of
Cisco's management console is expected to support 100,000 agents. If you are planning a
HIPS deployment larger than your console supports, expect to make multiple investments
in management consoles and the labor to replicate the management burden across
multiple HIPS groups.

HIPS Recommendations

This section contains recommendations to keep in mind when evaluating or planning a
HIPS deployment. This is a major software rollout, so you must plan, test, and manage.

Document Requirements and Testing Procedures

Carefully evaluate vendor products in a lab and production environment to ensure they
deliver the desired functionality without generating false-positive detects. If a vendor's
product requires significant troubleshooting and tweaking to get it working properly,
record the time spent on this effort and add it to the TCO calculation for each application
you wish to use on hosts protected with the HIPS software.

Develop a Centrally Managed Policy for Controlling Updates

Strong configuration management practice can significantly reduce the risk of problems
with the HIPS rollout. The lower the total number of repeatable-build operating systems
deployed at your facility, the better suited you are for a HIPS solution. If every single
operating system is different, you should be considering a NIPS solution, not a HIPS
solution. Identify who should be responsible for managing updates to HIPS software, and
how often the software should be updated. Include information about how the organization
should react to updates based on new Internet threats, such as a new worm or other
exploitative threat. Having this policy in place before a new worm threatens your
organization will impact how well the organization will be able to leverage the HIPS
technology.

Don't Blindly Install Software Updates

Despite the claims from manufacturers that they extensively test the updates to their
products before deployment, they still can make mistakes and ship updates that render
workstations and servers useless or severely impaired. Establish a test environment for
the supported workstation and server images for your organization and thoroughly test
product functionality before approving the distribution of software.

Don't Rely Solely on HIPS to Protect Systems

You should use HIPS software to augment defense-in-depth techniques. Exclusively
relying on HIPS software to protect systems is not a wise choice. Instead, use the extra
time from the defenses provided by HIPS to carefully test and plan the delivery of patches
to ensure workstations are not vulnerable to the common exploits used by attackers.

Expect Your HIPS to Come Under Attack

The popularity of HIPS software has started to get the attention of the attacker
community, looking for ways to circumvent this technology. Some groups are focusing
their attention on attacking the management station and disabling HIPS software on
clients throughout the organization centrally. Other groups are looking at how HIPS

software examines system calls, and how the process might be circumvented. Because
malware has been released into the wild that disables antivirus software and/or personal
firewalls, you should expect attacks against the HIPS itself. To date, there have not been
any public exploits or security advisories for HIPS software, but attackers will continue to
research, looking for weaknesses in these tools and ways they can be exploited.

Summary

Marketing buzzwords are commonplace in the IPS field, and each vendor has a different
opinion about what these buzzwords actually represent. This chapter has illustrated two
major classifications of intrusion prevention products: host based and network based.
Network-based IPS can be classified as external NIPS (point-defense devices that you put
in front of an object you want to protect) and switch NIPS (devices you plug your network,
or part of your network, in to).

External NIPS are primarily iterative improvements to firewalls or IDS systems. Firewall
vendors are adopting additional intelligence in their products to stop attacks as they
traverse the network for network-based IPS. A similar method of inline NIPS is to deploy a
"switch-like" device between public and private networks that uses stateful packet
inspection and IDS techniques to examine and drop malicious traffic. NIPS devices must
be able to process traffic at high speeds with low latency while minimizing false negatives
and eliminating false positives. False positives and dropped traffic by the NIPS results in a
denial of service to your organization.

Antivirus vendors are adding more IPS protection to their host-based products by
expanding their detection of malware and integrating the defensive tools from firewall
software. Because they are masters of the art of OS calls, these vendors are well
positioned to create HIPS products.

Other IDS vendors are developing personal firewalls and host-based IPS tools that
combine system call interception, file-change monitoring, network monitoring, and
application behavior analysis to detect known and unknown attacks. These tools have
proved beneficial for many organizations, lengthening the window of opportunity for the
deployment of software updates to resolve application and operating system
vulnerabilities.

Finally, it is important to remember that IPS technology can only be fully utilized when it
is used by trained analysts who clearly understand the technology's advantages and
limitations. IPS is not a replacement for defense in depth, but it is a good way to
strengthen the security posture of your organization.

Part III: Designing a Secure Network
Perimeter

 12 Fundamentals of Secure Perimeter Design

 13 Separating Resources

 14 Wireless Network Security

 15 Software Architecture

 16 VPN Integration

 17 Tuning the Design for Performance

 18 Sample Designs

Chapter 12. Fundamentals of Secure
Perimeter Design
If you are not currently the lead designer for your organization, we suspect that becoming
one is one of your goals. You might be laying out a network from scratch, assessing the
strength of an existing infrastructure, determining where to place a new security device,
or deciding whether to deploy one at all. You know of many defense components you could
incorporate into your security infrastructure, and you know of countless ways of arranging
them. This chapter concentrates on the do's and don'ts of security perimeter design and
covers some of the more common scenarios.

Before jumping into a design session, you need to have the right tools for making design-
related decisions. In the world of network security architecture, these tools are bits of
information about your environment and your business goals. You need to figure out the
following:

What resources need to be protected

Who you are protecting against

What your business needs and constraints are

In this chapter, we review the factors you need to consider when designing the network's
perimeter. We analyze several building blocks that are useful for crafting more complex
architectures. These scenarios will incorporate firewalls, routers, and VPN devices in
various permutations.

Deciding on a particular defense architecture is a rewarding and complicated task that
requires making tough choices in the world where functionality and security are often at
odds with each other. It is understandable to want to delay making such decisions as long
as possible. After all, it is easier to avoid confrontation than fight an uphill battle for
budget and resources. Making security design decisions involves resolving conflicts that
incorporate many aspects of the network and application infrastructure, such as usability,
reliability, manageability, and cost. Principles that are presented in this chapter are meant
to help you make hard decisions early in the process of setting up a security perimeter;
that way, you can save sleep, time, and money in the implementation and maintenance
phases of your deployment.

Tip

The later you make a decision that modifies your design, the harder it is to
properly implement the change. You should put extraordinary effort into the
design phases of your engagement to minimize the chance of making significant
changes later in the process.

Gathering Design Requirements

Whether you are designing a new network or working with an existing infrastructure, it
helps to treat components and requirements of your environment as elements of a unified
perimeter security architecture. Doing so allows you to identify scenarios in which devices
might be configured in an inconsistent or even conflicting manner, and lets you tune the
design to match your needs. Based on specifics of your environment, you will decide, for
instance, whether a single packet-filtering router on the edge of your network will provide
sufficient protection, or whether you need to invest in multiple firewalls, set up one
behind another, to properly segment your network. A good place to start designing your
perimeter architecture is determining which resources need to be protected.

Determining Which Resources to Protect

In the realm of network security, we focus on ensuring confidentiality, integrity, and
availability of information. However, the notion of information is too general and does not
really help to make decisions that account for specifics in a particular situation. For some
organizations, the information that needs to be protected is credit card and demographics
data; for others, it might be legal agreements and client lists. Information can also take
the form of application logic, especially for websites that rely on dynamically generated
content. To decide what kind of network perimeter will offer adequate protection for your
data, you need to look at where the information is stored and how it is accessed.

Servers

Modern computing environments tend to aggregate information on servers. This makes a
lot of sense because it is much easier to keep an eye on data that is stored centrally;
some of the problems plaguing peer-to-peer file-sharing systems such as Kazaa
demonstrate difficulties in providing reliable access to information that is spread across
many machines. Because all of us face limitations of overworked administrators and
analysts, we often benefit from minimizing the number of resources that need to be set
up, monitored, and secured.

The Case of the Missing Server

InformationWeek once published a story about a missing server that had been
running without problems for four years. System administrators, unaware of the
server's whereabouts, had to resort to manually tracing the network cable until
it led them to a wall. Apparently, "the server had been mistakenly sealed
behind drywall by maintenance workers."1 (Alas, some claim that this is just an
urban legend,2 but there is some truth to all tales.) Do you know where your
servers are?

Make sure you know what servers exist on your network, where they are located, what
their network parameters are, and what operating systems, applications, and patches are
installed. If you have sufficient spending power, you might consider taking advantage of
enterprise system management software such as HP OpenView, Microsoft Systems
Management Server (SMS), and CA Unicenter to help you with this task.

If the infrastructure you are protecting is hosting multitier applications, you need to

understand the role of each tier, typically represented by web, middleware, and database
servers, and their relationship to each other. In addition to documenting technical
specifications for the server and its software, be sure to record contact information of the
person who is responsible for the business task that the system is performing. You will
probably need to contact him when responding to an incident associated with this system.

Workstations

End-user workstations serve as an interface between the technical infrastructure that
powers the computing environment and the people who actually make the business run.
No matter how tightly you might want to configure the network's perimeter, you need to
let some traffic through so that these people can utilize resources on the Internet and
function effectively in our web-dependent age. To create a perimeter architecture that
adequately protects the organization while letting people do their work, you need to make
sure that the design reflects the way in which the workstations are used and configured.

For example, if your Windows XP workstations never need to connect to Windows servers
outside the organization's perimeter, you should be able to block outbound Server
Message Block (SMB) traffic without further considerations. On the other hand, if your
users need to access shares of a Windows server over the Internet, you should probably
consider deploying a VPN link across the two sites.

Similarly, evaluating the likelihood that your system administrators will routinely patch
the workstations might help you decide whether to segment your environment with
internal firewalls. Organizations that can efficiently distribute OS and application updates
to users' systems are less likely to be affected by an attacker gaining access to a
workstation and then attacking other internal systems. At the same time, if the centralized
control channel is compromised in this configuration, the attack could affect many
systems.

When examining your workstations, look at the kind of applications and operating systems
they are running and how patched they are. Is data stored only on your servers, or do
users keep files on their desktops? Don't forget to take into consideration personal digital
assistant (PDA) devices; corporate users don't hesitate to store sensitive information on
their Palms, BlackBerries, Pocket PCs, and smartphones. You also need to make special
provisions for traveling and telecommuting users; by going outside of your core network,
telecommuters will unknowingly expand your defense perimeter.

Networking Gear

Bridges, switches, and routers interconnect your computing resources and link you to
partners and customers. In earlier chapters, we talked about the role of the router and
explained the need to secure its configuration. Modern high-end switches offer
configuration complexities that often rival those of routers, and they should be secured in
a similar manner. Moreover, Virtual LAN (VLAN) capabilities of such switches might
require special considerations to make sure attackers cannot hop across VLANs by crafting
specially tagged Ethernet frames.

Note

Is this process beginning to look like an audit of your environment? In many
respects, it is. Given budget and time limitations, you need to know what you are
protecting to determine how to best allocate your resources.

Make sure you know what devices are deployed on your network, what function they
serve, and how they are configured. Hopefully, you will not keep finding devices you did

not think existed on the network. It is not uncommon to see an organization with "legacy"
systems that were set up by people who are long gone and that everyone is afraid to touch
for fear of disrupting an existing process. Be mindful of network devices that terminate
private or VPN connections to your customers or partners inside your network. You need to
evaluate your level of trust with the third party on the other end of the link to determine
the impact of such a device on your network's perimeter.

Modems

When looking for possible entry points into your network, don't forget about modems that
might be connecting your servers or workstations to phone lines. Modems offer the
attacker a chance to go around the border firewall, which is why many organizations are
banishing modems from internal desktops in favor of VPN connections or centralized dial-
out modem banks that desktops access over TCP/IP. With the increasing popularity of
VPNs, the need to connect to the office over the phone is gradually decreasing. Yet it is
common to find a rogue desktop running a remote control application such as pcAnywhere
or Remote Desktop over a phone line.

Sometimes, a business need mandates having active modems on the network, and your
security policy should thoroughly address how they should and should not be used. For
example, modems that accept inbound connections might need to be installed in data
centers to allow administrators out-of-band access to the environment. In such cases,
your security architecture should take into account the possibility that the modem might
provide backdoor access to your network. To mitigate this risk, pay attention to host
hardening, consider deploying internal firewalls, and look into installing hardware
authentication devices for controlling access to the modems. (Such devices are relatively
inexpensive and block calls that do not present a proper authentication "key.")

Controlling Modem Connections

Several vendors offer devices that control access to telephone lines in a manner
reminiscent of traditional firewalls. Instead of keeping track of protocols and IP
addresses, telephone firewalls look at call type (voice, data, or fax) and phone
numbers to determine whether to let the call through. Products in this category
may also allow administrators to automatically disconnect workstations from
the LAN when they establish modem connections. Examples of such products
are SecureLogix TeleWall (http://www.securelogix.com) and CPS Basic Mini
Firewall (http://www.cpscom.com).

Other Devices

When looking for devices that can be used to store sensitive data or provide access to
information, private branch exchange (PBX) systems often slip people's minds. However,
even back in the era when voice communications were completely out of band with IP
networks, attackers knew to tap into organizations' voice mail systems over the phone,
fishing for information and setting up unauthorized conference calls and mail boxes. With
the growing popularity of IP-based telephony systems, the distinction between voice and
data is beginning to fade. For instance, in a hybrid system offered by ShoreTel, traditional
analog phones are employed, but the dialing process can be controlled using a desktop
agent over TCP/IP, and voice mail messages are stored as .wav files on a Windows-based

server.

Tip

If it can be accessed over the network, it should be accounted for in the design of
the perimeter.

Don't forget to consider other devices that comprise your computing infrastructure, such
as modern printers and copiers. Manufacturers of these systems often embed advanced
services into these devices to ease management without regard for security. Don't be
surprised if your Sharp AR-507 digital copier comes with built-in FTP, Telnet, SNMP, and
HTTP servers, all with highly questionable authentication schemes.3

Indeed, modern networks are heterogeneous and support communications among a wide
range of resources. We need to understand what servers, workstations, and various
network-aware devices exist on the network to determine what defenses will provide us
with adequate protection. Another factor that contributes toward a properly designed
security architecture is the nature of threats we face. Potential attackers who could be
viewed as a threat by one organization might not be of much significance to another. The
next section is devoted to determining who it is we are protecting ourselves from, and it's
meant to help you assess the threat level that is appropriate for your organization.

Determining Who the Potential Attackers Are

We think we know who our enemy is. We're fighting the bad guys, right? The perception of
who is attacking Internet-based sites changes with time. Sometimes we look for attackers
who are specifically targeting our sites, from inside as well as outside, to get at sensitive
information. In other situations, we feel inundated with "script kiddy" scans where
relatively inexperienced attackers are running canned scripts in an attempt to reach the
"low hanging fruit" on the network. Lately, automated agents such as remote-controlled
Trojans, bots, and worms have been making rounds and threatening our resources in new
and imaginative ways that we will discuss in this section.

In reality, only you can decide what kind of attacker poses the greatest threat to your
organization. Your decision will depend on the nature of your business, the habits and
requirements of your users, and the value of the information stored on your systems.

Each category of attacker brings its own nuances to the design of the network's defenses.
When operating under budget constraints, you will find yourself assigning priority to some
components of your security infrastructure over others based on the perceived threat from
attackers that worry you the most.

Determined Outsider

Why would anyone be targeting your network specifically? Presumably, you have
something that the attacker wants, and in the world of computer security, your crown
jewels tend to take the form of information. A determined outsider might be looking for
ways to steal credit card numbers or other sensitive account information about your
customers, obtain products at a cost different from what you are offering them for, or
render your site useless by denying service to your legitimate customers. The threat of a
denial of service (DoS) attack is especially high for companies with relatively high
profiles.

An Attack on Authorize.Net

Authorize.Net, a popular Internet payment processing company, fell victim to a
distributed denial of service (DDoS) attack in September 2004. The attack,
which began after the company refused to meet extortion demands, led to
service disruptions to approximately 90,000 of its customers. Roy Banks, the
company's general manager, admitted that they were caught off guard by this
attack. "We've invested heavily in defense, and we thought we were prepared,"
he said. "But the nature of this attack was something we had never
experienced."4 When planning your defense infrastructure, be sure to consider
all attack vectors that may influence the availability of your service.

If your organization provides services accessible over the Internet, a determined outsider
might be interested in obtaining unauthorized access to such services, instead of
specifically targeting your information. In some cases, you might be concerned with
corporate espionage, where your competitors would be attempting to obtain your trade
secrets, important announcements that have not been released, your client lists, or your
intellectual property. Such an attack is likely to have significant financing, and might even
incorporate the help of an insider.

The difficulty of protecting against a determined outsider is that you have to assume that
with sufficient money and time to spare, the attacker will be able to penetrate your
defenses or cause significant service disruptions. To counteract such a threat, you need to
estimate how much the potential attacker is likely to spend trying to penetrate your
defenses, and build your perimeter with this threat profile in mind. Additionally, intrusion
detection presents one of the most effective ways of protecting against a determined
attacker because it offers a chance to discover an attack in its reconnaissance state,
before it escalates into a critical incident. A properly configured intrusion detection system
(IDS) also helps to determine the circumstances of an incident if an attacker succeeds at
moving beyond the reconnaissance state.

Determined Insider

The threat of a determined insider is often difficult to counteract, partly because it is hard
to admit that a person who is working for the organization might want to participate in
malicious activity. Nonetheless, many high-profile criminal cases involve a person
attacking the organization's systems from the inside. With a wave of layoffs hitting
companies during economic downturns, disgruntled ex-employees have been causing
something of a stir at companies that have not recognized this as a potential risk.

Insiders at Cisco

On August 20, 2001, two former Cisco accountants admitted to exploiting an
internal "Sabrina" system, used by the company to manage stock options, to
illegally issue themselves almost $8 million of Cisco shares. They used access
to the system to "identify control numbers to track unauthorized stock option
disbursals, created forged forms purporting to authorize disbursals of stock,"
and "directed that stock be placed in their personal brokerage accounts."5

The insider does not need to penetrate your external defense layers to get access to
potentially sensitive systems. This makes a case for deploying internal firewalls in front of
the more sensitive areas of your network, tightening configurations of corporate file and

development servers, limiting access to files, and employing internal intrusion detection
sensors. Note that because an internal attacker often knows your environment, it is much
harder to detect an insider attack early on, as opposed to an attack from the outside.

Even without getting into the argument of whether insider attacks are more popular than
the ones coming from the outside, the ability of an internal attacker to potentially have
easy and unrestricted access to sensitive data makes this a threat not to be taken lightly.

Script Kiddy

The term script kiddy is at times controversial due to its derogatory nature. It typically
refers to a relatively unsophisticated attacker who does not craft custom tools or
techniques, but instead relies on easy-to-find scripts that exploit common vulnerabilities
in Internet-based systems. In this case, the attacker is not targeting your organization
specifically, but is sweeping through a large number of IP addresses in hopes of finding
systems that are vulnerable to published exploits or that have a well-known backdoor
already installed.

Scanning for SubSeven

In 2001, SubSeven was one of the most popularly probed for Trojan horse
programs on the Internet. Knowing that SubSeven often listened on TCP port
27374 by default, attackers who were looking for easily exploitable computers
scanned blocks of IP addresses in hopes of finding a computer with an already-
installed instance of SubSeven. The scanning tool then tried to authenticate to
the Trojan using common backdoor passwords built in to SubSeven. After the
attacker was authenticated, he had virtually unrestricted access to the victim's
system.

The nature of script kiddy attacks suggests that the most effective way of defending
against them involves keeping your system's patches up to date, closing major holes in
network and host configurations, and preventing Trojans from infecting your internal
systems.

A hybrid variant of the "script kiddy" attack might incorporate some of the elements of a
determined outsider threat and would involve an initial sweep across many network nodes
from the outside. This activity would then be followed up by a set of scripted attacks
against systems found to be vulnerable to canned exploits. In such scenarios, IDSs are
often effective at alerting administrators when the initial exploratory phrase of the attack
begins.

In one example of a hybrid script kiddy attack, Raphael Gray (a.k.a. "Curador") harvested
tens of thousands of credit card numbers in 2000. He started the attack by using a search
engine to locate potentially vulnerable commerce sites and then exploited a known
vulnerability to gain unauthorized access to those sites. Referring to the attack, Raphael
said, "A lot of crackers don't like what I did. They consider me to be a script kiddy,
someone who can't program in any language, because I used an old exploit instead of
creating a new one. But I've been programming since I was 11."6 By the way, one of the
credit card numbers Ralph obtained belonged to Bill Gates.

Automated Malicious Agents

The beginning of the century shifted the spotlight away from attacks performed directly by
humans to those that were automated through the use of malicious agents. Fast-spreading
worms such as Code Red and Nimda demonstrated the speed with which malicious

software can infect systems throughout the Internet and our inability to analyze and
respond to these threats early in the propagation process. By the time we had detected
and analyzed the Nimda worm, it had infected an enormous number of personal and
corporate systems. Persistent worms such as Beagle and NetSky have demonstrated the
difficulty of eliminating worm infections on the Internet scale, even after they have
exhibited their presence for months. The "success" of Beagle and NetSky is, in part, due to
their email-based propagation mechanisms, which allowed malicious code to slip through
many perimeter defenses.

Worms and Script Kiddies

The Nimda worm had several propagation vectors that allowed it to spread
across a large portion of the Internet in a matter of hours. One such mechanism
allowed the worm to scan Internet hosts for vulnerable IIS servers and infect
machines it came across.

This technique closely resembles actions of a script kiddy because the worm
was preprogrammed to scan for several well-known exploits and backdoors. The
advantage that the worm had over a script kiddy is that by infecting a corporate
system via one vector, it could continue spreading internally to hosts that were
not accessible from the outside.

Maintaining a perimeter that is resilient against worm-based attacks requires keeping
abreast of the latest vulnerabilities and applying patches as soon as they are released. To
further limit the scope of the agent's potential influence, you should consider segmenting
your infrastructure based on varying degrees of security levels of your resources.
Antivirus products can also be quite effective at dampening the spread of malicious
programs, but they are limited by their ability to recognize new malicious code.
Unfortunately, as we have learned from the past worm experiences, virus pattern updates
might not be released in time to prevent rapid infection of vulnerable systems.

Defining Your Business Requirements

When designing the perimeter defense infrastructure, we need to keep in mind that the
purpose of addressing information security issues is to keep the business running.
Considering that security is a means, not an end. The design must accommodate factors
such as services provided to your users or customers, fault tolerance requirements,
performance expectations, and budget constraints.

Cost

Cost is an ever-present factor in security-related decisions. How much are you willing to
spend to protect yourself against a threat of an attack or to eliminate a single point of
failure? For instance, SANS Institute spent three months and significant resources putting
all their servers in a highly secure Network Operations Center (NOC). Then when the Code
Red worm hit, they experienced 50 times more traffic in 24 hours than during any
previous peak. They were secure against intrusions, but the architecture became a single
point of failure.

How much should you spend? As we discussed earlier, this depends on the perceived value
both for access and control of the resources you are protecting. Making informed choices
regarding the need to spend less on one component of a defense infrastructure allows us
to spend more on another layer that might require additional funding. When looking at the
cost of a security component, we should examine the following cost factors:

Initial hardware

Initial software

Initial deployment (time to deploy)

Annual software support and updates

Maintenance and monitoring of the component

Cost and Risk Mitigation

When considering whether to invest in a set of intrusion detection sensors at a
relatively large organization, I had to present a detailed cost analysis report
that included all factors outlined in the preceding list. Each sensor cost around
$9,000 to obtain (software and hardware), $5,400 to deploy (let's say three
days of work at the rate of $1,800 per day), and $2,000 per year for technical
support and software upgrades. I also had to take into account the cost of
having the device monitored and supported by in-house or outsourced analysts.
Associating specific numbers with risk mitigation options allowed us to make an
informed decision regarding our ability to purchase the IDS.

When calculating the cost of adding a perimeter security component, you might conclude
that mitigating the risk that it would protect you against is not worth the money it would
cost to deploy and maintain it. In that case, you might consider employing a less thorough
but more affordable solution. For example, alternatives for purchasing a relatively
expensive commercial IDS product might include obtaining open source packages such as
Snort, an outsourced security monitoring solution, or an additional firewall. (An additional
firewall might mitigate the same risk in a less expensive manner, depending on your
environment.) Even when using "free" software such as Snort or an academic version of
Tripwire, be sure to take into account the cost of the administrator's time that will be
spent installing and maintaining the new system.

Business-Related Services

Of course, when setting up your network's perimeter, you need to know what services
have to be provided to your users and customers. In a typical business, you will probably
want to block all nonessential services at the network's border. In a university, you might
find that unrestricted access is one of the "services" provided to the university's users. In
that case, you will probably be unable to block traffic by default; instead, you will filter
out only traffic that is most likely to threaten your environment.

Protecting your resources against threats that come through a channel that needs to be
open for business use is not easy. For instance, if you decide to allow ICMP through your
network for network troubleshooting purposes and are fighting an ICMP flood attack,
blocking ICMP traffic at your ISP's upstream routers is likely to free up some bandwidth
for services that absolutely must be accessible. If, on the other hand, you are being
flooded with SYN packets or HTTP requests targeting TCP port 80 and you are a web-based
e-commerce site, asking the ISP to block this traffic at their routers is probably not an
option. (You can try blocking traffic from specific sources, but in a DDoS attack, you might
have a hard time compiling a complete list of all attacking addresses.) Only a defense-in-
depth architecture has a chance of protecting you from attacks that might come through
legitimately open channels.

Performance

When analyzing your business requirements, you need to look at the expected
performance levels for the site that are protected by the security infrastructure. As we add
layers to perimeter defense, we are likely to impact the latency of packets because they
might be traversing through multiple filtering engines, sanity checks, and encryption
mechanisms. If performance is a serious consideration for your business, you might be
able to justify spending money on equipment upgrades so that the impact of additional
security layers is minimized. Alternatively, you might decide that your business hinges on
fast response times and that your budget does not allow you to provision appropriately
performing security hardware or software. In the latter case, you might need to accept the
risk of decreased security for the sake of performance.

Establishing performance expectations in the design phase of your deployment, before the
actual implementation takes place, is a difficult but necessary task. Indeed, it's often hard
to estimate how much burden an IPSec encryption tunnel will put on your router, or how
many milliseconds will be added to the response time if a proxy server is in place, instead
of a stateful firewall. If your design goes over the top with the computing power required
to provide adequate performance, you might not have much money left to keep the
system (or the business) running. At the same time, not allocating proper resources to the
system early on might require you to purchase costly upgrades later.

Inline Security Devices

Consider the architecture that incorporates multiple inline firewalls located one behind
another. For a request to propagate to the server located the farthest from the Internet,
the request might need to pass through the border router and several firewalls. Along the
packet's path, each security enforcement device will need to make a decision about
whether the packet should be allowed through. In some cases, you might decide that the
security gained from such a configuration is not worth the performance loss. In others,
you might be willing to accept the delay in response to achieve the level of security that is
appropriate for your enterprise. Or you might devise alternative solutions, such as
employing a single firewall, to provide you with a sufficient comfort level without
employing inline firewalls.

The Use of Encryption

Other significant effects on performance are associated with the use of encryption due to
the strain placed on the CPU of the device that needs to encrypt or decrypt data. You
might be familiar with SSL and IPSec accelerator cards or devices that you can employ to
transfer the encryption duties to a processor that is dedicated and optimized for such
tasks. These devices are not cheap, and the business decision to purchase them must take
into account the need to provide encryption, the desired performance, and the cost of
purchasing the accelerators.

For example, most online banking applications require the use of SSL encryption to protect
sensitive data as it travels between the user's browser and the bank's server. Usually, all
aspects of the user's interaction with the banking application are encrypted, presumably
because the bank was able to justify the expense of purchasing the computing power to
support SSL. Cost is a significant factor here because you need to spend money on SSL
accelerators to achieve the desired performance.

At the same time, you will probably notice that SSL encryption is not used when browsing
through the bank's public website. This is probably because the information provided on
the public site is not deemed to be sensitive enough to justify the use of encryption.

Detailed Logging

Among other considerations relating to the site's performance is the system's ability to
handle large amounts of log data. Availability of detailed logs is important for performing

anomaly detection, as well as for tuning the system's performance parameters. At the
same time, enabling verbose logging might inundate a machine's I/O subsystem and
quickly fill up the file system. Similarly, you must balance the desire to capture detailed
log information with the amount of network bandwidth that will be consumed by logs if
you transport them to a centralized log archival system. This is an especially significant
issue for situations in which you need to routinely send log data across relatively slow
wide area network (WAN) links.

Fault Tolerance

The amount of fault tolerance that should be built in to your environment depends on the
nature of your business. The reason we discuss fault tolerance in an information security
book is because eliminating single points of failure is a complex task that strongly impacts
the architecture of your network.

When designing fault tolerance of the infrastructure, you need to look at the configuration
of individual systems, consider the ways in which these systems interact with each other
within the site, and, perhaps, offer geographic redundancy to your users.

Intrasystem Redundancy

Looking at a single machine, you examine its disk subsystem, number of processors,
redundancy of system boards and power supplies, and so on. You need to decide how
much you are willing to pay for the hardware such that if a disk or a system board fails,
the machine will continue to function. You will then weigh that amount against the
likelihood this will happen and the extent of damage it will cause.

You might also ask yourself what the consequences will be of a critical process on that
system failing, and what is involved in mitigating that risk. The answer might be
monitoring the state of that process so that it is automatically restarted if it dies.
Alternatively, you might consider running a program that duplicates the tasks of the
process; for instance, you might want to run both LogSentry and Swatch to monitor your
log files. Keep in mind that many applications were not designed to share the host with
multiple instances of themselves. Moreover, running multiple instances of the application
on the same system does not help when the host fails and eliminates all processes that
were supposed to offer redundancy. When running a duplicate process on the same host is
not appropriate or sufficient, look into duplicating the whole system to achieve the desired
level of redundancy.

Intrasite Redundancy

Redundant components that are meant to fulfill the same business need are usually
considered to be operating in a cluster. We might set up such clusters using hardware and
software techniques for the most important systems in the environment, such as the
database servers. Similarly, network and security devices can operate in a cluster,
independently of how other components of your infrastructure are set up.

If a clustered component is actively performing its tasks, it is considered to be active; if
the component is ready to take on the responsibility but is currently dormant, it is
considered to be passive. Clusters in which all components are active at the same time
provide a level of load balancing and offer performance improvements, albeit at a
significant cost. For the purpose of achieving intrasite redundancy, it is often sufficient to
deploy active-passive clusters where only a single component is active at one time.

Redundancy of the network is a significant aspect of intrasite redundancy. For example, if
Internet connectivity is very important to your business, you may need to provision
multiple lines linking the network to the Internet, possibly from different access providers.
You may also decide to cluster border routers to help ensure that failure of one will not
impact your connection to the Internet. Cisco routers usually accomplish this through the

use of the Hot Standby Router Protocol (HSRP). With HSRP, multiple routers appear as a
single "virtual" router.

Firewall Redundancy

Many commercial firewall and VPN products also provide clustering mechanisms that you
can use to introduce high availability to that aspect of your perimeter, should your
business justify the added cost. Check Point, for example, offers the ClusterXL add-on to
provide automated failover and load-balancing services for its FireWall-1/VPN-1 products.
A popular third-party solution for Check Point's products that achieves similar results is
StoneBeat FullCluster. Nokia firewall/VPN appliances also offer their own failover and
load-balancing solutions. Cisco PIX clusters can also ensure high availability of the
firewall configuration, as well as active-active load-balancing clusters.

Note

When researching firewall clustering solutions, keep in mind the difference
between technologies that provide failover and load-balancing capabilities, and
those that only support failover. Failover mechanisms ensure high availability of
the configuration, but they do not necessarily focus on improving its performance
through load balancing.

For stateful firewalls to function as part of a unified cluster, one of the following needs to
take place:

Clustered devices need to share state table information.

Packets that are part of the same network session need to flow through the same
device.

If one of these requirements is not met, a stateful communication session may be
interrupted by a firewall device that doesn't recognize a packet as belonging to an active
session. Modern firewall clustering methods typically operate by sharing the state table
between cluster members. This setup allows stateful failover to occurif one of the
clustered devices fails, the other will be able to process existing sessions without an
interruption. Let's take a closer look at why sharing state information is vital to a firewall
cluster.

Consider a situation where two FireWall-1 devices, set up as an active-active ClusterXL
cluster, are processing an FTP connection. The cluster member the communication
traveled through initially preserves FTP transaction information in its state table. Because
ClusterXL can share state table information across the cluster, even if the returning FTP
data channel connection came through the other cluster member, it would be processed
correctlythe device would compare the connection to the state able, recognize that it is
part of an active session, and allow it to pass. This process functions similarly in an
active-passive cluster failover. When the formerly passive firewall receives the
communication that is part of an active session, it can process this communication as if it
was the cluster member that originally handled the session.

Another way to support stateful failover with redundant firewalls is to ensure that a given
network session always goes through the same device in a pair of firewalls that are
independent of each other, but act as if they are in a cluster. Before products that allow
state table sharing were available, the only way to achieve redundancy with two active
firewalls was to create a "firewall sandwich.," which refers to a design where two
independent firewall devices are sandwiched between two sets of load balancers. In this
case, the load balancers are responsible for making sure that a single session always

flows through the same firewall device.

Whether you're using a firewall sandwich or a firewall solution that allows the sharing of
state information, firewall redundancy is an important way to ensure availability in highly
critical network environments.

Switch Redundancy

When planning for intrasite redundancy, also consider how the availability of your systems
will be impacted if one of the internal switches goes down. Some organizations address
this risk by purchasing a standby switch that they can use to manually replace the failed
device. If the delay to perform this manually is too costly for your business, you may
decide to invest in an automatic failover mechanism. High-end Cisco switches such as the
Catalyst 6500 series can help to achieve redundancy in the switching fabric, although at a
significant expense. They can be set up with redundant power supplies and supervisor
modules, which provide the intelligence for the switch, in a single chassis.

For additional switch redundancy, consider adding an extra switch chassis to the design.
In this scenario, the switches can be interconnected using trunks, and the hosts can be
connected to both switches using network card teaming , a function of the network card
software that allows several network cards to be virtually "linked" so that if one of the
cards fails, the other can seamlessly take over communications. With each of the teamed
network cards connected to one of the clustered switches, multiple failures need to occur
to cause a connectivity outage. Clustering switches in this manner is a strong
precautionary measure that may be appropriate for mission-critical infrastructure
components.

Geographic Redundancy

Sometimes, achieving intrasite redundancy is not sufficient to mitigate risks of system
unavailability. For example, a well-tuned DoS attack against a border's routers or the
ISP's network equipment might not allow legitimate traffic to the site. Additionally, a
disaster might affect the building where the systems are residing, damaging or
temporarily disabling the equipment. To mitigate such risks, consider creating a copy of
your data center in a geographically distinct location.

Much like clusters, the secondary data center could be always active, sharing the load
with the primary site. Alternatively, it could be passive, activated either manually or
automatically when it is needed. In addition to considering the costs associated with
setting up the secondary data center, also look at the administrative efforts involved in
supporting and monitoring additional systems. You might also need to accommodate data
sharing between the two sites so that users have access to the same information no
matter which site services their requests.

Design Elements for Perimeter Security

One of the reasons we have so many choices when architecting network perimeter defense
is because resources differ in the sensitivity of their information and the likelihood that
they will be successfully exploited. For example, a web server running Apache and hosting
static HTML pages is generally subject to fewer risk factors than an Oracle database
storing order information for the organization's customers.

Risk Versus Vulnerability

Risk that is associated with an event is a function of how likely an event is to
occur and the extent of the damage it can cause. Vulnerability refers to the
likelihood that the resource can be compromised. Risk takes into account
vulnerability as well as the importance of the resource in question. Thus, a
resource can be vulnerable but not risky if little is at stake.7

In a world where we are free to permute security components in any imaginable manner,
some design elements are seen more often than others. We cover some of the more basic
patterns here to put you in the right frame of mind, and we discuss more specialized
architectures in subsequent chapters.

Firewall and Router

The firewall and the router are two of the most common perimeter security components.
In Parts I and II of this book, we described different types of these devices and explained
what roles they play in defending the network. In this section, we concentrate on the
relationship between the router and the firewall and go over several configurations you
are likely to encounter when setting up and securing your network.

Figure 12.1 illustrates one of the most common ways to deploy a router and a firewall
together. The Corporate Subnet hosts "private" systems used by the organization's
internal users, and the Screened Subnet hosts "public" servers that need to be accessible
from the Internet. In this scenario, no internal server can be accessed from the Internet;
for example, instead of opening TCP port 25 on the firewall to the internal mail server, we
route SMTP traffic through mail relay that is hosted in the Screened Subnet.

Figure 12.1. Deploy a router with a firewall behind it.

[View full size image]

Basic Filtering

In the configuration described previously, the router is responsible for performing the
routing functions it was designed forit links the site to the Internet. It often makes sense
to use the router's packet-filtering capabilities to filter out some of the "noise" that we
might not care to see in the firewall's logs or that we want to stop at the very edge of the
network. We described a similar setup in Chapter 2, "Packet Filtering," and Chapter 6,
"The Role of a Router," where the router was configured to perform basic egress and
ingress filtering as well as to disable dangerous routing options, control the flow of ICMP
messages in and out of our network, and so on.

Generally, we do not want to block too much at the router because in this configuration,
most of the monitoring efforts will be focused on the firewall. By blocking the majority of
network traffic at the router, we might not have a complete view of the denied packets in
the firewall's logs, and correlating events that are logged at the router and the firewall
might be too draining for many organizations.

Access Control

In the scenario described previously, the firewall has primary access control
responsibilities. This is where we will implement the policy of blocking all traffic by default
and explicitly allowing only those protocols our business requires. In this case, the
firewall becomes the manifestation of the business rules the security policy defines. By
this point of the design, you should have a good understanding of what your business
needs are (see the first half of this chapter if you are not sure), so implementing the
firewall rule set should not be too daunting of a task.

Note

Even if your hosts are located in a screened subnet behind a firewall, they should
be hardened to withstand attacks that the firewall might let through or that might
be launched if the firewall is bypassed. The extent to which you need to tighten
the systems' configuration depends on the sensitivity of their data and the
likelihood that they will be compromised.

Note that in some cases, placing systems onto the Screened Subnet might not be
appropriate. Perhaps this is because the firewall is too much of a bottleneck, or because
the system is not trusted to be located on the same subnet as the servers in the Screened
Subnet. In this case, you might consider placing this system into the DMZ, between the
border router and the firewall. You will need to use the router's packet-filtering
capabilities to control access to this system from the Internet. You will also need to
configure the firewall to regulate communications between this system and the Corporate
Subnet.

Router Under the ISP's Control

ISPs can provide you with an Ethernet connection to their networking equipment,
eliminating the need to set up your own border router, but not giving you control over how
their router is maintained and configured. You would then typically place your firewall
behind the ISP's router. In some respects, this simplifies the task of setting up and
administrating your network because you have to maintain one fewer component. At the
same time, you cannot trust that the ISP configured the router in the same way you would
have configured it.

Note

Lack of control over the border router might conflict with the business
requirements of your organization. In such cases, you might need to devise
technical solutions or make business arrangements that give you greater control
over the router's configuration.

This architecture is not very different from the one discussed previously. Not having
control over the router simply means that you might not have the level of defense in
depth you could have had if you had tightened the router's configuration yourself.

One of the major limitations of such a configuration could be lack of detailed information
about blocked traffic. If the ISP relies on the router to block unwanted traffic, your firewall
never gets a chance to log it. If this is the case, consider asking your ISP to relax access
control restrictions that the router enforces or to share the router's logs with you.

Router Without the Firewall

In Chapter 6, we presented the configuration in which the border router was the only
device that separated the internal network from the Internet. With firewalls becoming a
staple of security best practices, this design is becoming less and less common. However,
it might still be appropriate for organizations that decide that risks associated with the
lack of the firewall are acceptable to their business. When properly configured, routers can
be quite effective at blocking unwanted traffic, especially if they implement reflexive
access lists or if they use the firewall feature set built in to high-end routers.

It is common to find routers at various other points on the internal network, not just at
the border of the perimeter. After all, the router's primary purpose is to connect networks,
and a company might need to connect to networks other than the Internet. For instance, if
your organization has several geographically distinct sites, you will use routers to connect
them. In such cases, the routers will probably be decoupled from the firewall.

Even when you are using routers with private WAN connections, such as T1s or frame
relay links, lock down the devices, tightening their configuration by disabling unnecessary
services and setting up required access control lists. This approach is compatible with the
defense-in-depth methodology we've been discussing, and it helps protect the network

against a multitude of threats we might not be aware of yet.

Firewall and VPN

Firewalls and VPNs are often discussed in the same context. Firewalls are generally
responsible for controlling access to resources, and VPN devices are responsible for
securing communication links between hosts or networks. Examining how VPNs interact
with firewalls is important for several reasons:

Network Address Translation (NAT) might be incompatible with some VPN
implementations, depending on your network's architecture.

VPNs might create tunnels through your perimeter that make it difficult for the firewall
to enforce access restrictions on encrypted traffic.

VPN endpoints have access to data in clear text because VPN devices are the ones that
decrypt or authenticate it; this might warrant special considerations for protecting the
VPN device.

VPNs, by protecting confidentiality of the encrypted data, can be used to pass by IDSs
undetected.

When deciding how to incorporate a VPN component into the network architecture, we
have two high-level choices: maintaining the VPN module as its own device, external to
the firewall, and integrating the VPN with the firewall so that both services are provided
by the same system. Each approach has its intricacies, strengths, and weaknesses. We
will present the general overview here, leaving a detailed discussion of VPN integration for
Chapter 16, "VPN Integration."

Firewall with VPN as External Device

Many design choices allow us to set up a VPN endpoint as a device that is external to the
firewall. Some of the placement options for VPN hardware include these:

In the DMZ, between the firewall and the border router

In the screened subnet, off the firewall's third network interface card

On the internal network, behind the firewall

In parallel with the firewall at the entry point to the internal network

NAT is the cause of some of the most frequently occurring problems when VPN equipment
is deployed separately from the firewall. For example, outbound packets that pass through
the VPN device before being NATed by the firewall might not pass the integrity check at
the other end of the VPN connection if an authentication scheme is being used, such as
IPSec's Authentication Header (AH). This is because AH takes into account the packet's
headers when it calculates the message digest signature for the packet. Then the NAT
device modifies the source address of the packet, causing the message digest verification
to fail on the other end of the VPN connection.

Another issue with VPN devices located behind the firewall is address management; some
VPN specifications require VPN devices to be assigned a legal IP address. For example,
when authenticating VPN devices using X.509 certificates, the IKE phase of IPSec might
fail if the certificates were bound to each gateway's IP addresses, which were then
rewritten by NAT.8

Placing VPN hardware in front of the firewall, closer to the Internet, helps avoid potential
NAT and address management problems, but it might introduce other concerns associated
with all NAT deployments. As you probably know, many applicationssuch as those that use
Microsoft's Distributed Component Model (DCOM) protocolsdo not work with some NAT

implementations. This is because generic NAT processors translate addresses only in the
packet's header, even though some application-level protocols embed addressing
information in packet payload as well.

Another disadvantage of placing VPN devices in front of the firewall is that they cannot
enjoy the protection the firewall offers. If the system serving as the VPN endpoint is
compromised, the attacker might gain access to information whose confidentiality is
supposed to be protected by the VPN.

Firewall and VPN in One System

When deploying a device that integrates VPN and firewall functionality into a single
system, you will most likely recognize some cost savings over the solutions in which the
two devices are separated. Most of these savings will not come from the cost of initial
deployment because VPN functionality on a firewall is likely to require additional software
licenses and possibly a hardware upgrade. An integrated solution is generally less
expensive to maintain, though, because you have fewer systems to watch over.
Additionally, a commercial VPN solution such as Check Point VPN-1 integrates with the
GUI used to manage Check Point's firewall. Most integrated solutions do not have the
NAT-related problems discussed earlier, and they enjoy robust access control capabilities
offered by the firewall component of the device.

One of the biggest drawbacks of an integrated solution is that you might be limited in the
choices you can make with regard to optimally deploying your VPN and firewall
components. Firewall products that match most closely to your business needs might not
be as well suited to their VPN components. Similarly, under some situations, you will
benefit from deploying an external specialized VPN device, and purchasing an integrated
solution might lock you into having VPN and firewall components on the same system.

Hopefully, we've given you an idea of some of the choices and dilemmas you will face
when integrating a VPN component into your perimeter architecture. Further discussion
about VPN placement scenarios can be found in Chapter 16.

Multiple Firewalls

Some designs call for the use of multiple firewalls to protect the network. This makes
sense when you want to provide different levels of protection for resources with different
security needs. Such scenarios might involve deploying firewalls inline, one behind
another, to segment resources with different security requirements. Firewalls can also be
deployed in parallel, next to each other and equidistant from the Internet.

Using multiple firewalls provides the designer with the ability to control access to
resources in a fine-grained manner. On the other hand, costs of setting up and
maintaining your network increase dramatically as you add more firewalls. Some products,
such as Check Point FireWall-1, provide an intuitive interface for controlling multiple
firewalls from a single system. Others, such as NetFilter, might require more significant
efforts for keeping firewall configurations in sync with the organization's security policy.

Inline Firewalls

Inline firewalls are deployed one behind another, and traffic coming to and from the
Internet might be subjected to access control restrictions of multiple firewall devices. This
is not as unusual of a configuration as you might think. Consider the typical architecture
in which a single firewall is located behind the border router. If you use the router's
access list functionality to control access to resources instead of doing only basic packet
filtering on it, the router is acting very much like a firewall. The idea here might be to
have redundancy in your access enforcement points; that way, if one device doesn't stop
malicious traffic, the one behind it might.

If locating one firewall-like device right behind another seems wasteful to you, another
inline configuration, presented in Figure 12.2, might make more sense. Here, we take
advantage of the subnets with different security levels created by multiple firewalls. The
closer the subnet is to the Internet, the less secure it is. In such an architecture, we could
place web servers behind the first firewall, while keeping more sensitive resources, such
as database servers, behind the second firewall. The first firewall could be configured to
allow traffic to hit web servers only, whereas the second firewall would only allow web
servers to talk to the database servers.

Figure 12.2. When multiple inline firewalls are employed, the most
sensitive information should be kept behind the second firewall.

One of the biggest problems with environments incorporating inline firewalls is that of
manageability. Not only do you need to set up, maintain, and monitor multiple firewalls,
but you need to support multiple firewall policies. If, for example, you need to allow a
system behind multiple firewalls to connect to the Internet, you need to remember to
modify the rule sets of both firewalls. Commercial firewalls, such as Check Point FireWall-
1 and Cisco PIX, provide software solutions for managing multiple firewalls from a single
console, and they allow you to ensure that all inline firewalls are properly configured. If
you determine that a device protected by inline firewalls needs to communicate directly
with the Internet, you might also consider restructuring the network's design to minimize
the number of firewalls to be traversed.

Firewalls in Parallel

Many times you might be compelled to set up firewalls in parallel with each other. We can
design architectures that incorporate firewalls in parallel in many ways. In most such
configurations, the firewalls protect resources with different security needs. When
firewalls are set up inline, as discussed in the previous section, packets destined for the

hosts deep within the organization's network might be delayed because they need to go
through several access control devices. With parallel firewalls, this is not a significant
concern because the firewalls are equidistant from the Internet.

In a parallel configuration, we can deploy firewalls that are each tuned specifically for the
resources they are protecting. One such scenario is shown in Figure 12.3. Here, we use an
application gateway and a stateful firewall, each protecting a different set of systems.

Figure 12.3. When parallel firewalls are employed, delays are avoided
because the firewalls are equidistant from the Internet.

[View full size image]

In this example, we assume that our business requires the use of robust proxy-level
capabilities of an application gateway to protect Internet-accessible systems such as web,
SMTP, and DNS servers. We are okay with the generally slower performance of the
proxying firewall for this purpose. At the same time, we need the flexibility of a stateful
firewall for the corporate network, which hosts internal workstations and servers. By
deploying two different firewalls in parallel, we are able to take advantage of the best-of-
breed functions offered by each type of device. At the same time, we do not have the
luxury of placing a system behind multiple layers of firewalls, as would be the case with
the inline configuration.

Summary

This concludes our discussion of the fundamentals of perimeter design. In the course of
this chapter, we talked about the need to carefully examine our environment before
jumping into design. Also, by spending time in the planning stages of the deployment, we
minimize late changes to the network's architecture, thus saving time and money.
Business needs drive all security requirements in the real world, and we must understand
our goals and requirements before deciding what traffic should be blocked at the border
and how many firewalls should be deployed. Recognizing that organizations differ in their
business needs, we discussed several popular building block patterns and explained their
advantages and disadvantages. We will use these principles in the upcoming chapters to
empower you to create a robust network perimeter that meets your security and business
needs.

References

1 John Rendleman . "Server 54, Where Are You?" InformationWeek.
http://www.informationweek.com/story/IWK20010409S0001. October 2004.

2 Sun Microsystems. "University of North Carolina Denies They Are Looking for Solaris
'Server 54'." http://www.sun.com/smi/Press/sunflash/200105/sunflash.20010521.3.html.
October 2004.

3 Kevin Smith . "Do You Copy? Security Issues with Digital Copiers." September 16, 2000.
http://www.giac.org/practical/Kevin_Smith_GSEC.DOC. October 2004.

4 Security Wire Perspectives, Vol. 6, No. 74, September 27, 2004.

5 U.S. Department of Justice. "Former Cisco Accountants Plead Guilty to Wire Fraud via
Unauthorized Access to Cisco Stock." August 20, 2001.
http://www.usdoj.gov/criminal/cybercrime/OsowskiPlea.htm. October 2004.

6 "The Hacker Who Sent Viagra to Bill Gates." July 12, 2001. BBC News.
http://news.bbc.co.uk/hi/english/uk/newsid_1434000/1434530.stm. October 2004.

7 Bruce Schneier . Crypto-Gram Newsletter. September 15, 2001.
http://www.schneier.com/crypto-gram-0109.html. October 2004.

8 Craig Biggerstaff . VPN Frequently Asked Questions. "How Does IPsec Work with
Network Address Translation (NAT)?" http://vpn.shmoo.com/vpn/FAQ.html. October 2004.

Chapter 13. Separating Resources
Resource separation is one of the core network defense principles, and it is evident in
many security-conscious designs. Grouping resources based on similarities in security-
related attributes allows us to limit the attacker's area of influence if he gains access to a
system inside the perimeter. The way that you group resources depends on their
sensitivity, on the likelihood that they will be compromised, or on whatever criterion you
choose as the designer.

We have applied the principle of resource separation throughout this book, perhaps
without formally stating so. For example, we used screened subnets to host servers that
were accessible from the Internet, presumably because their sensitivity and acceptable
exposure differed from systems on the internal network. In addition to segmenting the
network, resource separation can be accomplished by dedicating servers to specific tasks,
and even by splitting the site into geographically distinct hosting centers. Resource
separation also influences the design of software architecture, as we demonstrate in
Chapter 15, "Software Architecture."

By the end of this chapter, you will understand practical means of achieving the desired
extent of segregation on your network. We present several ways to separate resources
within servers and networks as well as explore examples that incorporate such separation.
We also discuss chroot, mail relays, split DNS, and wireless networks, and we examine
the merits and dangers of using VLANs when implementing security zones.

Security Zones

As you have already witnessed in one of the basic network design patterns, we might place external
web servers onto the same network as public DNS servers and mail relays. This makes sense because
we want to limit which resources an attacker can access directly if he succeeds at compromising one of
the systems. We can use many techniques to achieve resource segmentation on different layers of
defense, all of which share the underlying principle of security zones.

A security zone is a logical grouping of resources, such as systems, networks, or processes, that are
similar in the degree of acceptable risk. For instance, we might place web servers in the same security
zone as public DNS and mail relay servers because all these systems have to be accessible from the
Internet and are not expected to store sensitive information. If, on the other hand, we use the mail
server to host data that is more sensitive than what is stored on the public web and DNS servers, we
would consider placing it into a separate network, thus forming another security zone. It is a common
best practice for organizations to place critical systems, such as a company's Human Resources servers
or a university's grade databases, behind internal firewalls.

The notion of a security zone is not limited to networks. It can be implemented to some extent by
setting up servers dedicated to hosting similar applications. To create an effective design, we need to
understand how to group resources into appropriate security zones. This approach mimics the design of
a large ship that is split into multiple watertight compartments to resist flooding. If one of the sections
is compromised, other areas retain a chance of maintaining their integrity.

A Single Subnet

Let's look at how we can create security zones within a single subnet by using servers that are
dedicated to particular tasks as well as those that are shared among multiple applications. In an
attempt to minimize the number of systems that need to be set up and maintained, designers are often
tempted to create servers that aggregate hosting of multiple services. This configuration is often
effective from a cost-saving perspective, but it creates an environment that is more vulnerable to
intrusion or hardware failure than if each service were running on a dedicated server.

Consider a scenario in which a single Internet-accessible Linux box is used to provide DNS and email
services. Because both of these services are running on the same server, an exploit against one of
them could compromise security of the other. For example, if we were using BIND 8.2.2, an unpatched
"nxt overflow vulnerability" would allow a remote attacker to execute arbitrary code on the server with
the privileges of the BIND process (http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0833).

Hopefully, in this scenario, we already configured the BIND server to run as the limited user nobody;
that way, the attacker would not directly gain root privileges through the exploit. Having local access to
the system gives the attacker an opportunity to exploit a whole new class of vulnerabilities that would
not be triggered remotely. For instance, if the mail-processing part of our server relies on Procmail, the
attacker might be able to exploit the locally triggered "unsafe signal handling" vulnerability in Procmail
3.10 to gain root-level access to the server (http://www.securityfocus.com/bid/3071). If the vulnerable
BIND application were not on this system, however, the attacker would not be able to take advantage
of the Procmail vulnerability because only a local user can exploit it.

Security Zones Within a Server

What should you do if you do not have the budget to purchase servers that are dedicated to performing
only one task each? In the previous example, the organization segments BIND from the rest of the
server in a primitive manner by running BIND as the user nobody instead of root. That is a good start
because it doesn't allow the attacker to immediately obtain administrative access to the system by
compromising BIND. This technique of dedicating limited access accounts to applications is appropriate
in many circumstances on UNIX as well as Windows-based systems.

A more robust way of separating a daemon such as BIND from the rest of the system involves the use
of the chroot facility, which is available on most UNIX operating systems. In a way, chroot allows us to
set up multiple security zones within a single server by creating isolated subsystems within the server,
known as chroot jails .

How Chroot Works

Relative isolation of the chroot jail is accomplished by changing the perspective of the
"jailed" process on what its root directory is. Most applications that run on the server locate
files with respect to the system's root file system, identified as /. A chroot-ed process
considers its / to be the root directory of the jail and will not be able to access files above

the jail's root directory. For example, BIND's core executable often resides in
/usr/local/sbin/named and loads its configuration file from /etc/named.conf. If BIND is
set up to operate in a chroot jail, located in /usr/local/bind-chroot, the named process
will be started from /usr/local/bind-chroot/usr/local/sbin/named. This process will
think it is accessing /etc/named.conf to load its configuration, although, in reality, it will
be accessing /usr/local/bind-chroot/etc/named.conf.

A chroot-ed application is typically not aware that it is operating in an isolated environment. For the
application to function properly, we need to copy the required system libraries and devices into the
chroot jail because the application will not have access to OS components outside the jail. An attacker
who exploits a chroot-ed process will have a hard time accessing resources outside the chroot jail
because file system access will be severely limited, and the environment will not have most of the tools
necessary to cause serious damage. Procedures for setting up chroot are available throughout the Web
and are often specific to the application you are trying to isolate.

Some applications rely on too many OS components to make setting up a chroot jail for them practical
or beneficial. Additionally, in numerous documented cases, problems with the implementation or the
configuration of a chroot-ed environment have allowed an attacker to break out of the chroot jail. For
examples of such vulnerabilities, search for "chroot" in the Common Vulnerabilities and Exposures
(CVE) database at http://cve.mitre.org.

Finally, not all operating systems provide chroot facilities. Such caveats make it difficult to set up fault-
proof isolation for security zones within a single server. However, dedicated system accounts and
chroot-like facilities are effective at complementing other zoning techniques on the server and network
levels.

Security Zones via Dedicated Servers

A more effective method of reliably separating one application from another involves dedicating a
server to each application. (This technique is often considered to be among information security's best
practices.) As in most designs that incorporate security zones, the purpose of dedicated servers is to
help ensure that a compromise of one infrastructure component does not breach the security of the
other. If an attacker exploits a vulnerability on one server, either in an application or an OS module,
the other server still has a chance of withstanding an attack. This configuration slows down the
attacker's progress, giving the system's administrator more time to detect and respond to the attack.

For example, many organizations need to maintain web and mail servers that are accessible from the
Internet. Such web servers are often used to host the company's public website, which typically
combines static and dynamically generated content. The mail server is generally used to accept email
messages via SMTP, which are then delivered to the company's internal users. Many companies use
web servers like the one in this example primarily for marketing purposes and do not store confidential
information on the web server's file system. The mail server, on the other hand, might store
confidential data in the form of sensitive email messages from the company's partners and clients.
Therefore, it makes sense to split the two services into separate security zones to provide a degree of
isolation for applications that differ in their degree of acceptable risk. In many cases, business needs

might allow us to purchase multiple servers but prohibit us from placing them on separate networks
because of budget constraints. Setting up an additional network costs money and time that some
organizations cannot justify spending.

Even if the company does not consider the mail service to be more confidential than the web service, it
can justify splitting them into separate servers because web services tend to be more vulnerable than
mail services. Functionality offered by web server applications tends to be more feature rich and less
predictable than the functionality of mail applications. As a result, history shows that web services are
exploited more frequently than mail services.

Note

As you might recall from Chapter 12, "Fundamentals of Secure Perimeter Design," risk is a
function of the resource's data sensitivity and of the likelihood that it will be compromised.
Because risk is the primary driving force behind the need for security zones, we must look at
both sensitivity and vulnerability when deciding how to separate resources. Even if the data
sensitivity of two services is the same, differences in the likelihood of a compromise can
warrant placing them into different security zones.

Providing resource isolation solely through the use of dedicated servers is often sufficient when
differences in acceptable risk of resources are not significant. Under more varying conditions, however,
we might need to increase the extent of isolation the design provides. In the next section, we explore
situations in which the nature of the resources, along with business needs, require us to separate
systems by using multiple subnets.

Multiple Subnets

Using multiple subnets provides a reliable means of separating resources because communications
between systems on different subnets are regulated by devices that connect the subnets. Tools and
expertise for implementing such segmentation are widely available. After all, much of perimeter
defense concentrates on using routers and firewalls to control how traffic passes from one subnet to
another.

In addition to creating security zones by enforcing access control restrictions on traffic across subnets,
routers and firewalls limit the scope of network broadcast communications. Broadcasts can have
significant effects on network performance as well as on resource security.

Broadcast Domains

A broadcast domain is a collection of network nodes that receives broadcast packets and typically
matches the boundaries of a subnet. Subnets can be used in network design to limit the size of network
broadcast domains. Splitting a network into two or more subnets decreases the number of hosts that
receive network broadcasts because routing devices are not expected to forward broadcast packets.
Broadcasts have security implications because they are received by all local hosts. Decreasing the size
of a broadcast domain also brings significant performance advantages because network chatter is
localized to a particular subnet, and fewer hosts per broadcast domain means fewer broadcasts.

A Doomed Network?

When the PC game Doom first came out, it quickly showed up on LANs throughout the
world, from corporate networks to college computer labs. Doom was one of the earliest
multiplayer shoot-'em-up games. The game allowed players to easily establish game
sessions over the network. Network administrators quickly discovered detrimental effects
that Doom v1.1 had on a LAN's performance. It turned out that, probably in an unbridled
enthusiasm to release the first version of Doom, its coders programmed the game to use
broadcasts for all communications among players. In tests (yes, someone performed such
tests), a four- player Doom session was shown to generate an average of 100 packets per
second and increase the network load by 4%.1 If administrators couldn't ban Doom from
the network, they had to rely on broadcast domain boundaries to prevent Doom
communications from engulfing the whole network.

We mentioned network broadcasts in Chapter 6, "The Role of a Router," in the context of disabling
propagation of broadcasts through a router. This was done primarily to prevent Smurf-type attacks,
which could use a single packet sent to a broadcast address to elicit replies from multiple hosts on the
network. ARP uses the ability of broadcasts to deliver packets to all hosts in the broadcast domain when
a system on the Ethernet segment does not know the MAC address of the host to which it wants to send
an Ethernet frame. In this case, the sender typically issues an ARP request to the MAC address
ff:ff:ff:ff:ff:ff, which is always the Ethernet broadcast address. The Ethernet media delivers this
discovery packet to all hosts on the segment; the exception is that the system that holds the sought-
after IP address replies with its MAC address.

Because ARP traffic travels without restraints within a broadcast domain, a malicious system could
manipulate MAC-to-IP-address mappings of another host with relative ease. Most ARP implementations
update their cache of MAC-to-IP-address mappings whenever they receive ARP requests or replies. As
illustrated in Figure 13.1, an attacker who is on the broadcast domain could poison system A's cache by
sending it a crafted ARP packet that maps host B's IP address to the attacker's MAC address. As a
result, all traffic that system A tries to send using host B's IP address is redirected to the attacker.
Tools such as Dsniff (http://www.monkey.org/~dugsong/dsniff/) and Ettercap
(http://ettercap.sourceforge.net/) are available for free and are effective at automating such attacks.
One way to defend against ARP cache poisoning is to enforce proper authentication using higher-level
protocols, such as Secure Shell (SSH). Controlling the size of broadcast domains also limits a site's
exposure to such attacks.

Figure 13.1. When performing an ARP cache poisoning attack, the attacker
convinces system A to use the attacker's MAC address instead of system B's

MAC address.

As you can see, IP communication in Ethernet environments is closely tied to MAC addresses. Systems
can send network layer broadcasts by destining IP datagrams to broadcast addresses such as
255.255.255.255, NET.ADDR.255.255, and so on. In this case, the underlying data link layer, such as
the Ethernet, is responsible for delivering the datagram to all hosts in the broadcast domain. Ethernet
accomplishes this by setting the destination address of the Ethernet frame to ff:ff:ff:ff:ff:ff.

Note

On Ethernet-based TCP/IP networks, IP broadcasts are translated into Ethernet broadcasts to
the ff:ff:ff:ff:ff:ff MAC address. As a result, all hosts in the broadcast domain receive
broadcast datagrams, regardless of the operating system or the application that generated
them.

Network layer broadcasts are frequently seen in environments that host Windows systems because
Windows often relies on broadcasts to discover services on the network.

Note

To quiet a chatty windows NetBIOS network, you can disable broadcasts by configuring a
WINS server. In Windows 2000 (and after) network, the NetBIOS protocol can be disabled and
DNS can be used as the sole means of name resolution. For information on NetBIOS name
resolution, configuring WINS, or disabling NetBIOS functionality in Windows 2000 and later
operating systems, take a look at
http://www.microsoft.com/resources/documentation/Windows/2000/server/reskit/en-
us/prork/prcc_tcp_gclb.asp.

The following network trace demonstrates such NetBIOS-over-TCP/IP (NBT) packets directed at all
hosts on the local subnet 192.168.1.0 (tcpdump was used to capture this traffic):

[View full width]
192.168.1.142.netbios-ns > 192.168.1.255.netbios-ns:NBT UDP PACKET(137): QUERY; REQUEST;
 BROADCAST

192.168.1.142.netbios-ns > 192.168.1.255.netbios-ns:NBT UDP PACKET(137): QUERY; REQUEST;
 BROADCAST
192.168.1.142.netbios-ns > 192.168.1.255.netbios-ns:NBT UDP PACKET(137): QUERY; REQUEST;
 BROADCAST

If you fire up a network sniffer even on a relatively small subnet that hosts Windows systems, you are
likely to see similar NBT broadcast datagrams at the rate of at least one per second. Because all nodes
in the broadcast domain must process such datagrams, a system devotes CPU resources to processing
broadcasts whether it needs to or not. We talk more about performance implications of network
broadcasts in Chapter 17, "Tuning the Design for Performance." From a security perspective, broadcast
communications are likely to leak information about the application that generated them because all
hosts in the broadcast domain will be "tuned in." One purpose of splitting networks into smaller subnets
is to limit the amount of traffic that each node processes due to broadcasts.

Security Zones via Subnets

In perimeter security, the most powerful devices for enforcing network traffic restrictions are located at
subnet entry points and usually take the form of firewalls and routers. As a result, we frequently use
subnets to create different security zones on the network. In such configurations, communications that
need to be tightly controlled are most likely to cross subnets and be bound by a firewall's or a router's
restrictions.

Consider the example illustrated in Figure 13.2. We separated the network into three security zones,
each defined by a dedicated subnet.

Figure 13.2. Here, subnets create three security zones: the Public Servers zone,
the Corporate Workstations zone, and the Corporate Servers zone.

[View full size image]

In this scenario, we group resources based on their primary purpose because that maps directly to the
sensitivity levels of the data the system maintains. The border firewall and the internal router allow us

to control access to and from network resources based on the business requirements for each zone. The
zones are defined as follows:

The Public Servers zone contains servers that provide information to the general public and can be
accessed from the Internet. These servers should never initiate connections to the Internet, but
specific servers might initiate connections to the Corporate Servers zone using approved protocols
and ports.

The Corporate Servers zone contains the company's internal servers that internal users can access
from the Corporate Workstations zone. The firewall should severely restrict the servers' ability to
initiate connections to other zones.

The Corporate Workstations zone contains internal desktops and laptops that can browse the
Internet using approved protocols and ports and can connect to the Corporate Servers zone
primarily for file and print services.

Access control lists (ACLs) on the internal router are set up to let only Windows network traffic from
corporate workstations access the servers. (In this example, the servers are Windows based. For UNIX,
you would allow Network File System (NFS), Line Printer (LPR), and related protocols.) In this scenario,
we do not have business requirements for the corporate servers to initiate connections to the Internet.
If the servers have peering relationships with external partner sites, the router's ACLs need to be tuned
appropriately. Additionally, the organization's security policy in this example does not allow servers to
download OS and software patches from external sites. Instead, patches are retrieved and verified in
the Corporate Workstation zone before they are applied to relevant servers.

The firewall is configured to allow from the Internet only inbound traffic destined for systems in the
Public Server zone on HTTP, DNS, and SMTP ports. These servers are not allowed to initiate connections
that cross security zone boundaries except when relaying mail to the internal mail server.

Systems on the Corporate Workstations zone are allowed to browse the Web using approved protocols,
such as HTTP, HTTPS, FTP, and so on. (For tighter control, we might want to set up a proxy server to
help enforce restrictions on outbound traffic.) Corporate users can also connect to the Corporate Server
zone in a manner controlled by the internal router. The workstations can connect to hosts in the Public
Servers zone for remote administration using the SSH protocol.

So far, this example has focused on the high-level requirements for defining security zones and
associated access control rules. Some additional details need to be addressed before you implement
this design. Specifically, you need to pay close attention to how corporate and public systems resolve
domain names and how inbound and outbound email relaying is configured.

What would happen if we hosted all corporate and publicly accessible systems on a single subnet,
without defining multiple security zones? We would still be able to control how traffic traverses to and
from the Internet because the Internet is considered a security zone, and we know that we have control
over traffic that crosses zone boundaries. However, we would have a hard time controlling how internal
systems interact with each other, primarily because internal traffic would not be crossing zone
boundaries. (You can control intrazone traffic if the subnet is implemented as a VLAN, which we discuss
in the "Private VLANs" section of this chapter.)

The reality is that setting up multiple security zones on the network is expensive. It requires additional
networking gear, such as routers and switches, and it significantly complicates ACL maintenance on all
access enforcement devices. That is partly why we are rarely able to provision a dedicated subnet for
each core server of the infrastructure.

Also, it is generally much easier to justify separating publicly accessible servers from internal systems
than splitting internal systems into workstation- and server-specific zones. In terms of risk, public
servers are accessible to everyone on the Internet and are more likely to be compromised than internal
servers. This difference in vulnerability levels often serves as the primary factor for separating public
and internal resources into different security zones. The distinction between internal servers and
workstations is often not as clear cut, but it still exists because workstations are more likely to be
infected with malicious software as a result of a user's actions. Each organization must decide how
much it is willing to invest into resource separation given its budget and business objectives.

Common Design Elements

We would like to spend a few pages discussing design elements that are not only commonly used,
but are also representative of architectures that take into account resource separation. This section
talks about setting up a mail relay to help you secure your organization's email link to the Internet.
We also explore a DNS configuration known as Split DNS, which is very useful for mitigating risks
associated with running a publicly accessible DNS server. Finally, we discuss ways of applying
resource separation techniques to secure client stations. These scenarios are meant to demonstrate
practical uses of resource separation. They will help you make decisions regarding the extent of
separation that is appropriate and feasible for your organization.

Mail Relay

A mail relay is one means to help secure your environment's email functionality. Mail can be passed
into your environment using a properly configured external mail relay server to forward inbound
messages to a separate internal mail system. To accomplish this, you install mail-relaying software
on a bastion host that is accessible from the Internet. You then configure the relay to forward all
inbound messages to the internal mail server, which, in turn, delivers them to the organization's
internal users. Splitting the mail server into two components allows you to place them into separate
security zones.

Justifying Mail Server Separation

Instead of implementing a store-and-forward configuration to separate mail functions into two
components, we could have used a single mail server to attend to internal users and accept email
from the Internet. This setup eliminates the cost of deploying and maintaining an additional host,
but it increases the risk that an external attacker might get access to the company's sensitive
information. As we have seen throughout this chapter, it often makes sense to separate public
systems from the internal ones to sandbox an attacker who gains access to an Internet-accessible
server. Additionally, modern mail systems such as Microsoft Exchange, which are commonly used
within a company, are complex and feature rich. Hardening such software so that it is robust enough
to be accessible from the Internet is often difficult.

Splitting the public-facing component of the server from the internal mail distribution system allows
us to place these resources into separate security zones. This offers many benefits over a
configuration that integrates the two components into a single system:

We can use different software for each component in a manner that is optimized for the
component's tasks and risk factors.

We can isolate the most vulnerable component in a way that limits the extent of a potential
compromise.

We can have higher confidence that we tightened the relay's configuration appropriately because
its software is relatively straightforward.

We can allow ourselves granular control over how tightly each component is configured and how
it can be accessed over the network.

Implementing a Mail Relay

A common configuration for implementing a mail relay is illustrated in Figure 13.3. As you can see,
we have placed the mail-forwarding agent into the Public Servers zone, which was set up as a
screened subnet. The internal mail server was placed on the Corporate zone to be used by internal

users when sending and receiving email messages. To ensure that messages from the Internet are
delivered to the mail relay server, the organization's DNS server set the mail exchange (MX) record
for the company's network to point to the relay server.

Figure 13.3. When you are implementing a mail relay, you can place the mail-
forwarding agent in the Public Servers zone.

[View full size image]

The primary function of the mail relay is to receive messages from the outside and forward them to
the internal mail server. To further isolate the internal mail server from the Internet, you might
want to route outbound messages through the mail relay as well. Making outbound connections is
not as risky as accepting inbound ones, but fully separating the internal server from the outside
helps decrease the likelihood that it will be adversely affected by a system on the Internet. In this
configuration, the internal mail server accepts messages from internal workstations and servers and
forwards those that are Internet-bound to the mail relay in the Public Servers zone.

One of the advantages of splitting Internet-facing mail functionality away from the internal mail
server is that it allows us to use different software packages for each component of the mail
infrastructure. For instance, a Microsoft Exchange server might have the desired functionality for an
internal server, but you might consider it too feature loaded for a simple mail-forwarding agent. In
that case, you might want to use software you feel more comfortable locking down, such as
Sendmail, Postfix, or Qmail, to implement the mail relay.

Note

Using products from different vendors for public and internal servers decreases the chances
that a vulnerability in one product affects all systems. At the same time, it increases the
number of software packages you need to maintain and monitor.

Specifics for configuring a mail relay to forward inbound messages to the internal server and
outbound messages to the appropriate system on the Internet differ with each software vendor. In
most cases, you need to specify the following parameters on the mail relay:

The name of the domain for which the forwarder is relaying mail. If you don't specify this, the
mail relay might reject inbound messages, thinking they are destined for somebody else's
domain.

The name or addresses of internal systems from which you accept outbound mail messages. To
prevent internal SMTP clients from accessing the relay directly, you should consider limiting this
to include only your internal mail server.

The name or address of the internal mail server to which inbound messages will be forwarded.

You should also consider implementing masquerading features on the relay server, especially if
multiple internal servers need to send outbound mail through the relay. Mail masquerading rewrites
headers of outbound messages to remove the name of the originating host, leaving just the
organization's domain name in the From field.

The Enterprise editions of the Microsoft Exchange 2000 and Windows 2003 Server support a
distributed topology that allows you to set up a front-end server that acts as a relay for mail-related
communications and forwards them to the back-end server that actually maintains users' mailboxes.
Specifying that the Exchange server should be a front-end server is a matter of going into Properties
in the desired server object in Exchange System Manager and selecting the This Is a Front-End
Server option.

Microsoft recommends that the front-end server be fully configured before placing it into the DMZ or
a screened subnet:

"Configuring settings on the front-end server in Exchange System Manager requires the System
Attendant (MSExchangeSA) service to be running so that the configuration information can
replicate to the metabase. The MSExchangeSA service requires RPC access to the back-end
servers, and RPCs often are not allowed across an intranet firewall in a perimeter network."2

Future changes to the front-end server might, therefore, require temporary changes to the firewall's
policy to allow RPC traffic for the period when the front-end server is being reconfigured.
Alternatively, you can set up an IPSec channel between the administrative workstations and the
front-end server to tunnel the RPC traffic in a secure manner.

Tip

If you are setting up an Exchange front-end server, be sure to follow the Exchange
lockdown instructions described at
http://www.microsoft.com/technet/prodtechnol/exchange/2003/library/febetop.mspx.

If you are interested only in relaying SMTP and do not require POP, IMAP, and Outlook Web Access
(OWA) functionality of Microsoft Exchange, you could use the SMTP Virtual Server built in to
Microsoft's Internet Information Services (IIS) as the mail relay. Such configuration will generally
cost less to deploy because you are not required to purchase the Enterprise Edition of Microsoft
Exchange 2003 Server. As shown in Figure 13.4, the SMTP component of IIS offers highly
configurable mail-relaying functionality, and it can be set up with most of the other functionality
built in to IIS disabled. (Be sure to lock down IIS appropriately; it has a history of security
compromises.)

Figure 13.4. When configuring an IIS SMTP virtual server, you can set options
that specify how the system relays mail, authenticates users, and

communicates with other network components.

Administrators who are not experienced in hardening Windows-based servers will probably prefer to
use a UNIX system as the mail relay server. However, if you specialize in setting up and maintaining
Microsoft Windows servers, you will probably benefit from using the operating system you know
best. You need to strike a balance between using software that you know and deploying software
from multiple suppliers across your security zones. If your organization is relatively small, you will
probably benefit from not overloading your support staff with maintaining mail software from
multiple vendors. Larger enterprises are more likely to benefit from using specialized software for
different components of the mail system.

Splitting email functionality into two servers allows you to apply different levels of hardening to
each system. The mail relay should be configured as a bastion host, stripped of all OS components
and applications not required for forwarding SMTP messages. The internal mail server does not need
to be hardened to the same degree because it does not communicate with hosts on the Internet.
This is often advantageous. The internal mail server might need to integrate with the internal user
management system, such as Microsoft Active Directory, whereas the mail relay does not need to be
aware of any such nuances of internal infrastructure.

Split DNS

The DNS service, which maps hostnames to IP addresses, and vice versa, is a principal component
of many networks. In this section, we examine a Split DNS configuration, which is also sometimes
called Split Horizon DNS. This is a relatively common design pattern that calls for separating the
DNS service into two components: one that is available to external Internet users, and another that
is used internally within the organization.

One of the purposes of Split DNS is to limit what information about the network's internal
infrastructure is available to external users. If an Internet-accessible DNS server hosts your public
and internal records, an external attacker might be able to query the server for hostnames,
addresses, and related DNS information of your internal systems. The attacker can issue targeted
lookup requests for a specific domain, hostname, or IP address, or attempt to retrieve the complete
DNS database through a zone transfer.

Another purpose of Split DNS is to decrease the likelihood that critical internal resources will be
affected by a compromised DNS server. Earlier in the chapter, we looked at how buffer overflow
vulnerability allowed an attacker to gain shell access on a server running BIND. Many such attacks

have been found in DNS software over the past few years, as evidenced by postings to vulnerability
forums and databases.

BIND and the Lion Worm

The Lion worm, which spread across vulnerable UNIX servers in early 2001, exploited
the TSIG vulnerability in BIND 8.2.x (http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2001-0010). The buffer overflow vulnerability in the portion of BIND's code
that handled transaction signatures allowed Lion to execute its payload with the
privileges of the user who was running the BIND daemon
(http://www.securityfocus.com/bid/2302). If the worm succeeded at exploiting the TSIG
vulnerability, it attempted to download a copy of itself from a website at
coollion.51.net.3

After Lion infected the server, it attempted to replace many frequently used programs
and set up a shell listening for inbound connections as a backdoor into the system. It
also emailed the contents of local /etc/passwd and /etc/shadow files to

huckit@china.com. The worm continued to spread by scanning random IP addresses for
vulnerable BIND servers until the site from which it was hard-coded to download itself
was disabled.4

Justifying DNS Server Separation

When deciding where to place DNS servers and whether to split DNS servers into multiple security
zones, consider two primary types of users of DNS services:

Users on the Internet who need to be able to obtain DNS information of publicly accessible
systems hosted on your network. In addition to being able to resolve hostnames of your public
systems, external hosts use DNS to obtain the name and address of the MX server.

Internal users within your network perimeter who need to be able to obtain DNS information of
hosts on the Internet as well as of hosts on the intranet. If a DNS server does not know the
answer to the internal user's query, it can connect to external DNS servers to find out the
answer; this action is known as a recursive query . Alternatively, the DNS server can simply
forward the request to a predefined DNS server that will perform the necessary recursive queries
and return the final answer to the initial DNS server.

DNS servers catering to different audiences vary in the sensitivity of data they require for useful
operation. Specifically, publicly accessible DNS servers do not have to be aware of the hostname-to-
IP mappings of systems that cannot be reached from the Internet. Also, DNS servers differ in the
likelihood that they will be compromised, depending on whether they can be accessed from the
Internet. Differences in risks associated with different types of DNS servers point to the need to
separate DNS resources into multiple security zones.

DNS Spoofing Attacks

DNS is an attractive target for spoofing, or poisoning attacks through which attackers attempt to
propagate incorrect hostname-to-IP-address mappings to the DNS server. Such attacks, in various
forms, have been known to affect DNS software from most vendors.

Because DNS queries are typically submitted over UDP, servers cannot rely on the transport protocol
to maintain the state of the DNS connection. Therefore, to determine which response matches to
which query, DNS servers embed a numeric query ID into the DNS payload of the packet. If an
attacker is able to predict the query ID the DNS server used when directing a recursive query to
another DNS server, the attacker can craft a spoofed response that might get to the asking server

before the real one does. The DNS server usually believes the first response it receives, discarding
the second one as a duplicate. Consequently, the host that uses the DNS server to look up the
spoofed domain record is directed to the IP address of the attacker's choice. Predicting DNS query
IDs was relatively easy in older versions of DNS software because it tended to simply increment the
IDs by one after each query.

Another variation of the DNS spoofing attack is effective against servers that happily cache a DNS
mapping even if they received it as additional information in response to a query that was
completely unrelated to the spoofed record. By default, DNS server software that comes with
Windows NT and 2000 is vulnerable to this attack unless you explicitly set the following Registry
key to the REG_WORD value of 1:
HKEY_LOCAL_MACHINE\System_CurrentControlSet\Services\DNS\Parameters\SecureResponses.5

On Windows 2000 and 2003, this Registry value also can be defined using the DNS Management
Console by checking the Secure Cache Against Pollution check box in properties of the server's
object.6 As shown in Figure 13.5, this check box is not set by default in Windows 2000 (though it is
in 2003). Microsoft DNS is not the only software that might be vulnerable to such attacks; older
versions of BIND were vulnerable to such spoofing attacks as well.

Figure 13.5. The Secure Cache Against Pollution check box (shown in
Windows 2000) is not enabled by default.

Implementing Split DNS

The implementation of Split DNS is relatively straightforward when it comes to servicing inbound
DNS requests from the Internet. As shown in Figure 13.6, the external DNS server is located in the
Public Servers zone, which is typically set up as a screened subnet or a DMZ. The external server's
database only contains information on domains and systems of which the outside world should be
aware. Records that need to be accessible only by internal users are stored on the internal DNS
server. This design decreases the possibility that an attacker can obtain sensitive information by
querying or compromising the external DNS server.

Figure 13.6. In Split DNS configurations, public and internal DNS records are
hosted using two servers, each located in different security zones.

[View full size image]

The internal DNS server, in addition to maintaining authoritative records for internal systems, needs
to handle requests from internal hosts for DNS information about systems on the Internet. How does
the internal server answer queries about external systems for which it does not have authoritative
information? We can configure the internal server to forward such queries to another DNS server
that performs the recursive query. Frequently, the DNS server located in the Public Servers zone
plays this role. Alternatively, we can configure the internal DNS server to perform recursive queries.

Consider a scenario in which the internal DNS server forwards queries for Internet records to our
external server. In this case, the internal DNS server is maximally isolated from the Internet
because, in addition to never accepting connections from external hosts, it never initiates
connections to systems on the Internet. The external DNS server, of course, needs to be configured
to accept recursive queries only if they come from the internal DNS server. Unfortunately, in this
scenario, the internal server relies on the server in the Public Servers zone to handle such requests.
That is the same server we deem to be under increased risk because it accepts DNS requests from
external hosts. If an attacker compromises the external DNS server or manages to spoof its DNS
records, the internal DNS server might receive fabricated answers to its queries.

An alternative configuration permits the internal DNS server to perform recursive queries, in which
case it initiates DNS connections to hosts on the Internet. In this scenario, the queries do not have
to go through a server in the Public Servers zone, which bypasses a potentially weak link in the DNS
resolution process. Unfortunately, by allowing the internal server to make connections to systems
on the Internet, we increase the possibility that the internal server is directly affected by an
external system. For example, a malicious DNS server could exploit a buffer overflow condition by
carefully crafting a response to a DNS query. An attacker could use the server's ability to initiate
connections to the Internet to establish a covert channel for communicating across the network's
perimeter.

Note

The server that makes outbound connection requests is under the increased risk that it will
be directly affected by an attack. Besides exploiting vulnerabilities such as buffer
overflows, attackers could exploit DNS-specific weaknesses of the server (for example, by
poisoning the server's DNS cache in response to a query). You can protect yourself against

known vulnerabilities of this sort by staying updated with the latest version of your DNS
software and by configuring it in accordance with the vendor's and industry's best
practices. You also need to ensure that additional defense mechanisms are in place to
mitigate the risks associated with unknown attacks.

If you use a server in the Public Servers zone to process outbound DNS requests, you are not
protected against attacks such as DNS cache poisoning because spoofed information might be
propagated to the internal DNS server. After all, a DNS server in the Public Servers zone is more
likely to be compromised because it accepts requests from external hosts and is located on a subnet
with other publicly accessible servers.

If you are willing to accept the risk that a compromise to the external DNS server might impact the
ability of your internal users to resolve Internet hostnames, consider relaying outbound DNS
requests through the server in the Public Servers zone. In a best-case scenario, you would actually
use three DNS servers: one for servicing external users, one for answering queries for internal
domains, and one for performing recursive queries about Internet systems. Unfortunately, this
alternative is relatively expensive to set up and maintain and is quite uncommon.

Client Separation

As we mentioned previously, resources should be placed together based on their level of acceptable
risk. One example of a set of resources in most business environments that share a similar
acceptable risk is the client network, where end-user workstations and their ilk reside. When local
area networks (LANs) first started springing up, it was not uncommon for servers and clients to
share the same flat network structure. However, as networks became more and more complicated
and businesses had a need for outside users to contact their servers, it became apparent that in
most environments, servers needed to be split off into their own security zones. Now, in a world
filled with Internet worms, mail-transported viruses, and the like, it is often more likely for a client
to propagate a virus than a server. Because this places clients at a similar level of acceptable risk, it
makes sense that they all share a security zone of their own. Clients differ in their level of
insecurity, ranging from LAN-connected desktops, wandering laptops, VPN and dialup remote
connectors, and, finally, wireless clients. In this section, we will discuss the advantages of
separating these client types into their own zones for the benefit of your organization.

LAN-Connected Desktops

LAN-connected desktops usually have the lowest risk of any of our network's clients. Although most
such clients have Internet access and the potential to propagate viruses and the like, at least we as
administrators have the capability to force these stations to subscribe to our organization's security
policy. We can verify that they are properly patched, with up-to-date virus definitions, and locked
down to the best of our abilities, even creating automated processes that verify that all is well on a
daily basis.

Despite all our efforts as administrators, the client PC can still be a liability to our network's
security. By keeping clients in a separate security zone from internal and/or Internet available
servers, we limit the chances of having our clients affect the availability of our server networks.
Although having a firewall between our clients and servers requires additional administration to
upkeep the firewall policy, it facilitates a "chokepoint" to control communications between them and
to help mitigate client risks.

Wandering Laptops, VPN and Dialup Users

A more complicated challenge in many network environments is the client we can't control. Whether
physically located at our site or connecting in through a dialup connection or the Internet, it can be
very difficult to force these hosts to subscribe to our security policy. It is a best practice to
segregate all remote users into their own security zone, preferably behind a firewall. This will
prevent these hosts from contacting resources they shouldn't, while logging their access to

resources they should. Though dividing these clients into a separate security zone affords an
additional level of protection, it does not confirm that the hosts follow your security policy. How can
you be sure that the sales rep who is plugging in to a conference room network jack has the latest
virus updates? Or that a VPN or dialup user has carefully patched all known vulnerabilities for her
version of operating system? One answer is an initiative like Cisco's Self-Defending Network, as
mentioned in Chapter 24, "A Unified Security Perimeter: The Importance of Defense in Depth." It
uses Network Admission Control to confirm that any host that connects to your network meets
certain criteria (patched, up-to-date virus definitions, certain version of the OS, and so on) before
allowing access. This can even be applied to a host plugging in to a random jack in your office. For
more information on NAC and the Self-Defending Network, check out Chapter 10, "Host Defense
Components."

The Wireless Client

The wireless client is by far the most vulnerable of the clients in this section. It has all the
vulnerabilities and concerns of other clients, plus is exposed to possible anonymous connection
without physical access being necessary. Depending on your requirements, you might consider
limiting the way every wireless node communicates with each other. Alternatively, in a more cost-
effective manner, you might group wireless nodes with similar security risks into their own security
zones. As shown in Figure 13.7, we group all wireless laptops into a single security zone because for
the purposes of this example, our laptops do not significantly differ in acceptable risk exposure. (For
this example, each laptop is as likely to be compromised as the other because of its use and
configuration, and each laptop contains data of similar sensitivity.) At the same time, we consider
wireless nodes to be more vulnerable to attacks than hosts on the wired segment and therefore
decide to separate wireless and wired systems by placing them into different security zones.

Figure 13.7. To accommodate differences in risk, we isolate wireless systems
by placing them into a dedicated security zone.

[View full size image]

In this scenario, wireless and wired machines are hosted on different subnetsone representing the

Corporate zone, and another representing the Wireless zone. We use an internal firewall to control
the way that traffic passes between the two subnets. The firewall ensures that even if an attacker is
able to gain Layer 2 access to the Wireless zone or its hosts, her access to the Corporate zone will
be restrained by the firewall's rule set. (Additional defense mechanisms will still need to be in place
to protect against attacks that use protocols the firewall doesn't block.) Even traffic that passes the
firewall will be logged, giving us an audit trail of any attempted attacks. We could have used a
router instead of a firewall, which would also segregate broadcast domains and dampen the
attacker's ability to perform attacks against systems in the Corporate zone. We elected to use a
firewall because its access restriction mechanisms are generally more granular than those of a
router; however, if your budget does not allow you to deploy an internal firewall, a properly
configured router might provide a sufficient level of segmentation. As always, this decision depends
on the requirements and capabilities of your organization.

This separation is imperative, not only because of the client issues of the laptops themselves, but
also the vulnerabilities inherent in wireless technology. Wireless is the first Layer 2 network
medium to which we need to worry about attackers having remote anonymous access. Having
wireless connectivity available outside of your physical perimeter is like having a live network jack
outside of your building! Hence, the call for all the additional security mechanisms employed with
wireless networks. In any event, by dividing all wireless connectivity into its own zonea "wireless
DMZ"Layer 3 access controls can be applied to wireless hosts connecting to your wired network.
With new security concerns such as wireless DoS threatening us on the horizon, adding a chokepoint
between your wireless connectivity and the rest of your network is crucial to a secure network.

Note that wireless access points typically have hub-like characteristics. This means that any
wireless node that gains Layer 2 access to the access point might be able to promiscuously monitor
network traffic on all ports of the access point. Placing a firewall between wireless and wired hosts
does not protect you against such attacks because the firewall can only control traffic that crosses
security zones you defined. To mitigate risks of wireless-to-wireless attacks, you would probably
need to employ personal firewallscoupled with robust VPN solutions such as IPSec to encrypt and
authenticate wireless trafficin a manner similar to protecting wired traffic that travels across
potentially hostile networks. For more information on wireless security, refer to Chapter 14,
"Wireless Network Security."

VLAN-Based Separation

VLANs were created with the primary purpose of allowing network administrators to define
broadcast domains flexibly across multiple switches. VLANs are a useful isolation tool,
especially for the purpose of improving the network's performance. Using VLANs to
implement security zones carries additional security risks that we will examine in this
section.

From a performance perspective, it makes sense to place devices that frequently
communicate with each other into the same broadcast domain, especially if the systems
rely on broadcast-rich protocols such as NetBIOS or IPX's SAP advertisements. Often,
systems that are physically separated from each other should logically belong to the same
subnet; for example, your Accounting users might be sitting on different floors but
accessing the same file and print servers. VLANs allow you to logically group devices into
broadcast domains without tying the domain's boundaries to a particular switch, or in
some cases to a single geographic location. Properly configured VLANs can also help you
group resources according to their risk exposure and function, even if the systems in
question are located on different floors of the building and cannot be interconnected using
a single switch.

In server farm deployments, where servers tend to be in close proximity to each other,
VLANs are increasingly used to define multiple virtual switches within a single high-end
switch. A VLAN-enabled switch can host multiple VLANs, each representing a specific
broadcast domain. Using VLANs to structure subnets is often enticing because it frees
administrators from deploying dedicated switches for each subnet and allows them to add
ports to VLANs by simply reconfiguring the master switch without purchasing additional
hardware. Using only one physical switch to represent multiple subnets also minimizes the
number of devices that need to be maintained and monitored. Also, hundreds of networks
can get the benefit of hardware redundancy with as little as two switches. The flexible
nature in which VLANs can be configured, as well as the slew of intra- and inter-VLAN
communication options available in high-end VLAN implementations, makes VLANs an
attractive tool for network administrators.

Unfortunately, virtual network divisions do not afford the comfort level that a physically
disparate box does. Improperly configured VLANs can result in a vulnerability that would
allow a savvy attacker to "jump" across VLAN boundaries. In the next few pages, we
discuss the risks associated with VLAN deployments. Along with the potential dangers, we
examine security-enhancing features of VLANs that could allow you to control how traffic
travels within a single VLAN.

VLAN Boundaries

Even though subnets that are defined by VLANs might be considered virtual, they still
require a router to forward network traffic from one VLAN to another. Intra-VLAN routing
can be performed using a traditional router and can be controlled via ACLs, much like
traffic that is crossing regular subnets. Vendors of high-end switches, notably Cisco, also
offer hardware modules for their VLAN-enabled switches that can perform inter-VLAN
routing at high speeds within the switch. For example, Cisco's high-end Catalyst switches
support multilayer switching (MLS) through the use of add-on cards, which function like
virtual routers within the switch and can route traffic across VLANs. MLS supports access
lists that we can use to control how network traffic crosses VLAN boundaries.

Note

The ability to perform routing within a switch is sometimes called Layer 3
switching . Cisco implements this using MLS-enabled cards such as the Multilayer
Switch Feature Card (MSFC) for Catalyst 6500 switches.7 Practically, Layer 3
switching is different from traditional routing only in implementation;
instructions to perform Layer 3 switching are hardwired into the dedicated
module that is part of the switch, whereas traditional routing is implemented in
software that runs using the router's CPU. Because Layer 3 switching is hardware
assisted, it tends to be faster than traditional routing.

Because VLANs are meant to create isolated broadcast domains, we could use VLANs
within a single switch to implement the security zone subnets shown in the network
designs presented throughout this chapter. As with physical LANs, we would rely on
routers (or their MLS equivalents) and firewalls to transport packets across subnet
boundaries in a controlled manner. For this implementation to work, we would need to
ensure that the switch that hosts the VLANs does not allow an attacker to "jump" across
misconfigured VLANs and avoid the router or firewall.

Jumping Across VLANs

According to the IEEE 802.1q standard, Ethernet frames traversing through VLAN-enabled
switches can be identified as belonging to a particular VLAN through the use of a tag
header inserted into the frame immediately following the source MAC address field.8

Frame tagging is used when multiple switches are "trunked" together to function as a
single switch that can host multiple VLANs. Tag headers defined in the 802.1q standard
carry identifying VLAN information across trunked switches and identify a frame as
belonging to a particular VLAN.

Note

Switch trunking requires the configuration of trunking ports used when wiring
participating switches together.

If the switch is not configured correctly, it might be possible to craft custom 802.1q
frames that the switch will direct to the desired VLAN, thus avoiding the Layer 3 routing
mechanism generally required for intra-VLAN communications. Specifically, Cisco Catalyst
2900 switches were found vulnerable to such attack when multiple VLAN switches were
trunked together.9 For this attack to work, the attacker needs to have access to the VLAN
that contains an active trunking port (http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CAN-1999-1129). By connecting to a VLAN that contains a trunking port, the
attacker could craft Ethernet frames destined for arbitrary VLANs on the other switch.

Tip

To decrease the risk of VLAN-hopping attacks in trunked environments, place
trunking ports onto dedicated VLANs.

The vulnerability described in the previous paragraph has been carefully researched, and
it resulted in a specific recommendation for mitigating the risk associated with trunking
configuration options. If correctly configured using best practices, VLANs cannot be
jumped. Independent security assessments by the highly respected security consulting

firm @Stake "clearly demonstrate that VLANs on Cisco Catalyst switches, when configured
according to best-practice guidelines, can be effectively deployed as security
mechanisms."10

It is easy to understand why administrators would want to use VLANs to represent security
zone subnets, especially in enterprise environments that have already deployed high-end
switches and only require a configuration change to create a new "virtual" subnet. When
deciding whether to use VLANs, consider the likelihood and the implications of a
compromise to the VLAN boundary on Layer 1 or 2. For high-security environments, you
may want to consider employing dedicated switches to represent each security zone. By
not relying on VLANs, you physically ensure security. Though physical security can be
compromised with something as simple as an improperly run network cable bridging
dedicated switch security zones, with dedicated switches you do not have to worry about
the configuration intricacies of trunking, or risk other misconfigurations that might result
in the switch ignoring VLAN boundary restrictions.

Tip

You might be able to justify using VLAN-enabled switches to segment the internal
network, where the convenience of VLANs outweighs the risk of deploying them
in a relatively low-threat environment. You might then consider using dedicated
switches for high-threat segments, such as the DMZ or the screened subnet.

It is a good rule of thumb to have sets of switches dedicated to a particular security zone
(such as an internal zone, screened subnet, or DMZ) and then to use VLANs to segment
networks that fall within that security zone. All networks on those switches should share a
similar risk level. It is not recommended that you have security zones with disparate
levels of risk (such as a DMZ and a Internal High-Security zone) sharing a physical
switch. No matter how secure anything is today, there are always new vulnerabilities
about to be discovered. However, a properly configured VLAN affords a good security
boundary for segments with a similar risk level.

Firewalls and VLANs

As mentioned earlier in this chapter, VLANs need to be connected, like physical network
segments, with a routing device. Security between VLANs can be quite a task. Typically
the only security devices available for a router are access control lists. Though they are
effective, managing access lists can be considerably more complicated and cumbersome
than the interface of a commercial firewall solution. Also, logging and stateful handling of
protocols may be missing or not as feature rich as a firewall solution. Recently, firewall
vendors have started to offer solutions that take advantage of VLAN and trunking
technologies. Both Cisco and Check Point currently have firewall solutions that allow the
securing of communication between VLANs on the same switch.

Cisco's FWSM (mentioned in Chapter 3, "Stateful Firewalls") is a blade installed into 6500
series Catalyst switches. The Firewall Services Module (FWSM) uses the VLAN interfaces
on the switch as its firewall interfaces. This way, policies can be created protecting
hundreds of VLANS from each other with the full granularity of a PIX firewall.

Check Point has a solution called the Virtual System Extension (VSX). The VSX is a
powerful Check Point FireWall-1 server with extras. A switch can be plugged in to it via a
trunk, allowing multiple VLANs per trunk to appear as virtual interfaces on the firewall.
The VSX can support as many trunks as it has available interfaces, so it can scale to
handle the requirements of the most demanding environments. Up to 250 virtual firewalls
can be created for the interfaces in question, allowing separate security policies (if
required due to complexity or for management considerations) for the attached VLAN

interfaces. Keep in mind that configuring the VSX as your VLAN's gateway means that it
will be doing the routing for all VLANs so configured.

No matter what your need, advanced firewall technologies can be successfully employed
to facilitate strong security between same-switch VLANs, making communications between
your VLANs as secure as any physical LAN environment.

Private VLANs

The appeal of modern high-end switches makes it increasingly difficult to resist using
VLANs to define subnet boundaries. VLAN implementations are becoming more robust, and
network engineers are becoming more familiar with the configuration and maintenance of
VLANs. Some Cisco switches support an attractive VLAN security feature called private
VLANs (or PVLANs), which you should weigh against the risks associated with VLAN
deployments. A private VLAN is a grouping of ports specially configured to be isolated from
other ports on the same VLAN.

Private VLANs can help you restrict how hosts communicate with each other within the
primary VLAN. As we discussed earlier in this chapter, firewalls and routers allow you to
control network traffic only when it crosses subnet boundaries. Private VLANs are helpful
for isolating systems within the subnet, without the lost addresses due to splitting the
address range into multiple subnets. The ability to enforce such restrictions is most
relevant in server farm deployments, where servers are frequently placed on the same
subnet but rarely require unrestrained access to each other. If you are able to justify the
use of VLANs in your environment, private VLANs will improve your design by adding
another layer of security to the network's defenses.

When configuring ports that belong to a private VLAN, you can specify whether the device
connected to a particular port can communicate with other ports of the private VLAN.
Promiscuous ports have the ability to communicate with all other ports and are typically
assigned to the gateway for the VLAN in question, such as a router or firewall. Isolated
ports are completely shielded from all other ports of the private VLAN, except promiscuous
ports. Community ports can communicate among themselves and with the promiscuous
ports.11

Despite features that enhance Layer 2 security, private VLANs can be subverted if they are
not properly secured. Private VLAN restrictions can be bypassed by passing intra-VLAN
traffic up to the gateway router connected to the VLAN and back down to the target host.
Normally, hosts located on the same VLAN communicate with each other directly because
they are on the same subnet. An attacker with access to one host on the private VLAN
could purposefully route packets to a neighboring system through the gateway. All he
would have to do is send the traffic (via a static host route) to the gateway of the VLAN.
Because the gateway needs to be a promiscuous port, it will also be able to communicate
with the target host. When the router receives the packet, it will realize that it needs to go
back to the target host and forward the packet on, despite the Layer 2 isolation the private
VLAN creates. To prevent this from happening, you can configure Layer 2 ACLs (or VACLs)
on the primary VLAN to deny traffic with the source and destination of the same subnet.12

This will not affect normal traffic because standard behavior dictates that any traffic
between hosts on a subnet should never be forwarded to that subnet's gateway. However,
it prevents the routing of traffic between PVLANs on the same subnet.

As you can see, VLANs offer numerous features that allow network designers to separate
network resources in a very flexible manner. At the same time, VLAN-based subnet
boundaries are more likely to be compromised due to misconfiguration than if they were
implemented using simpler, physically separate switches. At this point, we hesitate to
recommend using VLANs for defining disparate high-risk security zones in the same
physical switch, especially those that are in close proximity to the Internet. However,
administrative advantages that VLAN-capable switches offer might justify using VLANs to
segment internal network segments and those with similar risk levels or those that are in
the same security zone, depending on the security requirements and VLAN expertise of
your organization.

Summary

This brings us to the end of the chapter on separating resources. Our discussion focused
on ways to isolate systems and processes based on their security requirements, while
taking into account the budgetary and administrative overhead of segmenting resources in
an overly granular manner. In the process, we discussed the advantages of limiting how
resources interact with each other when crossing security zone boundaries. This approach
to the design of the security perimeter allowed us to limit the scope of the influence an
attacker would have if the network were compromised. We also examined some of the
merits and disadvantages of employing VLANs to segregate systems. As you have seen,
resource separation is an important technique for fortifying the layers of your defense-in-
depth strategy. The extent of the appropriate isolation depends on your goals and
capabilities, which are articulated when assessing your business needs and documented
as part of your security policy.

References

1 Laura Chappell and Roger Spicer . "Is Your Network Doomed?" NetWare Connection.
http://www.nwconnection.com/jan-feb.96/doomed/. December 2001.

2 Microsoft Corporation. "Exchange Server 2003 and Exchange 2000 Front-End and Back-End Topology." July
29, 2004. http://www.microsoft.com/technet/prodtechnol/exchange/2003/library/febetop.mspx. August 25,
2004.

3 National Infrastructure Protection Center. "Lion Internet Worm DDoS Targeting Unix Systems." Advisory 01-
005. March 23, 2001. http://www.nipc.gov/warnings/advisories/_2001/01-005.htm. December 2001.

4 Global Incident Analysis Center. "Lion Worm." April 18, 2001. http://www.sans.org/_y2k/lion.htm. December
2001.

5 CERT Coordination Center. "Microsoft Windows NT and 2000 Domain Name Servers Allow Nonauthoritative
RRs to Be Cached by Default." Vulnerability Note VU#109475. http://www.kb.cert.org/vuls/id/109475.
December 2001.

6 Microsoft Corporation. "How to Prevent DNS Cache Pollution (Q241352)." September 10, 1999.
http://support.microsoft.com/support/kb/articles/Q241/3/52.ASP. December 2001.

7 Cisco. "System Requirements to Implement MLS." http://www.cisco.com/warp/public/_473/55.html.
December 2001.

8 IEEE. "IEEE Standards for Local and Metropolitan Area Networks: Virtual Bridged Local Area Networks." IEEE
Standard 802.1Q-1998. http://standards.ieee.org/reading/ieee/std/_lanman/802.1Q-1998.pdf. December 2001.

9 David Taylor . "Are There Vulnerabilities in VLAN Implementations?" July 12, 2001.
http://www.sans.org/newlook/resources/IDFAQ/vlan.htm. December 2001.

10 David Pollino and Mike Schiffman . "Secure Use of VLANs: An @stake Security Assessment." @Stake.
August, 2002.
http://www.cisco.com/application/pdf/en/us/guest/products/ps708/c1697/ccmigration_09186a008012ed31.pdf.

11 Cisco Systems, Inc. "Configuring VLANs." June 1, 2001.
http://www.cisco.com/univercd/cc/_td/doc/product/lan/cat4000/rel6_2/config/vlans.htm. December 2001.

12 Cisco Systems, Inc. "Securing Networks with Private VLANs and VLAN Access Control Lists."
http://www.cisco.com/warp/public/473/90.shtml. December 2001.

Chapter 14. Wireless Network Security
Wireless 802.11 networks are becoming more and more popular as a means to augment
traditional wire-based LANs within companies. The pervasive nature of wireless
communications forces a security perimeter designer to reexamine some of the underlying
principles of traditional network architectures. In a wireless world, we can no longer
assume that physical infrastructure (walls, doors, guards, and so on) will reliably protect
the network against unauthorized external access on Layer 2 (media access) and Layer 1
(physical). To access wireless resources, the attacker only has to be in the proximity of
the wireless network, often without even having to enter the building of the potential
victim. In this chapter we will briefly examine the fundamental 802.11 wireless
technologies, go over popular wireless network encryption protocols and important
techniques used to secure wireless networks from attack, look at tools and methods used
to audit our secure wireless infrastructure, and then finally review an example of a secure
wireless deployment.

802.11 Fundamentals

802.11 is a family of specifications adopted by the Institute of Electrical and Electronics
Engineers (IEEE) for implementing wireless LANs. 802.11 is similar to the IEEE 802.3
Ethernet standard in that it maps to Layer 2 and Layer 1 protocols and services.1 With
Ethernet CSMA/CD technology, wireless nodes address each other using MAC addresses,
which are embedded into the compatible network cards. However, 802.11 does not rely on
wires for carrying signals on Layer 1. This means that 802.11-compliant nodes can
wirelessly communicate with each other within a range defined by the specifications and
supported by their wireless equipment. Because the wireless aspect of communications is
limited to the media access and physical layers, higher-level protocols such as IP, TCP,
and UDP do not need to be aware that datagrams are transported without wires.

802.11 networks that are most frequently deployed within companies require the use of
one or more access points (APs). An AP is a device that facilitates wireless
communications between 802.11 nodes and bridges the organization's wireless and wired
networks. In this configuration, known as infrastructure mode, wireless nodes must go
through the AP when communicating with each other and with nodes on the wired
network. Alternatively, wireless networks can be deployed using an ad hoc topology, in
which case participating 802.11 nodes communicate directly with each other on a peer-to-
peer basis.2

Three main types of 802.11 networks are in use today:

802.11b This was the first standard to really catch on for wireless networking. It runs
at 11Mbps, uses a wireless frequency of 2.4GHz, and has a range of up to 300 feet. It
is also the most common 802.11 network type. A need for transfer speeds greater
than 11Mbps created demand for 802.11a equipment.

802.11a 802.11a network components run at an improved bandwidth of 56Mbps and
use a broadened frequency range of 5GHz, which causes fewer conflicts with typical
appliances such as cordless phones and microwaves. The 802.11a specification allows
for up to 12 simultaneous communication channels, as opposed to the three channels
of the 2.4GHz standards, thus equaling support of a greater number of stations per
wireless network. However, because it uses a different frequency range, 802.11a
offers no built-in compatibility with already deployed 802.11b equipment. Also,
802.11a equipment is much pricier and has a decreased range over its 2.4GHz
counterparts (about 50 feet at the full 54Mbps).

802.11g Many people have waited to fulfill their wireless bandwidth requirements
with the 802.11g standard. With a speed of 56Mbps and using the 2.4GHz frequency
range, 802.11g equipment is backward compatible with the more popular 802.11b
standard and offers a similar distance range of up to 300 feet, allowing full 54Mbps
speeds at as far as about 100 feet. 802.11g equipment offers the speed of 802.11a, at
a more competitive price and with backward compatibility with 802.11b, making for a
much easier and inexpensive upgrade path.

Securing Wireless Networks

Despite all the conveniences supplied by 802.11 networks, the fact that wireless network traffic knows no
physical boundaries and travels freely through the air makes it inherently insecure. In this section we will
discuss ways to effectively secure wireless networks. All the elements that go into making a wired network
secure can be applied in a wireless environment as well. In the upcoming pages we will discuss the best
way to design a wireless network to keep it secure, the use of wireless encryption for confidentiality and
authentication, the hardening of APs to ward off attacks, and the use of mechanisms outside the wireless
technology domain for additional defense-in-depth security.

Network Design

The most important aspects to securing a wireless network are the way it is designed and the way it
interfaces to your wired network. No matter what features you use to secure your wireless infrastructure,
there will always be ways to defeat them. By utilizing a solid network design strategy, you can make it
harder for attackers to reach your wireless network. This can also add more controls to your wireless
segments and protect your wired network from its wireless counterparts. In this section we will examine the
use of firewalls and routers to exact the same kind of controls on wireless networks that you can on wired
networks and to prevent signal leakage through proper AP placement and wireless signal dampening.

Separation via Network Control Mechanisms

Because an AP typically connects wireless and wired networks, nodes that are located on networks on both
sides of an AP participate in the same broadcast domain. Under such circumstances, a wireless attacker can
use techniques that apply to wire-based networks, including attacks such as ARP cache poisoning, thus
exploiting the loquacious nature of broadcast domains.3 Such an attack would impact other wireless nodes
that are connected to the access point, as well as devices on the wired side of it.

Because of the number of vulnerabilities associated with and the nature of wireless deployments, it makes
sense to treat 802.11 networks as more vulnerable than an isolated wired network. The justification for
separating wire-based and wireless resources is further reinforced by unrestrained Layer 2 access that a
wireless node might have to wired hosts on the other side of the access point. As stated in Chapter 13,
"Separating Resources," it is a good practice to divide the wireless part of your network from the wired part
using a control mechanism, such as a router or firewall. This way, Layer 3 and higher access controls can be
applied, rather than dealing with the standard problems associated with the fact that wireless
communications transpire at Layer 2 and below.

A common, but flawed design that is utilized in many environments is the connection of an AP directly to a
production switch (see Figure 14.1). Though this option is easily configured, it allows all wireless nodes
direct Layer 2 access to any of the resources on that same production switch. At a minimum, placing the AP
in its own isolated VLAN on the production switch and securing it using Layer 3 mechanisms is suggested.

Figure 14.1. It is not uncommon to find an AP connected directly to a production
switch. What this gains us in convenience, it lacks in control.

A better design to consider is the concept of a "wireless DMZ," as eluded to in Chapter 13. By placing the
APs into a dedicated security zone, additional Layer 3 and greater access controls (such as a firewall) can
be applied. For example, by connecting all our APs to a single switch (or two switches for redundancy) and
then connecting the switch to a firewall that connects to the production switch (see Figure 14.2), we have a
chokepoint or Layer 3+ control between the APs and our production network.

Figure 14.2. A wireless DMZ allows Layer 3 controls in the form of a firewall
between our wireless and production network.

If someone compromises a wireless node or an AP, he is now limited to only the services we are allowing
across our firewall to the production network. Additionally, all traffic can be logged at the firewall, so we
have an audit trail and a greater chance of detecting an attack.

Finally, in cases where the APs themselves fall into different risk levels, it is possible to separate each of
them into its own security zone, on a multileg firewall or multiple interface router (see Figure 14.3).

Figure 14.3. By segmenting the APs into their own security zones, we protect our
wireless resources from each other.

A design like the one pictured in Figure 14.3 may be useful in environments such as college campuses,
where instructors and students might have very different rights to production resources.

As enterprise class APs are developed, more and more of the same important security features incorporated
into wired network switches are being integrated into APs. Access points have been produced that support
the configuration of Quality of Service (QoS) and VLANs on the AP itself! This way, the AP can help control
the QoS considerations for connected wireless clients and can group the traffic into security zones with
different levels of risk using VLAN technologies. This is a major improvement over past APs, which basically
acted like "dumb hubs." With a multi-VLAN AP, an important design consideration is how it will be
integrated into your wired network. The connection between it and your production switch will most likely
be an 802.1q trunk, which can propagate the same poor design considerations as demonstrated in the
example in Figure 14.1. Placement of a firewall that supports 802.1q trunking between the AP and the
switch would be recommended for exacting Layer 3+ controls on your wired networks. At the minimum,
Layer 3 controls can be forced by configuring unique VLANs to support the wireless networks on the
attached wired switches, forcing wireless traffic to go through a Layer 3 device for access to the rest of the
wired network (see Figure 14.4). For more information on the separation of the network into security zones
and the use of trunking, refer to Chapter 13.

Figure 14.4. By using unique VLANs for wireless networks, communications
between wireless and wired networks are forced through a Layer 3 access device.

Note

You can find information on trunking, the Cisco Firewall Services Module (FWSM), and the Check

Point VSX in Chapter 13.

No matter which of these wireless network designs suits your business needs best, an important point to
take away from this section is that adding Layer 3+ controls at the edge of your wireless network provides
the type of control you take for granted between your wired network security zones.

Protecting Against Signal Leakage

Wireless infrastructure components have historically been vulnerable to attacks that could allow a
determined attacker to access data on the wireless network as well as on the wired network that is
connected through its access point. Such attacks have an increased threat level because 802.11 allows the
attacker to connect to the wireless network at the media access layer without having to infiltrate the
organization's physical facility. All that is needed to communicate with an 802.11 network is a compliant
network card and the appropriate proximity to the target. One of the best ways to help alleviate such issues
is by controlling wireless signal leakage. By carefully placing APs and the direction of their antennas, you
can limit the amount of signal that is available outside of your building or campus. Insulating materials
(such as thermally insulated windows and metallic paint and window tint) can be used to help deaden
signals before they leave the areas you physically control. The less access that the public has to your
network, the better. Also, choosing the areas where signal leakage occurs can also work to your advantage.
If your wireless network is accessible from a public parking lot, you are at a greater risk than if your
network is accessible via a secured parking lot that is monitored by cameras. Having your wireless network
range mesh with your physical security, though often not possible, is a solid step toward good network
security.

Defending Against Wireless Denial of Service (DoS)

There is a lot of conjecture about a new threat to networks everywherethe wireless DoS. Though the range
from which a wireless DoS can be executed must be much closer than a standard Internet DoS, the threat
still has a very dangerous potential. A wireless DoS can slow down or even bring your wireless network to a
halt, and depending on your network design, it could even spill over into your wired network. Most
businesses do not have the equipment to be able to track down a device that could be causing a wireless
DoS, though commercial packages to track down wireless transmitters (and more) are now available, such
as Airmagnet (www.airmagnet.com).

The main defense against wireless denial of service (short of triangulating the source and tracking it down)
is again the use of solid design fundamentals, such as those we have discussed in the last two sections.
Being able to segregate the DoS away from your production network via a firewall or other control devices is
ideal. QoS controls can also be implemented at the edge of the wireless DMZ. Network intrusion detection
sensors can be placed at the point where your wireless and wired networks join. Finally, all the means used
to keep signal leakage in can also help keep the wireless DoS out. Though no foolproof method of defense is
available for wireless DoS, a proper design can go a long way toward threat mitigation.

Wireless Encryption

Although wired Ethernet-based networks do not incorporate encryption at the media access and physical
layers, 802.11 designers developed specifications for encryption mechanisms to allow authentication and
encryption of communications between wireless nodes on Layers 1 and 2. Wireless encryption is meant to
guard against eavesdropping and limit access to the wireless infrastructure, thus protecting against the
inherently "public" nature of wireless communications that allows them to pass through walls and other
physical barriers.4 An attacker is much more likely to gain access to the wireless network if the organization
has not enabled an encryption method or related access-control mechanisms in its 802.11 deployment. An
inexpensive reconnaissance experiment in 2001 by security enthusiasts in the Boston area detected
hundreds of 802.11 access points, only 44% of which had encryption enabled.5 Remember that any
encryption is better than no encryption. Many wireless attackers are simply looking for a jumping-off point
from which they can launch further attacks. If an attacker finds a network with poor encryption and one
with no encryption, it is very likely he will attack the network with no encryption. After all, why bother

going through all the work to crack weak encryption when he can immediately access the unprotected
network?

Wired Equivalent Privacy (WEP)

An important part of securing a wireless network is using an adequate encryption algorithm to protect your
airborne data. In this section we will discuss the first security protocol for wireless networks and some of
the inherent weaknesses that led to its replacement.

When the 802.11 specification was created, the individuals developing it realized that eavesdropping was a
major concern for wireless networking. When your precious data, personal information, and passwords are
traveling through the air, confidentiality becomes paramount. With this in mind, Wired Equivalent Privacy
(WEP) was created to allow secure communications between wireless network cards and access points. The
original version of WEP supported a 40-bit or 64-bit pre-shared key, with a later implementation (WEP2)
offering a 128-bit key. It uses the RC4 algorithm for encryption. The paper "Weaknesses in the Key
Scheduling Algorithm of RC4," by Scott Fluhrer, Itsik Mantin, and Adi Shamir, discuss flaws with RC4 in
great detail, including issues with the way RC4 is implemented in WEP. The authors state that "when the
same secret part of the key is used with numerous different exposed values, an attacker can rederive the
secret part by analyzing the initial word of the keystreams with relatively little work."6 In turn, countless
programs have been developed to exploit this weakness in WEP, including WEPCrack and AirSnort, both of
which will be covered later in this chapter. For more information on the vulnerabilities of WEP and RC4,
check out "Weaknesses in the Key Scheduling Algorithm of RC4," which is available all over the Internet.

Note

The fact that some implementations of RC4 are weak does not mean that RC4 itself is broken.
Properly implemented, RC4 is considered secure. For more information, checkout "RSA Security
Response to Weaknesses in Key Scheduling Algorithm of RC4" at
http://www.rsasecurity.com/rsalabs/node.asp?id=2009.

Despite the inherent weaknesses in WEP, it is still deployed today. If WEP is your only choice, it is better
than no encryption at all. However, you should consider WEP to be broken and should replace it if at all
possible.7 Some vendors have strengthened WEP by incorporating an authentication protocol such as LEAP
into their products.

Extensible Authentication Protocols: PEAP/LEAP/EAP-TLS

One of the major weaknesses of WEP was that it used a pre-shared key. Any time a static pre-shared key is
used, it is unlikely it will be changed regularly, if at all. This makes it very vulnerable to attack because
exploits can be run on it again and again. Also, there are no usernames to be determined, so just one item
needs to be crackedthe key itself. If multiple parties need to gain access to the network, the pre-shared key
needs to be disseminated in some form, which leads to issues in keeping the key secured as it is passed
around. One means to mitigate these issues is by using a protocol that supports authentication. Using a
centralized authentication server (such as RADIUS or TACACS) means that there are multiple usernames
and passwords, all which are centrally managed and can be controlled via a strict password policy forcing
complexity and regular password changes.

Protected Extensible Authentication Protocol (PEAP), Lightweight Extensible Authentication Protocol (LEAP),
and EAP-TLS are all examples of authentication protocols used with wireless networks. These protocols
incorporate the use of authentication servers (for example, RADIUS) instead of using a pre-shared key.
They supply not only an additional level of security, but also a centralized means to share credentials across
multiple APs and other network devices that can utilize RADIUS technology.

LEAP is a proprietary protocol created by Cisco systems. It uses Microsoft Challenge Authentication Protocol
version 2 (MS-CHAPv2) to authenticate against an authentication server. In its original implementation it
used transient WEP keys to protect information flows (though it can also be used with other encryption

standards such as WPA). Though these benefits help negate all the exploitable negatives with WEP
deployments, there has still been a lot of talk recently about the security of LEAP. At DEFCON in August of
2003, Joshua Wright revealed weaknesses in LEAP to dictionary attacks.8 This is due to limitations that can
be found in the MS-CHAP implementation, including the facts that user credentials travel in the clear
(immediately giving up half of what an attacker needs) and that its hashes do not use salts.

What Is a Salt?

A salt is a random piece of information that is added to data before it is hashed, preventing two
identical pieces of data from having the same hash. You can determine the value of a password
that was hashed without a salt by using the same hashing algorithm against password guesses
and comparing the resultant hashes against the original password hash. When the hashes
match, you have successfully guessed the password!

The LEAP dictionary attack makes an excellent case for the necessity of a strong password policy. This
attack only works well when the password guesses can be easily generated via a source such as a
predefined password dictionary. If complex passwords are used, this assault will not work, and it is very
unlikely that a brute force attack using the same methodology would give timely results.

Note

For more information on the LEAP dictionary attack vulnerability, check out "Weaknesses in LEAP
Challenge/Response" (http://home.jwu.edu/jwright/presentations/asleap-defcon.pdf) and "Cisco
Response to Dictionary Attacks on Cisco LEAP"
(http://www.cisco.com/en/US/products/hw/wireless/ps430/prod_bulletin09186a00801cc901.html).

Another authentication protocol choice is PEAP. It was created by a consortium of vendors, including
Microsoft, Cisco, and RSA Security. Though similar to LEAP, using an authentication server and MS-CHAPv2,
it adds enhanced security by offering additional authentication options and forcing this authentication to
take place in an encrypted Transport Layer Security (TLS) tunnel. TLS is the planned replacement for SSL
and offers similar functionality. The additional security provided by the TLS tunnel has the positive effect of
removing the concerns previously expressed for LEAP. However, the negative side effect is that a digital
certificate is required for the authentication server.

TinyPEAP

Now that a known offline dictionary attack is available against the pre-shared key version of
the new industry wireless security standard WPA, implementing an authentication server to
defend your wireless environment is more important than ever. One interesting option is called
TinyPEAP (www.tinypeap.com). It embeds a simple RADIUS server into firmware that can be
added to Linksys WRT54G/GS model wireless routers. Though most likely only an ideal solution
for home and small-office networks, it's a novel idea nonetheless! Perhaps one day all APs will
come with integrated RADIUS servers.

EAP-TLS is the new standard for wireless authentication set forth in the newly adopted IEEE 802.11i
security standard. It is similar to the other EAP protocols we mentioned; however, it requires digital
certificates on both wireless clients and authentication servers, demanding the implementation of Public Key

Infrastructure (PKI) for digital certificate management. This makes EAP-TLS the most secure of the EAP
standards in this section and the most costly and complicated to deploy and manage.

Wi-Fi Protected Access (WPA)

Due to all the shortcomings in WEP, a new implementation of encryption protocol for wireless networks had
to be developed. The answer: Wi-Fi Protected Access (WPA) Protocol. WPA integrates an improved choice of
encryption algorithms with an almost infinite number of dynamically generated keys, with proven EAP
authentication protocols and additional integrity checking for a rock-solid replacement for the former WEP
standard.

The initial implementation of WPA used the Temporal Key Integrity Protocol (TKIP) encryption algorithm
with 128-bit dynamic session keys. The second version of WPA (WPAv2) was enhanced to meet the IEEE
802.11i security standard by using Advanced Encryption Standard (AES) 128-, 192-, and 256-bit keys. The
two modes of operation with either version of WPA are Personal (also called WPA-PSK) and Enterprise.
Personal uses a pre-shared key (for which there has been an attack offered againstsee the sidebar "WPA
Pre-shared Key Passive Dictionary Attack," later in this section) whereas Enterprise supports an
authentication server (such as RADIUS) and EAP methods such as EAP-TLS and PEAP.

The Wi-Fi Alliance states the following about WPA, with its improved encryption algorithms and security
mechanisms: "Cryptographers have reviewed Wi-Fi Protected Access and have verified that it meets its
claims to close all known WEP vulnerabilities and provides an effective deterrent against known attacks."9

Both versions of WPA integrate a capability to verify the validity of packets with its Message Integrity Check
(MIC). The WPA and WPAv2 standards are making wireless networks an easier security decision for IT
managers everywhere.

WPA Pre-shared Key Passive Dictionary Attack

Just when you thought all your answers to wireless security had been answered with WPA, an
attack is revealed by the folks who invented TinyPEAP, which puts poor WPA pre-shared keys
(or passphrases) at risk. The attack tool takes a small network trace and runs a dictionary
attack against it offline. This makes for an efficient attack because a small network trace can
be run pretty quickly and then the actual dictionary processing can be run at a remote location
and take as long as the attacker would like. A whitepaper and sample attack code are both
available at www.tinypeap.com. This vulnerability does not mean that WPA is compromised. It
does, however, reinforce that high-security environments should not be running the pre-shared
key version of WPA, instead using a RADIUS server for authentication. Also, in environments
with WPA using pre-shared keys, you should make sure your passphrase is not made up of
standard dictionary words and that it is long (20 characters or longer was suggested by Robert
Moskowitz, who originally warned of this vulnerability in WPA-PSK).10

Remember these points when implementing encryption on your wireless network:

It is a good idea to use the strongest encryption your environment can support.

A proven algorithm and suitably large key (128+ bit) makes for good security.

Use user authentication methods to augment security. In highly secure environments, two-factor
authentication is a major plus.

Be sure to load firmware updates and security updates for wireless hardware and drivers when they
become available.

Keep these points in mind when determining which technology is the best security fit for your environment
and when deploying the technology, to maximize your environment's protection.

Hardening Access Points

Just as the border router is the entranceway to your wired network from the Internet, the AP is the
entranceway between your wireless and wired networks. In turn, it must be locked down as much as
possible to prevent it from being infiltrated. Several major issues must be considered when hardening your
AP. Shutting down SSID broadcasts, locking down MAC addresses, disabling unused services, and using
strong passwording are all important aspects of securing the access point.

Disabling SSID Broadcasts

One of the things that makes wireless networks great is how easy it is to connect to them. Of course, this is
also one of the things that makes securing wireless networks very difficult. By default, most access points
are configured to broadcast the Service Set Identifier (SSID), a configurable label on the AP that identifies
itself to the wireless client and lets the client know it is an access point.

Extended and Basic Service Sets

You may hear the terms ESSID (Extended Service Set Identifier) and SSID used
interchangeably. The SSID value that is assigned to the access points taking part in an
Extended Service Set (ESS) is also known as the ESSID. The other type of SSID is the BSSID,
or Basic Service Set Identifier, identifying the communication hub of a Basic Service Set (BSS).
The ESS is all APs and clients making up an infrastructure mode wireless LAN. An ESS can be
made up of one or more Basic Service Sets. When an ESS uses multiple APs, each individual AP
and its support clients is a BSS. The BSSID for each of those APs would not be its assigned
SSID but the MAC address for the individual AP. An ad hoc network is another type of BSS. In
an ad hoc BSS, clients work together to act as an AP and use a virtual Ethernet address as the
BSSID.

The wireless networking client in Windows XP will pop up a list of available networks when a wireless host
is first connecting to a network. These networks are discovered by the SSID broadcasts sent by their access
points. In the early days of wireless, many uninformed network practitioners thought that changing the
SSID to something other than the manufacturer's default was a "hardening technique." However, client
scanning shows all SSID broadcasts in the area. The only benefit that changing the SSID provides is the
prevention of the instant identification of the AP vendor.

Despite the ease of administration broadcasting SSIDs offers, a good way to improve security is to disable
SSID broadcasts on all wireless access points. This will help prevent outsiders from easily discovering your
access points. On the downside, this means that all wireless clients will need to be manually configured
with the SSID of the network they are a part of.

Wardriving

Wardriving is the term for searching out wireless access points, mostly ones that have no or
poor security. It takes its name from the process "wardialing," which hackers used in the years
of dial-up connectivity and modems. Hackers would program wardialing programs to dial up
hundreds of phone numbers looking for modems and PBXs that could be compromised.
Wardriving involves a similar process by which attackers drive around with a laptop or PDA with
wireless capabilities and attempt to locate APs using detection tools such as Netstumbler and
Mini-Stumbler. These tools search for SSIDs being broadcasted from the wireless access points.
After finding APs, attackers sometimes draw symbols with chalk on the pavement near where
the APs were found. This is called warchalking . Silencing SSID broadcasts may prevent you
from being a victim of wardriving. Remember, your users are not the only people trying to
connect to your AP!

It is important to keep in mind that locking down SSID broadcasts, though a good security step, does not
guarantee a secure access point. Attackers with wireless sniffers can still examine communication flows
between clients and APs and determine SSID information, even with broadcasts disabled. However, it does
prevent your wireless clients from accidentally logging in to the wrong AP, and it prevents outsiders and
attackers from accidentally logging on to yours.

However, the use of strong authentication and encryption methods goes a long way to help mitigate the
issues caused by SSID broadcasts. It does not matter that an attacker knows your wireless network is there
if there are no exploits to run against it and your authentication methods are solid.

FakeAP

FakeAP is a Linux-based program that can thwart wardrivers by creating the appearance of
thousands of APs on AP-detection tools such as Netstumbler. Attackers won't know which of the
thousands of access points are legitimate and which are "ghosts" generated by FakeAP. Check it
out at http://www.blackalchemy.to/project/fakeap/.

MAC Address Lockdown

Another technique that has helped many a network administrator sleep easier at night is the ability to lock
down MAC addresses on wireless access points. Some access points include the capability to configure a list
of MAC addresses for wireless clients that are allowed to communicate with the AP. At first glance this
seems like an almost foolproof way to prevent outsiders from gaining access to your wireless network.
However, this unfortunately is not entirely true. Again, this is a good step toward a strong security posture,
but with the right equipment this defense can easily be bypassed. All an attacker needs to do is use a
wireless sniffer to watch communication flows between a client and AP. Once the attacker records the MAC
address of an allowed client, he can easily spoof the MAC address in question and begin communicating with
the locked-down AP. He may need to run a DoS (or the like) against the original owner of the MAC address
to keep it from interrupting his communications, or he may need to wait for that client to disconnect from
the network.

MAC Address Spoofing in Windows

Many users are familiar with operating systems such as Linux or Solaris that offer an easy
means to change or spoof the MAC address on any installed network card. You may have also
seen network cards whose drivers support the manual reconfiguration of MAC addresses
themselves. However, how can an end user running an operating system such as Windows
change the MAC address of his wireless network card? The answer is surprisingly much easier
than you would think. An undocumented Windows Registry entry can be added under the key
for the active network adapter, allowing the assignment of a new MAC address to the card!
(Warning: Use Regedit at your own risk!) Using Regedit, browse through to
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\{4D36E972-E325-11CE-
BFC1-08002BE10318}. Beneath this key will be a number of subkeys numbered 0000 and up,

representing any network adapters (physical or virtual) that have been installed in your
system. Browse down through them using the driver description (DriverDesc) to determine

which one is the NIC you want to alter. Finally, add a string value under this key called
"NetworkAddress" (watch the case and do not enter any spaces). Finally, edit this newly added

string and add value data equaling the 12-digit MAC address you want to spoof. It must be in
hexadecimal format, with no spaces or other symbols. Now to activate your new MAC address,
you simply need to disable and then enable your NIC. You can check to verify the new MAC
address has been properly assigned to your NIC using ipconfig /all from a command prompt.

Having to lock down the MAC addresses for all the wireless nodes in a large network is an administrative
nightmare. However, in environments where security needs to be maximized, locking down the MAC
addresses of nodes adds an additional layer of complexity that an attacker needs to bypass. The more steps
an attacker needs to take to compromise your security, the more likely he is to give up.

Miscellaneous AP Hardening

Many additional steps can be taken to help lock down your wireless access point against attacks. First and
foremost, always change the default password on the AP before putting it into production. Be sure to follow
best practices for a complex password. Also, try to lock down AP management mechanisms as much as
possible. Try to disable web management via wireless devices and lock down wired management as much as
your AP will allow. If an out-of-band management method is available for your AP, it is highly recommended
that you take advantage of it.

Many APs have the ability to bridge themselves to other APs. It is a good idea in a single AP environment to
disable this capability. In a multi-AP environment, lock down your APs' intercommunication by MAC address.
This can be overcome, as mentioned in the section on MAC address lockdown, but it's still worthy of
completion.

As previously eluded to, make sure that up-to-date firmware is installed on a newly purchased AP. Also,
track firmware updates that repair security vulnerabilities. Newer firmware versions will support additional
security features, more robust and cutting-edge encryption algorithms, and new industry security standards.

Proper passwording, secured management, and up-to-date firmware are all important parts of locking down
your access point. Hardening your AP is a key in securing your wireless network.

Defense in Depth for Wireless Networks

Some of the most effective approaches to securing a wireless network don't have anything to do with
wireless technologies at all. Many defense-in-depth techniques used in the wired world can be applied with
great success with wireless networks. In the following sections we will discuss some important technologies
that can take your wireless network's security to the next level.

VPN/IPSec

When it was originally discovered that WEP was broken, many security analysts suggested implementing
VPN technologies or host-to-host IPSec on wireless clients. This added an additional layer of confidentiality
and authentication between wireless hosts and destination resources. All traffic is encrypted from the client
to the destination (including across the wired network) without fear of WEP being cracked. Configuring
transport mode IPSec is easily done for all traffic between hosts or just for certain protocols. Also, this
requires an additional level of authentication for the client and server to communicate. For more
information on IPSec or configuring it for transport mode operation, check out Chapter 7, "Virtual Private
Networks."

Host Defenses

Many of the host-based defenses in Chapter 10, "Host Defense Components," are very beneficial for the
wandering wireless client. Wireless networking technologies expose our clients at Layer 2 and below to
assaults from anyone within range. Using host IDS and a firewall on a wireless client are excellent steps to
prevent airborne attacks. Both will help you be aware of and defend against an attempted attack, whether
you are connected to your office wireless network or on the road. Also, both act as additional "sensors" for
your wireless network's security. Hosts may pick up wireless DoS or other attacks before they get to your
wired network defenses. Strong host defenses are an important part of keeping your wireless environment
secure.

Auditing Wireless Security

As in the wired world of networking, one of the most important parts of securing an
environment is "checking your work." Auditing makes sure the security measures you
have in place are working as you expected them to. It is a good practice when auditing
security to make a list of your defenses and then write down some tests to prove that the
defenses are working, followed by a list of expected outcomes and finally a place to
describe what the outcome of the audit actually was. When the audit is complete, this will
provide an excellent tool to refer back to in a "lessons learned" meeting if you ever face a
successful intrusion or attack. It will help you determine if an issue was introduced after
the initial design implementation that enabled the incident or perhaps help you discover
flaws in your own auditing techniques. Auditing is sufficiently important that we have an
entire chapter dedicated to it (Chapter 22, "Assessment Techniques"), where we go into
the process of network security auditing in great detail. However, this section will provide
information specifically dealing with the tools and techniques used for the auditing of
wireless networks only.

A number of software programs allow network professionals to audit the security of their
wireless networks, including wireless sniffers, encryption-cracking tools, and AP detectors.
In the following sections we will discuss some of the more useful of these tools and
describe techniques that can be used to verify the security of a wireless network.

Auditing the Wireless Network Design

Despite the best laid plans of mice and men, network security holes still happen. You can
lay out the ultimate network design on paper, but one mistake while implementing a
firewall rule can bring your whole network to its knees. That is why running audits against
what your design should secure is an important part of the design itself.

Auditing Network Controls

No matter what design methodology you use to separate your wireless and wired networks
(even the absence of separation is a design decision), it is imperative to determine what
resources an attacker would be able to gain access to once he is connected to your
wireless network. To verify this connectivity, make a list of critical resources you would
not want an attacker to be able to contact. Then, using one of your wireless clients, run
tests using common wired network security tools, such as port scanners, firewalk, and
vulnerability scanners. If you can access your critical resources, a motivated attacker will
be able to as well. Use the information gleaned from the audits to bolster your network
design's security.

Auditing Signal Leakage

For this audit you are going for a walk, literally. Grab your favorite laptop and load it up
with tools to see what's going on in the atmosphere around your workplace. It is advisable
that you wield an external antenna, similar to the ones an attacker would use, to increase
your range. The small omni-directional antennas that are integrated into most wireless PC
cards have a fraction of the range of a directional antenna such as a Yagi. A chart of
wireless coverage for an omni-directional antenna is almost spherical, whereas a Yagi
directional antenna is more like a column stretching many times the distance of the
"omni" in the direction the antenna is being pointed.

Warning

Remember that a wireless signal can be affected by interference, reflection, and
outside factors. Though you may not be able to access your network from the
parking lot today, you may be able to hit it from beyond there next week.
Perform regular audits with varying equipment and tools, but don't rely on signal
control as your sole defense mechanism.

Start by walking the perimeter of your environment with a tool such as Netstumbler
(http://www.netstumbler.com) or, even better, Kismet (http://www.kismetwireless.net),
which can find any valid access points you are using. Netstumbler is easy to load, easier
to use, and can be run on popular handheld devices (Mini-Stumbler) as well as the ever-
pervasive Windows operating systems. However, it relies on the passive reception of SSID
broadcasts to detect APs and does not look beyond them. Do not rely on Netstumbler as
your sole auditing tool because you'll gain a false sense of security with your results.
Other programs such as Kismet are proactive and search out wireless packets to find APs
and wireless networks. Kismet, however, is currently only available for Linux. In any case,
either program may be used by an attacker looking for your network. When walking the
grounds with either tool, take note of which APs can be located from public areas,
including lobbies, restrooms, and other publicly accessible areas in your building. Finally,
take a walk through your building and pay particular attention to SSIDs you don't
recognize. A major security hole can be added to the most secure network when an end
user deploys his own access point or configures a wireless NIC to be part of its own ad hoc
environment. Believe it or not, this happens more often than you would expect. An
executive feels tethered to his desk by a network cable, so he plugs in an AP (running
without encryption, of course) and pops a wireless NIC in to his laptop. Talk about an
attacker's dream!

Another good practice is running a sniffer capable of examining wireless trafficsuch as
Airmagnet, Ethereal (http://www.ethereal.com), or the likeand examining the information
you are sending in the clear. You might be interested to find out what information an
attacker can see even when your network is properly protected by MAC address lockdown,
disabled SSID broadcasts, and strong encryption. Also confirm that the encryption
protocols running on your network are the ones you deployed. Knowing your weaknesses
is the first step in buttressing your fortress!

Auditing Encryption

Once you are confident the information being sent through the air in your environment is
all encrypted, it is a good idea to run any available cracking tools to confirm that your
encryption implementation is sound. Running searches on the Internet and exploiting
websites such as http://www.packetstormsecurity.org should provide you with plenty of
material to try. Here is a list of popular tools for various encryption types:

WEPCrack The first open source WEP cracking tool (http://wepcrack.sourceforge.net)

AirSnort A wireless sniffer that guesses WEP keys
(http://sourceforge.net/projects/airsnort)

WEP Wedgie A tool used to inject traffic into a WEP conversation to speed the
cracking of WEP (http://sourceforge.net/projects/wepwedgie/)

AirCrack A fast WEP-cracking tool (http://freshmeat.net/projects/aircrack/)

BSD Airtools A variety of wireless auditing tools for BSD, including a WEP cracker
(www.dachb0den.com/projects/bsd-airtools.html)

Asleap A dictionary-based password attack on the LEAP protocol
(http://asleap.sourceforge.net/)

WPACrack A tool that runs offline dictionary attacks against WPA implemented with
pre-shared keys (http://www.tinypeap.com/page8.html)

AirSnort

AirSnort is a freeware Linux-based sniffer that intercepts and decodes WEP-
encrypted packets (it has also recently been ported to Windows XP). AirSnort
can be used by promiscuously capturing wireless packets. After approximately
100MB1GB of wireless data has been gathered, AirSnort can "guess the
encryption password in under a second."11 AirSnort accomplishes this by
exploiting a vulnerability in the key scheduling algorithm of RC4, discovered by
Scott Fluhrer, Itsik Mantin, and Adi Shamir (as discussed in the section on WEP
encryption, earlier in this chapter).

AirSnort needs to collect wireless packets before cracking the WEP password
because, according to the program's documentation, out of 16 million 128-bit
WEP keys that wireless cards can generate, about 3,000 are considered "weak."
After the program gathers enough "weak" WEP key packets, it is able to
decipher the WEP password and decode WEP-protected packets.

Do not consider this list as exhaustive. New vulnerabilities may appear at any time, and
you need to update your auditing tools as regularly as your attackers will.

Case Study: Effective Wireless Architecture

Now that we have discussed the means to create a secure wireless architecture, let's put
what you have learned to use by looking at a good wireless network design.

The sample organization is a small university that wants to add wireless for students,
faculty, and visitors, as well as a small wireless network for executive administrators. The
requirements are as follows:

The Visitors network is unsecured and unencrypted.

The Student, Faculty, and Admin networks are all to be encrypted with WPAv2
Enterprise, with the Admin network using its own RADIUS server.

The Student and Faculty networks will access very different production network
resources.

Wireless service must be available for the Visitor, Student, and Faculty networks
anywhere on the campus.

The Admin network needs to be highly secure and efforts should be made to prevent
its existence from being known.

Based on these basic requirements and the secure design elements we have discussed in
this chapter, our proposed design is illustrated in Figure 14.5.

Figure 14.5. The proposed wireless architecture uses many of the
defenses we discussed in this chapter.

[View full size image]

The key to this design is the functionality of the Cisco Aironet 1200 series access point
that is used for the public wireless networksthat is, the Faculty, Student, and Visitor
networks. The Aironet 1200 supports multiple VLANs and a unique security policy on each
VLAN. Each of the wireless networks is deployed as its own Extended Service Set (ESS), or
basically as its own separate wireless network, with each being configured as an
independent VLAN on the Aironet. Two APs are deployed to extend the range to cover the
required service area of the campus. However, with this added coverage comes added
exposure, which is why security is paramount. Both Aironets are trunked to the central

650x Series switch, which has a Firewall Services Module (FWSM) installed in it. The
FWSM allows the trunked VLANs to be firewalled from each other as well as the rest of the
wired network.

From a security perspective, each of the three networks is configured differently. The
Visitor VLAN security policy is configured to support no encryption, as specified in the
network requirements. MAC address authentication is disabled because anyone should be
able to access the Visitor ESS. No authentication is required, but connections are logged
and the FWSM is configured to only allow the Visitor network access to the Internet and
certain public resources at the university.

The Student VLAN security policy is configured to support WPAv2 Enterprise and uses a
RADIUS server that is protected by the FWSM. This strong security algorithm is critical in
the campus environment to protect outside access to critical university resources. Because
the university grounds are basically an unsecured public space, an interloper with a laptop
could wander right into range without drawing any suspicion. Therefore, a secure
protection algorithm combined with strong authentication can greatly increase the security
of the university network. Also, specific firewall rules are added for the Student VLAN to
only allow access to student resources. SSID broadcasts are enabled because we will not
be able to configure all of the students' laptops and MAC address authentication is
disabled. RADIUS authentication will be used for student access, which will steer the
students to the correct VLAN using a special feature of the Aironet AP that forces
authenticated clients to the appropriate ESS.

The Faculty ESS VLAN security policy is also configured to support WPAv2 Enterprise and
uses the same protected RADIUS server. This strong protection protocol and
authentication method is vital not to only protect the faculty resources from outside
attackers, but also to protect them from curious students who may want to take a closer
look at their grades. Again, the FWSM is used to allow only access to faculty resources and
defend the wired network from the wireless network. Broadcasts are not required in this
case, but due to the fact that we have RADIUS configured to assign clients to the correct
VLAN, we can save ourselves a lot of administrative work by keeping broadcasts enabled.
MAC address authentication will be enabled for the Faculty VLAN to add an additional level
of security.

Faculty laptops are deployed using host-hardening best practices and installed with host-
based defense components. Not only will this help protect the Faculty network from direct
wireless attacks, it will help the university be aware of events occurring on the wireless
network.

Finally, the Admin network is configured quite differently from the public wireless
network. Though in a highly secure environment wired connectivity would be strongly
suggested over wireless, sometimes business requirements force the use of inherently
less-secure solutions. In this case, the administrators are the ones making the decisions
and they want the flexibility of wireless networking in the administration area. With this in
mind, the highest level of wireless networking security must be applied to the
administrators' network. The center of the design is a single AP deployed in a carefully
chosen point in the administration office area, thus minimizing access from the outside
(as demonstrated in Figure 14.6).

Figure 14.6. Whereas the main publicly accessible multi-VLAN APs are
available all over campus, controls are used to limit the range of the

Admin AP as much as possible.

Signal leakage will be minimized by using signal-limiting window tint on all offices. Also,
because redecorating is not allowed in the admin area, the ceilings below their second-
floor offices will be painted with signal-limiting metallic-based paint. The Admin AP will be
a different manufacturer than the public APs to help enable additional defense in depth.
However, with this decision comes additional administrative costs, because support
personnel need to be trained on more than one product type. Broadcasts will be disabled
and MAC address authentication will be configured. WPAv2 Enterprise is enabled and a
separate RADIUS server is used for authentication.

Host-hardening best practices are used and the same host-defense components are
installed on the administrators' laptops. Also, because security is paramount in their
environment, the administrators' laptops are configured to use transport mode AH IPSec
connectivity to critical resources they need to access, such as student grades, confidential
employee information, and business information that is not publicly available. We have
chosen AH because it has less overhead than ESP, and because we have implemented
WPAv2 using AES encryption, we are not terribly concerned about the confidentiality being
breached in the Admin network. When the traffic is unencrypted after it has left the AP, it
is subject to IDS scans and content inspection because AH is unencrypted. However, AH
adds another level of authentication that needs to be passed to gain access to critical
resources.

An additional firewall is deployed between the Admin wireless network and the production
network to control access to production wired resources.

This design employs many of the security options we have covered in this chapter. A
strong network design is the foundation of this plan. Despite the fact that wireless may
not be ideal for parts of this network, business requirements justify the security tradeoff.
Therefore, maximizing the security posture through the use of all means available is
paramount. Defense-in-depth methodologies are used throughout and a proven encryption
algorithm enhances the network's security. Finally, all devices are properly hardened
using best practices and the design is continually audited as a means of ongoing
verification.

Summary

Many concerns are involved in securing wireless networks. A solid network design with
proper Layer 3+ controls and controlled signal leakage are all part of an important start.
Using proper, proven encryption algorithms and authentication, disabling SSID broadcasts,
locking down MAC addresses, and hardening your access point are all vital in the proper
security of your wireless network. Employing defense in depth with host-based security
mechanisms and IPSec round out the network's security. Auditing the design with popular
AP detection tools, wireless sniffers, and encryption-cracking tools validates your work.

Although no one suggestion in this section is a foolproof defense for wireless security,
using the combination of these security techniques will help keep your network off the
attacker's radar and make compromising it a much more difficult task. Because
undefended wireless networks are in such great number at this time, the more protected
your wireless network is, the less likely an attacker will waste his time pursuing it. The
reality of network security is that in environments that need to be highly secure, wired
networking should be deployed. It is less expensive and easier to lock down than its
wireless counterpart. However, when business needs dictate that wireless networking is to
be used in your environment, deploying solid wireless network security methods, as
covered in this chapter, will prove invaluable to your organization.

References

1 Intelligraphics. "Introduction to IEEE 802.11."
http://www.intelligraphics.com/articles/80211_article.html. December 2001.

2 Jim Zyren and Al Petrick . "IEEE 802.11 Tutorial."
http://www.packetnexus.com/docs/IEEE_80211_Primer.pdf. December 2001.

3 Bob Fleck and Jordan Dimov . "Wireless Access Points and ARP Poisoning."
http://www.cigitallabs.com/resources/papers/download/arppoison.pdf. December 2001.

4 Wireless Ethernet Compatibility Alliance. "802.11b Wired Equivalent Privacy (WEP)
Security." February 19, 2001. http://www.wi-fi.net/pdf/Wi-FiWEPSecurity.pdf. December
2001.

5 Craig Ellison . "Exploiting and Protecting 802.11b Wireless Networks." ExtremeTech.
September 4, 2001.
http://www.extremetech.com/print_article/0,3428,a%253D13880,00.asp. December
2001.

6 Scott Fluhrer, Itsik Mantin, and Adi Shamir . "Weaknesses in the Key Scheduling
Algorithm of RC4." August 2001.

7 Ronald L. Rivest . "RSA Security Response to Weaknesses in Key Scheduling Algorithm
of RC4." http://www.rsasecurity.com/rsalabs/node.asp?id=2009 2001.

8 Joshua Wright . "Weaknesses in LEAP Challenge/Response."
http://home.jwu.edu/jwright/presentations/asleap-defcon.pdf. 2003.

9 Wi-Fi Alliance . "Wi-Fi Protected Access: Strong, standards-based, interoperable security
for today's Wi-Fi networks" http://www.wi-fi.net/OpenSection/pdf/Whitepaper_Wi-
Fi_Security4-29-03.pdf. April 29, 2003.

10 Robert Moskowitz . "Weakness in Passphrase Choice in WPA Interface."
http://wifinetnews.com/archives/002452.html. November 4, 2003.

11 AirSnort home page. http://airsnort.sourceforge.net/. December 2001.

Chapter 15. Software Architecture
Software architecture is a critical concept that is frequently overlooked in discussions
about network security. In the context of perimeter defense, the term software
architecture refers to the manner in which the components of an application should be
deployed to make it as secure as possible while preserving its usability and
maintainability. Many people are unaware that functionality and security issues are often
related to where application components are deployed on a network. If these issues are
not addressed, the application is at increased risk of encountering serious functionality or
security-related problems, which could also impact other infrastructure components
important to the organization. In this chapter, we review various software architecture
issues, focusing on the effects that software architecture and network defense
components, such as firewalls and routers, have on each other.

After examining the fundamentals of software architecture, we review several issues
involving configuring software to be more secure. One of the features of this chapter is an
extensive discussion of what characteristics to look for when purchasing or designing
software. We also talk about the importance of testing software in a secure environment
before deployment and about designing your security perimeter in a way that will make
future application deployments easier. Finally, we look at case studies of two application
deployments to see how they can be made more secure by following the principles of
robust software architecture.

Software Architecture and Network Defense

When we speak of software architecture, we are talking about where each component of
an application should be deployed on a network. Application components include user
interfaces, databases, and middleware, which can be thought of as the back end of the
application, providing functionality behind the user interface and connecting the user
interface and the database. Application users can be considered another "component" of
the application. In this chapter, we focus on applications whose users connect to them
over the Internet hosts. Such applications are often at high risk of being attacked
because, by definition, they must be accessible from the Internet. These applications often
contain sensitive data, such as credit card numbers, that attackers want to access.

The Importance of Software Architecture

To clarify what software architecture does and doesn't involve, let's consider a simple
example. You work for a company that wants to deploy a web-based application so that
customers can buy widgets online. The users of this application access it from various
hosts on the Internet. The application has a web interface for the users, which interacts
with a database server through a middleware component. When you are planning the
deployment of this application, you must consider where to place the web interface,
middleware, and database on your network so that business needs for functionality and
security are met. This is the core of software architecture.

Deciding where to deploy software components is a much more complicated issue than
you might realize. Some applications may not work properly when you pass their traffic
through firewalls; for example, a common problem is that an application is incompatible
with Network Address Translation (NAT). Applications may also fail to provide adequate
encryption for sensitive network traffic. Some applications require extensive network
defense changes to be made in order to run properly and securely, depending on how you
deploy them and how insecure their design is. When applications need to interact with
hosts on the Internet, software architecture and network defense components are often at
odds with each other. Two viewpoints must be considered:

Many applications are not designed to follow best security practices and, in fact, might
not work properly if you try to secure them. For example, an application might require
root privileges to run properly on a host. You will be required to weaken your network
and host defenses in order to use the application; therefore, applications that cannot
be secured adequately should not be used.

The whole purpose of having the network is to meet business needs, and network
defenses should not "get in the way" of providing needed services and functionality to
users. Security measures should be flexible and robust enough to provide adequate
protection without hampering application functionality.

So which point of view is correct? Both are. The purpose of security is to support business
needs by allowing access to applications and data while protecting them against
unauthorized activity. If your network defenses are so rigid that they cannot accommodate
a new, critical application, you should reconsider your perimeter design. It does no good
to have a secure network if it can't meet your organization's needs. On the other hand, if
an application is so insecure that it is prohibitively difficult or expensive to secure
properly, it's likely in the best interest of your organization not to implement it. Your
decisions should be based on a combination of your organization's needs and your security
policy.

The Need to Evaluate Application Security

If you considered security-related issues in the beginning of the software-selection
process, you could mitigate many conflicts between software characteristics and network
defense. However, it's far more typical for security to be largely ignored until well after
the software has been purchased. Often business users in the organization who know
nothing about networks, security, or computing in general are the ones who choose the
software. These users know what business needs must be met, and they choose the
software solution they feel best meets those requirements. Unfortunately, the business
users are unaware that the solution they are choosing might be completely insecure,
violate your security policies, and, in some cases, be impossible to run with your present
network defenses and configuration.

The Value of Assisting with Software Evaluations

I worked at a large company where well-meaning people from various business
units were selecting applications without considering security and then were
upset when the IT department raised objections to deploying these applications.
We found an easy solution for this problem: A few of us who were
knowledgeable in security and application deployment approached the business
units and offered to attend meetings with the business unit employees and
software vendors. We watched the product demonstrations and had the
opportunity to ask various security questions. We then evaluated the products
and documented our security concerns with each product. The business unit
employees used our reports as one factor when deciding which solution was the
best.

Of course, we would be happiest if they chose the product we felt had the best
security. But even if the product with the most serious security shortcomings
was the one chosen, we would have adequate time to plan how to compensate
for these shortcomings and already know what the potential issues would be.
We strongly felt that our participation in product selection was a win-win
situationthe business unit employees and IT staff would have far fewer
headaches and surprises to deal with.

How Software Architecture Affects Network Defense

In the course of planning or deploying a software solution, you often have to make
adjustments or changes to your network defense. Firewall and packet-filtering policies are
often affected by new applications, particularly those that use more than one static port.
Issues with network configurations and architectures also occur frequently, including poor
reliability and performance. Ensuring that connections carrying sensitive data are
encrypted is very important too. Finally, you might have to face an application that uses
an operating system that isn't usually deployed in your environment. The following section
considers all these potential problems.

Firewall and Packet-Filtering Changes

Probably the most common issue involving software architecture and network defense is
that of changing firewall rule sets and router ACLs. Many applications that either are
accessed through the Internet or access the Internet themselves might need to pass
traffic through your firewalls or routers. In many cases, these applications use protocols
or port numbers that you normally do not permit to pass through your firewall. Although
on the surface it sounds like it should be easy to just open the required port on the
firewall, it's a much more complex issue than that.

Many applications require more than one port to be opened; in fact, some applications
require several. This might be because the application uses more than one service; in
such a case, it might be acceptable to open each of those ports on your firewall.
Unfortunately, some applications or protocols require a range of ports to be
openedsometimes dozens or hundreds of port numbers. Examples of this include many
instant messenger programs, games, and multimedia and streaming protocols, such as
RealAudio. As if that isn't bad enough, some applications assign ports dynamically and use
any one of hundreds or thousands of possible port numbers at any time.

If your organization requires the use of these types of applications, you do not have many
options. Certain firewalls, such as Sidewinder, provide proxy services for commonly used
protocols, particularly multimedia-related ones. As we discuss in Chapter 4, "Proxy
Firewalls," these proxies can be extremely helpful in handling application ports securely.
Some applications also enable you to restrict the number of ports they usefor example,
opening only a small range of ports instead of hundreds. If you have no other option but
to open many firewall ports, be sure to strictly limit which internal hosts can be accessed
through those ports and, of course, harden those hosts as strongly as possible to limit the
risk posed by attacks on them.

Handling Unexpected IP Protocols

It's always possible that an application might use an IP protocol other than TCP,
UDP, or ICMP. I was once testing a VPN client application, but my co-worker
and I could not get it to work. When we realized that the firewall was blocking
the traffic, we were confused because we thought the rule set should be
allowing the traffic. We banged our heads on our desks for a while until we
found a casual reference in the application manual to the fact that the
application used the Generic Route Encapsulation (GRE) protocol, IP protocol
47. Then we did some research on our firewall and found out that although it
blocked GRE packets by default, this was not shown in the firewall rule set.
After we learned about the GRE protocol, decided it was acceptable to use, and
reconfigured the firewall to accept GRE packets, the application was able to
communicate properly.

Web Services and Interapplication Communications

Many applications deployed on our networks are designed to interact with human end-
users. Another type of software architecture, aptly named Service-Oriented Architecture
(SOA), is increasing in popularity and aims at supporting network-based communications
between applications. Techniques allowing applications to interact over the Web using
standards-based protocols are often called Web Services . For example, Amazon.com
allows software developers to use its Web Services interface to programmatically access
Amazon.com's systems.

Various protocols exist to facilitate interapplication interactions over the network. For
example, Simple Object Access Protocol (SOAP) is an XML-based protocol used in many
Web Services implementations. SOAP allows diverse application components to exchange
data among each other, even if they were written in different languages and run on
different operating systems. A list of interapplication communication protocols also
includes the Distributed Component Object Model (DCOM) and the Common Object
Request Broker Architecture (CORBA). Unfortunately, the use of these protocols may
conflict with network security practices and network configurations.

Although DCOM is a somewhat dated technology at this point, it is still in use on many
networks. Created by Microsoft, DCOM dynamically assigns a TCP or (optionally) a UDP
port at runtime to each DCOM process. In order for clients to connect to the correct
process, they must first connect to the DCOM Service Control Manager (SCM) at port 135
to get the dynamic ports for the process. If this sounds like RPC, that's because DCOM is
based on RPC. By default, DCOM uses any available ports for communications, although
this can be restricted. Additionally, DCOM does not work in environments using Network
Address Translation (NAT) or proxying.

Microsoft is encouraging software developers to move away from DCOM-based
architectures toward the Web Services model implemented as part of its .NET platform.
.NET uses SOAP, in conjunction with other complementary protocols, to allow distributed
applications to communicate with each other over the Web. SOAP is designed make it easy
to carry messages over the HTTP protocol, which makes it easy to support SOAP-based
interactions that cross a firewall. As a result, you may not have to change your firewall
configuration to support a SOAP-based application. On the other hand, because many
firewalls allow HTTP traffic to pass with relative ease, you may find it difficult to control
what SOAP-based messages are being tunneled in and out of your network.

Note

Although HTTP is the most frequently used protocol for transporting SOAP
messages, SOAP could be also transported via other protocols, such as SMTP and
FTP.1

Web Services communications can be encrypted using a protocol such as IPSec or SSL to
protect them in transit against unauthorized modification and eavesdropping. For example,
an SSL-protected SOAP message can be conveniently tunneled over HTTPS without
requiring the developers to implement many application-level security functions.
Additionally, a variety of application-level protocols exist for protecting and authenticating
Web Services messages if it is not practical to carry them over an HTTP tunnel; examples
of such technologies are WS-Security, Security Assertion Markup Language (SAML), and
XML DSig.

In addition to DCOM and SOAP, CORBA offers another way of building distributed
applications. Internet Inter-ORB Protocol (IIOP) is part of the CORBA standard that was
created to ease the implementation of CORBA-based solutions over the Web.2 IIOP does
not have a fixed port number, and various implementations of IIOP use different port
numbers. It is difficult to characterize the issues in deploying an IIOP-based application.
However, IIOP is known to have problems with NAT. Also, many IIOP-based applications
often require connections to be implemented from client to server and from server to
client. This is unusual compared to most application protocols, which make unidirectional
connections.

Note

You might be wondering why one web application would use HTTP and another
would use a protocol such as IIOP. HTTP, in its purest form, is designed to
transfer text only; IIOP is more effective at transferring many types of data other
than text, such as arrays.

Fortunately, some firewalls have proxying capabilities for protocols such as IIOP, as well
as NAT implementations that can handle them properly. Such firewalls are able to process
the application traffic securely by accommodating dynamic port assignments and
compensating for NAT-related issues. Newer protocols such as SOAP provide similar
functionality to DCOM and IIOP while working within HTTP. By using HTTP as a transport
mechanism, application components can communicate with each other using TCP port 80.

If you only consider firewall port numbers, then tunneling applications over HTTP might
sound like a great idea because you are probably already permitting port 80 traffic through
your firewall. However, doing this has definite disadvantages. Port 80 is intended to carry
HTTP traffic for web page access; this application protocol is embedding itself inside HTTP
so it can be carried by it. Now you have multiple types of traffic being sent using the same
port number. As this trend continues and more applications use HTTP as a transport
mechanism, port 80 traffic might become a jumble of applications and protocols that's
extremely difficult to monitor and control properly.

Conflicts with Network Configuration

Another problem that occurs with some applications is that they may not work properly
with your existing network configuration. A typical example of this is that some
applications are incompatible with NAT. We've already mentioned that DCOM and IIOP
have problems with NAT; many VPN solutions also encounter similar issues.

So why do many applications have problems with NAT? Applications and application
protocols frequently embed the client's actual IP address and port within their data.

Remember that with NAT, the IP address and port that the client is actually using are
different from the IP address and port that the server sees. In addition, the client's IP
address is often a "private" reserved address, such as 10.1.2.3. Some applications insist
on sending data to the client's real IP address, rather than the NAT address assigned by
the firewall. When the Internet-based application server tries to communicate with your
host at 10.1.2.3, instead of the NAT address, it will be unable to do so.

Application Incompatibilities with NAT

One of my former colleagues was involved in the deployment of a business-to-
business e-commerce application. The application worked great until it was
tested in the production environment, where it wouldn't work properly at all.
After several conversations with technical support, she finally reached a support
engineer who was able to diagnose the problem: The application was
incompatible with NAT. (The application vendor had previously assured her that
the software worked just fine with NAT.) The deployment was delayed for weeks
while additional network hardware was deployed and new subnets that did not
use NAT were created. After much additional work, the application was
transferred to the new network addresses, and it was able to work properly.

You may run into compatibility problems between applications and other network
components, such as firewalls. These are issues to be particularly cautious about; if the
application conflicts with key aspects of your security perimeter, you might need to
drastically modify parts of your infrastructure in order to accommodate the application. A
great example is a firewall that is not able to handle a particular IP protocol that your
application uses. Can you imagine what would happen if a critical application that was
about to be deployed in your environment failed to work because your firewall couldn't
support the protocol? The earlier in the application deployment process you find out about
such compatibility issues, the easier it will be to address them.

Tip

Make sure to document the components of your network infrastructure and
review them with the vendor for potential trouble areas before deploying the
software.

Encrypting Connections

Many applications do not encrypt the data sent between the user and the application
server. The significance of this depends on your organization's security policy. Generally,
if the application is running on an internal network and the data is not sensitive, the lack
of encryption is not usually a problem. However, if the application carries sensitive data
and uses public networks, your policy will probably require the use of encryption. If the
application can't encrypt the data, you need to consider using VPN tunnels, such as those
that support SSL, to encrypt the connections.

Although it's important to protect connections between users and servers, it's also
important to make sure that traffic between servers is protected. For example, you might
have a publicly accessible server that accepts information from users and then transmits
that information to a database server. The application designers might have assumed that
both servers would be on a private network and didn't encrypt the data going between

them. If you are deploying a multitier application, be sure to consider the need to secure
data connections between the tiers.

Performance and Reliability

An important issue related to software architecture is the effect that network security can
have on application performance and reliability. For example, firewalls, especially proxies,
can add considerable delay to connections. Encrypting traffic usually adds substantial
performance overhead as well. In many cases, these delays won't drastically affect the
usability of the application, but they could. As we describe in Chapter 17, "Tuning the
Design for Performance," performance and security are often inversely related.

Reliability is another important aspect of software architecture. In many cases, the more
components that participate in the application's functionality, the less reliable the
application will tend to be. This is because each host or a device represents another
component that may fail. For example, if you are deploying a multitier application and
have put each tier on a separate host, each separated by firewalls, you need to consider
how reliable the overall solution will be. This is not to say you should use as few devices
as possible; rather, you should ensure that proper redundancy and fault-tolerance
measures are implemented as needed to keep the overall reliability at an acceptable level.
For more information on dividing components among hosts, see Chapter 13, "Separating
Resources."

Atypical Operating System

Most environments tend to support a few operating systems, such as certain versions of
Windows, Solaris, and Linux. Some applications might require the use of a particular
operating system that is not normally used in your environment. Of course, the biggest
issue is probably that of support: How will your organization be able to support and
maintain this operating system?

Another important issue is that of host security. If the application requires the use of an
operating system with which your staff is not familiar, the staff isn't likely to have much
knowledge of how to secure and maintain it properly. Substantial financial and personnel
resources will be required in order to gain and maintain such knowledge; in many cases,
these resources are unavailable. Such an operating system is likely to be excluded from
standard security maintenance measures due to lack of expertise, making it much more
vulnerable to attacks. Whenever possible, it's a good idea for support and security reasons
to stick with operating systems with which your technical staff is familiar.

Software Component Placement

At the heart of software architecture are issues involving where to deploy various
components of each application. The architecture will vary greatly depending on whether
the application and its data must reside on a single system or whether they can be run on
multiple systems. We will discuss this in more detail as we look at single-system and
multitier applications, including those used by internal users only. We will also look at
issues surrounding administrator access to application components.

Single-System Applications

An application and its associated data are often designed to reside on a single host, and it
might be impossible or impractical to split them among multiple hosts. In this situation,
your major design decision is where the system should be located. Assuming that the
system has external users, you will want to put it either on a screened subnet or possibly
on your internal network and deploy a proxy server for it on a screened subnet. In both
cases, external users are connecting to the system on your screened subnet and are
unable to establish a connection directly to your internal network. You will just need to
alter your firewall rules to allow external hosts to initiate a connection to only the
screened subnet host using only the necessary port numbers.

Multitier Applications

Multitier applications present much more complex design issues than single-system
applications. A multitier application consists of distributed components that can
sometimes reside on the same system, but usually reside on separate systems. Multitier
applications often have a user interface component (sometimes called the presentation
component), a middleware component, and a database component. Sometimes the
middleware and database components are combined, and sometimes several tiers exist.
The considerations that impact the design of a secure architecture for multitier
applications are often related to defining proper security zones, as we discuss in Chapter
13, "Separating Resources."

Generally, with multitier applications, the most sensitive tier is the one that contains the
data, such as financial or personal information. This is the tier that should be the most
isolated from users. If the application is designed with security in mind, users should
never access the data directly; instead, they should interact with an intermediary
application tier that accesses the data on their behalf. Therefore, avoid placing servers
that contain data on publicly accessible networks. Instead, such servers should be located
on private networks, and access to them should be tightly restricted.

Likewise, the tier that contains the user interface is the one that the users directly
contact. This tier should be on a screened subnet (which is close to the external network),
or perhaps accessible only by a proxying firewall. In any case, it's important to separate
the top tier, with which the users interact, from the lower tiers, which contain the data
and middleware. By keeping the tiers on separate security zones, you greatly reduce the
risk that data will be compromised or that middleware code will be accessible if the top
tier is compromised.

Administrator Access to Systems

Another important thing to keep in mind when designing software architecture is that
others beside users will need to access your application's functionality and data. Database
administrators, software developers, backup operators, and technical support personnel

will all likely need to have some access to components of the application. Therefore, you
will need to consider their needs when designing your application architecture.

User-Unfriendly Security

If you create a security architecture that becomes too unwieldy, IT staff members, just
like regular application users, may try to circumvent security. Human nature is to do
things easily and quickly. If you make tasks too complicated and time-consuming, people
will look for ways to do them differently. Unfortunately, the alternative methods are likely
to be less secure. Educating your staff about why the security measures are necessary
should help. Always consider usability versus the risks in your environment.

Too Much Security Can Be a Bad Thing

Here's a simple example of how too much security can be a bad thing. I've seen
instances in which web developers needed to follow several steps to update a
single page. In some environments, the standard way to update a web page is
to log on to a staging server and transfer the code to that box. Then you can
initiate an additional connection from that box to the production box and
transfer the code again, one file at a time. The purpose of doing this is to have
the intermediate server log all connections and page updates.

The web developers quickly grew tired of having to do all of these logins and
remember the complex passwords, so they instead copied their code onto a
floppy, walked into the server room, and copied the code from the floppy to the
server. By implementing a solution that was great from a network security
standpoint but lousy from a usability standpoint, the solution failed to provide
the level of security that the network administrator had been seeking.

External Administrative Access to Applications

Another problem that is difficult to handle is that of people from other companies who
need administrative access to your application. In many cases, this is a developer or
technical support person from your application vendor. This person can create a whole
new set of security concerns. You will have to find a way to give this person access to
your systems. This person might be using completely different protocols or accessing
different hosts than those used by your application's users.

Although the application might be on a screened subnet that is directly accessible from the
Internet, the development or staging systems that external personnel might need to
access are traditionally located on your internal network. You might want to think of
alternative ways to give access to external personnel, rather than permitting them to
enter your internal network from the Internet. An example is a modem connection that
gives outsiders access to limited resources on a single development server and no
network access at all.

Applications for Internal Users Only

Throughout this chapter, we have focused on applications whose users were connecting to
them over the Internet. However, you should keep a separate category of applications in
mind: those that are used exclusively by internal users. Although most of these
applications do not have any connectivity to external networks such as the Internet, some
of them do. A good example would be an application that downloads weather data from a
site on the Internet, stores it locally, and presents it to users on the internal network.

Another example is the SETI@Home screensaver, which downloads data from the SETI
project's servers at UC Berkeley and uploads results back to that server. Although such
applications can certainly present a security risk, generally that risk is lower than that of
applications that external users access.

Many of the security principles we discuss throughout this chapter still apply to
applications that only internal users use. However, there are usually very few
architectural decisions to make with such applications. They will normally be deployed to
your internal network. The biggest architectural item to consider is whether the
application can "pull" updates by initiating connections to the Internet host, or whether it
is forced to accept "push" updates initiated by the Internet host. In the latter case, you
should seriously consider placing the application on a screened subnet so that the external
host can't establish a direct connection to your internal network. It's almost always safer
to pull updates rather than to push them because you are in control of the operations
when you're pulling. If you need to get updates for internal users, it's best to push or pull
the updates to an intermediate box on your network; users can then interact with the
intermediate box.

Identifying Potential Software Architecture Issues

To avoid a range of potential problems when implementing an application, it's a great idea
to be proactive and evaluate the security of an application before it's purchased or written.
A key aspect of this process is to talk to vendors at length about their products so that you
can do a thorough evaluation of them and make solid recommendations to the potential
application owners as to which product would be the best from a network configuration
and security standpoint. The trick is knowing what information to get from the vendors
and how to get it.

Software Evaluation Checklist

Many people who work in information security are involved in the process of choosing
enterprise software solutions. When you are talking with software vendors or application
developers, you might be unsure what questions you should be asking. Following is a list
of questions that can help you evaluate the security of application architectures. Besides
these general questions, ask specific questions related to your environment and security
policy:

How will this application interact with the rest of your environment? With what other
resources on your network, or other networks, will it work? Do special requirements
exist that have security implications; for example, does the application's host need to
be a member of the same Windows domain as other servers?

Who will be using this application: external or internal users or both? Who will be
administering or updating this application: external or internal users or both?

What network protocols will be used, and what ports will need to be open? In which
direction will the traffic flow, and which components will initiate the connections?

If network traffic should be encrypted, does the application perform that encryption? If
so, what encryption algorithm choices are available? Are these industry standards or
proprietary methods? If encryption is not available, can the traffic easily be "wrapped"
in a VPN-style application or protocol that can provide adequate encryption?

Does this application work with your current network security and network
configuration (that is, proxy servers, firewalls, NAT)?

Does security seem to be a fundamental part of the product or an afterthought? Does
the vendor incorporate good security practices into its product design? When a
security flaw is found, does the vendor act quickly to inform its customers and release
a patch?

Does the vendor have security-related deployment recommendations? Does the
vendor supply default architecture recommendations? Will the vendor support the
application if you deploy it in a different architecture than what is recommended?

Is this application consistent with your network security policies?

Sources of Application Information

It's often helpful to test a working demo copy of the product. Sometimes this is not
possible due to the complexity of the application, but in some cases it's trivial. If possible,
install a demo of the product and look at its behavior. Another option is to talk to other
organizations running the software to find out what problems they have encountered
involving security or application architecture. This can give you a different point of view

and provide valuable information that you cannot find elsewhere.

When you are attempting to evaluate the security of a product that you don't have access
to, you have to rely primarily on the vendor for information. Don't be afraid to ask detailed
technical questions and demand specific answers, preferably in writing. Don't settle for a
general assurance that an application will work in any environment, because this simply
isn't true. Every environment is different, and vendors certainly can't be expected to
create a product that is going to work in each one. In addition, look for other sources of
information on the security of the productreviews, security advisories, and the like.

Just the Facts, Please

I've been in many meetings with vendors where I asked fairly simple technical
questions and received very vague answers. For example, during a product
demonstration, I asked a vendor which firewall ports would need to be opened.
The vendor said that some would need to be and that we could work all that out
during final implementation. Obviously, that is not an acceptable answer. Insist
on getting specific answers to your questions to prevent problems for both sides
in the future.

How to Handle an Unsecurable Application

At times, an application's characteristics are such that you feel it cannot be deployed with
sufficient security in your environment, or it clearly violates your organization's security
policy. You have a few options at this point: replacing the application, modifying it, or
deploying it with less than ideal security. In the latter case, you and the application
owners will need to discuss the severity of the security issues and the risks of deploying
the application.

If the application owners are considering replacing or changing the application, they need
to consider the time and resources necessary to make that happen. Of course, they should
also consider security more strongly during product selection or modification so that other
security or network problems do not occur again.

Software Testing

Time and time again, applications have worked great in a test or staging environment, but
failed miserably when deployed in the production environment. Usually this is because the
testing environment and production environment are often configured differently,
especially with respect to network and host security.

Host Security

The application might have been tested on a server that had not been secured or hardened
at all, and it broke in production when it couldn't perform the same actions on the
hardened system that it could on the unsecured test server. When you are testing an
application, do so on a server that is as close to the production configuration as is
possible. The application and associated services should run with the correct privilege
levels, and file and directory rights should be set properly. Many, many applications aren't
designed or intended to run following your security standards; this sort of testing might be
the only way to identify those problems before putting the application into production.

Too often, applications are tested successfully on a test system with full administrator
privileges, and then the application support person is surprised that the application does
not function properly when it runs with limited privileges. It is amazing how much
software is written to require privileged access, such as root or Administrator, when
running. Although it's normal for applications to require many privileges during
installation, nearly all should run with reduced privileges. If an application such as DNS
runs as root or Administrator in production and it is compromised, an attacker could
potentially gain administrative access to your server through the vulnerability in that
application. Other applications require wide-open file-sharing rights, or files set to Full
Control privileges on Windows boxes, for example.

In some cases, you can coerce an application that expects such privileges into working
properly without them. You might be able to get the application to run with limited
administrator rights. Alternatively, you might be able to set directory rights that are more
restrictive than the application supposedly requires, but less restrictive than what you
would normally use. Just because the manual for an application claims to need certain
privileges doesn't mean it really does. For example, an application might need Full Control
to a directory on a Windows workstation, but only for one function that the users didn't
need. Hopefully, the application can be deployed with limited rights while still giving the
users the functionality they need. Unfortunately, this isn't always possible.

Ultimately, you and the application owners must decide whether the application is so
critical to meeting business needs that it's necessary to deploy it even though it
introduces substantial vulnerabilities. You should implement additional network security
measures to further monitor activity and restrict access to the machine in question. If the
application has multiple tiers and the security weakness exists in a single tier, you might
be able to isolate that particular tier so that only the other tiers of the application can
access that box and no other host can contact it directly. It's vitally important to do
everything you can to protect this box.

Network Configuration and Security

Another problem that happens repeatedly is that applications are tested without
production network security measures in place. During testing, all the components of the
software solution are often on servers on the same subnet; firewalls or packet filters
aren't involved. Then the application is transferred to a production environment, and the
application owner quickly discovers that the network configuration and security measures

prevent the application from working.

In an ideal world, the production environment would be duplicated in the test
environment; however, this is typically not done due to financial limitations. Still, it can
be costly not to discover a major architecture problem until the application is deployed to
production. Delaying the rollout of a system for days or weeks while a firewall is upgraded
or replaced, or the software architecture is otherwise redesigned, could cost a company
substantial revenue. In such situations, it's certainly advisable to test in advance with a
duplicate of your production firewall and other perimeter security components. Perhaps
you can justify the purchase of spare equipment to your organization because that
equipment can be used both for application testing and for a spare should your production
equipment experience a failure.

If your organization simply cannot afford additional network equipment, another option is
to do application testing using the production equipment. A separate screened subnet can
be established for the test servers to shield them from all but your test traffic. This is a
reasonable solution in some cases, particularly with applications that you fully expect to
work, without making changes to your network configuration. However, if you test the
application and discover it's not working in your production network environment, how
easily will you be able to troubleshoot the problem and adjust your network? For example,
changing rules on the production firewall on the fly to fix such a problem can be extremely
dangerous. Such work should be done only in a test environment.

Network Defense Design Recommendations

Establishing a network defense that can handle the needs of applications in a secure
manner is important. It's one thing to design a defense that meets your current needs, but
it's quite another to design one that can handle future needs. Obviously, you can't
anticipate everything, but you can take some proactive steps:

Choose firewalls and border routers that are sophisticated and robust enough to
securely support various types of applications. For example, some devices have built-
in capabilities to support multimedia protocols, dynamic port allocation, multicasting,
and other methods that applications might use. If you choose a firewall that cannot
support multicasting, for example, what will you do when your business requires an
application that uses it?

Business needs often occur unexpectedly, especially from the perspective of IT staff.
It's a good idea to have extra interfaces in your firewalls, not only so you can quickly
recover from an interface failure, but also so you can create additional subnets quickly
if an application requires them. In addition, plan for future growth.

Understand the basics of various areas of securityincluding host, network, application,
and database securitywell enough to evaluate a design, identify the security
weaknesses, and recommend ways to reduce or eliminate them. Staying current with
the latest security technologies and products is also very important.

If you will need to make major changes to your network defense to accommodate an
application, you should answer the following questions and present them to the
application owners for consideration:

What impact will these changes have on the security of this application? On the
security of other applications? On overall network security?

How will these changes affect application performance, reliability, and usability?

What is the cost of making these changes, in terms of time and resources?

Case Study: Customer Feedback System

Now that you have learned about software architecture, let's examine a case study that
shows how software architecture and network security fit together. Company Z wants to
deploy a simple web-based application that allows its external customers to fill out a
series of forms in order to provide feedback on its new line of widgets. None of the data is
particularly confidential or sensitive. The feedback is supposed to be anonymous;
therefore, no username, email address, or other data that might be sensitive from a
privacy standpoint is transmitted or stored.

The perimeter network configuration at Company Z is pretty simple; it is shown in Figure
15.1. The configuration has a border firewall with three interfaces. One interface connects
to the Internet, and a second interface connects to the internal corporate network. The
third interface connects to a screened subnet that external users can access; it provides
external email connectivity, DNS resolution, and web-based applications. The firewall does
not perform NAT, and no proxy servers are in use.

Figure 15.1. This perimeter network is simple; a border firewall
passes packets between the Internet, the hosts on a screened

subnet, and the internal network hosts.

Company Z has selected an application that meets its business requirements. All
components of the software must run on the same host, and the data must be located on

that host as well. You have been asked to recommend where in the network the
application should be deployed, and what adjustments or changes need to be made to
network security in order to implement it securely.

Deployment Locations

In this case, the application could be placed in a few possible locations. Let's consider the
benefits and drawbacks of each of them:

Using the existing screened subnet Because other services accessed by external
users are located on the existing screened subnet, it is a logical place to add another
host that offers services to external hosts. The firewall rule set would need to be
slightly adjusted to permit the appropriate traffic to and from this host. Deploying the
application to this location would require the least work of the three options.

Deploying a new screened subnet If an evaluation of risk indicates that this
application requires a different level of security than hosts on the existing screened
subnet, a new screened subnet can be created for it. This requires using an additional
interface on the firewall and creating new firewall rules.

Using the internal network If the Internet firewall does not have strong proxying
capabilities, you could consider deploying a reverse proxy server to a screened subnet
and only allowing that server to contact the application. This directly limits
connections from external hosts that enter the internal network and might provide
better host protection. However, unlike the first two solutions, using the internal
network might require an additional host to be created and secured if a suitable proxy
server isn't already deployed.

Architecture Recommendation

Because this is a one-system application, your primary areas of concern should be
potential conflicts between the application and the border firewall and router as well as
anything that contradicts your organization's security policy. But in general, any of these
options should provide an adequate solution. Because the organization does not consider
the data sensitive, the consequences of an application compromise are not as high as they
would be for many other applications.

This is not to say that you shouldn't be concerned about security, but that you should keep
in mind that security is only one factor in creating a design. A proxy-based solution might
be somewhat more secure, but the additional costs and resources required for it might be
unreasonable given the nature of this application. Performance and reliability might also
become unacceptable due to certain network security components. Although it's good from
a security standpoint to deploy the host on the new dedicated screened subnet, you will
need to consider business needs and resources when choosing the best solution for your
environment.

Case Study: Web-Based Online Billing Application

Company X has decided to deploy a web-based online billing application so that its
customers can view and pay their bills through the Internet. This application must be able
to use the data in the existing billing database so that the company continues to have one
source of billing information. Because customers will be providing their credit card or
checking account numbers as part of the payment process, the company is particularly
concerned about protecting that information as well as respecting the privacy of its
customers.

The perimeter network configuration at Company X is somewhat complex. As shown in
Figure 15.2, Company X has an Internet firewall with four interfaces. One interface
connects to the Internet, and a second one connects to the internal corporate network and
provides NAT capabilities for all internal addresses. The third interface connects to a
screened subnet that both internal and external users frequently access. That subnet
provides external email connectivity, DNS resolution, and web-based applications; it also
hosts web proxy servers used by internal hosts that want to access Internet websites and
reverse proxy servers used by external hosts that want to access internal web resources.
The fourth and final interface connects to another screened subnet that provides VPN
capabilities for telecommuting employees.

Figure 15.2. This perimeter network has a firewall that connects two
screened subnets with the Internet and internal network; it also

provides NAT capabilities for internal hosts that access the Internet.

[View full size image]

Company X has completed the software selection process based on its business
requirements and has chosen an application to be deployed as quickly as possible. The
application has three components: a web-based user interface, the application server to
run the core components of the application, and a database. Because the company wants

to use its existing online billing database, it wants to modify and expand this database
rather than establish a new one.

You have been asked to research the application and determine how it can be deployed
smoothly into the Company X environment. You should be most interested in identifying
any potential network defense changes and problems that the application might pose to
the current network configuration.

Deployment Locations

You have several options for where to put each component of the application. You want to
use the existing database, which is currently located on the internal network; conceivably,
you could move this host, but the company doesn't want to move it unless it's absolutely
necessary. Because you want to keep the lower tiers (containing data) on protected
networks, you might choose to keep the database on the internal network. Let's think
about where the other systems could be deployed and what the strengths and weaknesses
of each architecture are.

Web Interface on Existing Screened Subnet

Company X already has a screened subnet established for hosting services used by
external hosts. You could locate the web interface on this subnet, perhaps on an existing
server that already delivers web pages. Users would connect to this server. The server
would then make requests on their behalf to the application and database servers, which
would be located on the internal network. Potential problems with this architecture are as
follows:

The firewall might not be able to handle the protocols used between the web server
and the application server.

The data that is passed between the web server and application server might need to
be encrypted because it is passing on a publicly accessible network.

External hosts would directly access the web server.

Web Interface and Application on the Same Screened Subnet

Another option is to deploy the web interface and the application server to the same
screened subnet and leave the database server on the internal network. Although it is
certainly preferable to leave the application server on an internal network if users do not
need to contact it directly, it might be necessary to have the web server and application
server on the same subnet if the firewall cannot securely and efficiently pass traffic
between them.

If sensitive data is passed between the web and application servers and it is prohibitively
difficult to encrypt this data, you can largely circumvent this problem. You can create a
separate screened subnet, deploy only these two servers to it, and use strong network
security measures to tightly restrict access to this subnet.

All Components on the Internal Network

The web interface, application server, and database server could all be located on the
internal network. As mentioned in the previous case study, in this case, you would want a
reverse proxy server on a screened subnet that handles web requests on behalf of the web
interface. If that's not feasible, external users could potentially be allowed to enter the
internal network, but that creates a much higher level of risk.

Architecture Recommendation

Of the options presented here, you should probably recommend placing the web server on
a screened subnet and the application and database servers on the internal network as the
best overall solution. This solution is the least expensive and the least resource-intensive,
while providing a good level of network security.

If it were impossible to separate the web and application servers due to protocol or
firewall issues, then placing them on separate hosts on the existing subnet or a new
subnet would be an acceptable alternative. Avoid deploying all components to the internal
network unless all other alternatives have been eliminated.

Summary

In this chapter, we examined many issues surrounding software architecture design and
deployment. The goal of this chapter was to give you the knowledge to evaluate
applications and determine how they can be deployed in your environment with their
functionality intact and their code and data safeguarded from malicious activity. Although
software architecture and perimeter defenses are sometimes in conflict with each other, in
most cases you can design and deploy software in such a way that it and your perimeter
defenses both maintain a proper level of security. However, in many cases, issues
between software and network and host defenses are not discovered until the application
is already placed into production because software architecture design is not evaluated
properly in advance. By being proactive and reasonably aggressive in terms of software
architecture evaluation, you can help your co-workers design and deploy solutions much
more easily, efficiently, and securely.

References

1 Ethan Cerami . Web Services Essentials. February 2002. O'Reilly.
http://proquest.safaribooksonline.com/0596002246/webservess-CHP-3-SECT-4.

2 Object Management Group. "CORBA/IIOP Specification." September 2001.
http://www.omg.org/technology/documents/formal/corba_iiop.htm. December 2001.

Chapter 16. VPN Integration
In Chapter 7, "Virtual Private Networks," we addressed the basics of VPN technologies.
This chapter discusses VPN integration, which refers to how these VPN technologies can be
incorporated into the security perimeter. VPN integration is a complex subject because so
many types of VPN solutions are available, and each one has many potential
implementation issues. Without a good understanding of VPN integration, you will be ill-
prepared to design or deploy VPN in your environment.

In this chapter, we look at several VPN options:

Standard SSH connections and SSH tunnels

Standard SSL connections, SSL tunnels, and SSL proxy servers

Single-session and multiple-session remote desktop software

IPSec

For each type of VPN, we examine the following:

What services it can provide

Under which circumstances it is most useful

How it should be installed and configured

How it can be integrated with other defense components

We also discuss other advanced VPN integration topics. Finally, we look in depth at a case
study that presents a real-world scenario and demonstrates the advantages and
disadvantages of three potential solutions.

Secure Shell

The first VPN method we examine in this chapter is Secure Shell (SSH). It has become a
popular replacement for Telnet, rlogin, and other inherently insecure remote utilities. SSH
can be used to provide strong encryption for remote shell access, file transfers, and other
application usage. Another nice feature of SSH is that it offers multiple authentication
methods, including username/password and public key based. In this section, we look at
the two main types of SSH usage: standard SSH connections and SSH tunneling.

Standard SSH Connections

The most popular use of SSH is to provide a strongly encrypted connection to a remote
server in order to gain shell or command-line access on that server, to transfer files
between the client and server, or to remotely execute commands. We refer to these types
of usage as standard connections .

SSH Client Integration

Installing SSH client software is simple. Actually, in nearly every UNIX operating system,
installing SSH is not necessary because it's already included in the default OS install. If
it's not, then downloading, building, and installing freely available SSH client code, such
as OpenSSH (http://www.openssh.org/), is easy. However, Windows boxes do not include
SSH client software, so you need to download SSH client software and install it. One of the
most popular free Windows SSH clients is PuTTY, available at
http://www.chiark.greenend.org.uk/~sgtatham/putty/. OpenSSH has also been ported to
Windows (http://sshwindows.sourceforge.net/). There are also Java-based SSH clients,
such as MindTerm (http://www.appgate.com/products/80_MindTerm/index.php), that are
platform independent and can run within a web browser. Installing just about any SSH
client should be easy because it is typically a simple software package that does not make
changes to a machine's network configuration. The process is as simple as installing the
SSH client and running it.

SSH Server Integration

SSH server software installations are also straightforward. Many UNIX systems have an
SSH server daemon (sshd) installed by default. If not, it's usually simple to install sshd by
compiling it from the source code. The only special note is that you may need to set sshd
to start automatically so that it's available after a server reboot. Of course, it's important
to keep all sshd installations and their servers' operating systems current with patches
and upgrades.

Each SSH server implementation has its own default configuration. Many different SSH
server configuration options are available, and it's highly likely that you will want to
change some of the options to fit the needs of your environment. These settings not only
affect the security of your installation, but may also impact the functionality of your SSH
solution. The exact options you set are based on several factors, including the capabilities
of your sshd implementation, the characteristics of your environment, your security
needs, and the capabilities and characteristics of the SSH clients. Examples of options you
should carefully consider include the following:

How many failed logins should be allowed in a single session

Which SSH protocols to allow: SSH1 or SSH2

Which types of authentication to permit

The Dangers of SSH

You should be aware that, like any other program, SSH can be dangerous if it is
not deployed, maintained, and upgraded properly. Multiple serious
vulnerabilities exist in various implementations of SSH servers and clients; for
example, a vulnerability in PuTTY in late 2004 allowed malicious SSH servers to
execute arbitrary code on clients (http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CAN-2004-1008) in a man-in-the-middle attack. Also, weaknesses have
been identified in the SSH1 protocol. If you are going to use SSH in your
environment, be sure to use the latest software versions and to keep it current
with all patches. Also, configure your SSH servers to only permit the use of the
SSH2 protocol, instead of SSH1, unless a specific need exists for backward
compatibility. SSH servers have become popular targets for attackers, so you
must take great care to protect and harden such servers as much as possible.

SSH Perimeter Defense Adjustments

Minimal changes need to be made to most perimeter defenses in order to accommodate
standard SSH connections. SSH servers typically listen on TCP port 22 only; this means
that perimeter defenses only need to be adjusted to permit traffic to the SSH server's TCP
port 22. Where in your environment should SSH servers be deployed? You may have many
servers to which you want to enable external users to SSH, and it's both logical and easy
to set up SSH server daemons on each of those servers. From a perimeter defense
perspective, however, it's unwise to allow external users to directly SSH to each of those
servers. You are opening too many holes in your perimeter and allowing unauthorized
external users to have access to too many internal hosts.

From a security perspective, it would be much better to have an SSH server deployed on a
screened subnet at the edge of your perimeter and to permit external users to initiate an
SSH connection to only that server. After external users have successfully authenticated
to that server, they can then SSH from that box to other SSH-enabled hosts on your
internal network. This does require external users to perform an extra step in order to
access the internal hosts, but it provides much greater control over your perimeter
defenses and provides a much more secure solution.

The Hidden Value of Using SSH for File Transfers

As mentioned earlier, SSH has file-transfer capabilities. One major advantage of
using SSH instead of FTP is that whereas FTP establishes one connection as a
control channel and an additional connection for each data transfer, SSH only
needs a single connection for all control functions and data transfers. SSH not
only provides encryption for file transfers, but it also has much less of an effect
on perimeter defenses than FTP.

When to Use Standard SSH Connections

Standard SSH connections have a well-defined usage: to facilitate remote shell access,
remote command execution, and file transfers. Each connection provides access to a

single host; therefore, if a user needs to access several hosts at a time, he needs to
establish several separate connections. Standard SSH connections are handy for external
users who simply need SSH access to particular internal hosts. However, for more
sophisticated or complex needs, other VPN methods should be considered because a
standard SSH connection has limited capabilities. One alternative that may provide a good
solution is SSH tunnels.

SSH Tunnels

SSH has a powerful capability called port forwarding . In port forwarding, an arbitrary local
port is chosen and linked by an SSH connection to a particular remote host and remote
port. After the connection is established, the SSH client listens for traffic on the specified
local port. Any traffic that is sent to that port is then sent through the tunnel to the
remote SSH server. This technique is known as SSH tunneling .

Tunneling can be used for many services and applications; however, it's important to
realize that because tunnels are remote-port specific, you need a separate tunnel for each
remote host/port combination to which you want to tunnel traffic. For example, if you
want to tunnel HTTP and IMAP traffic to and from host X, you need to establish a tunnel to
host X's port 80 and another tunnel to its port 143. If you need to use six different
protocols, you need to establish at least six tunnelsor possibly more than that if a
particular protocol uses more than one port number. Another limitation of SSH tunnels is
that they can only transfer TCP packets; therefore, packets for other protocols such as
UDP cannot be carried by SSH tunnels.

SSH Tunnel Client Integration

The same SSH client software that is used for standard SSH connections can often be used
for tunneling as well, although not all SSH clients support tunneling. If you want to do
SSH tunneling, verify that your client supports it. The installation and configuration
procedures for preparing for SSH tunneling are nearly identical to those for standard SSH
connections, with one important exception: If you are configuring tunneling, you usually
want to tell the SSH client to accept local connections only. This means that other hosts
cannot connect to your local port that is being used for port forwarding and then pass
traffic through your tunnel. If your SSH client accepts connections, attackers can contact
your local port and gain access to the remote network.

Figure 16.1 shows an example of configuring an SSH client, SecureCRT, to perform local
port forwarding for POP3 traffic. After you have configured your SSH client, you must
reconfigure all the software packages on your local host that need to utilize the tunnel.
For example, you would set your system's POP3 client to contact the local port you have
configured to perform SSH port forwarding to the remote server's TCP port 110, instead of
trying to directly contact the remote server's TCP port 110. When you ask your POP3 client
to retrieve your mail, it contacts your local port, which then forwards the request through
the tunnel to the remote mail server. The mail would then be returned through the tunnel
to the local port and given to the POP3 client.

Figure 16.1. SSH clients can be configured to provide a tunnel for
POP3 traffic.

[View full size image]

SSH Tunnel Server Integration

Setting up an SSH server for tunneling is nearly identical to setting it up for standard
connections. The only difference is that most SSH servers have some sort of configuration
setting that allows tunneling to be enabled or disabled. Of course, you would need to set
this to enable tunneling. The exact details of the setting are server-dependent, so consult
your SSH server's documentation for information on how to configure tunneling.

SSH Tunnel Perimeter Defense Adjustments

Unlike standard SSH connections, which require minimal perimeter defense changes, SSH
tunneling can require many perimeter changes to be made. Remember that each
connection within the tunnel may have a different ultimate destination port; therefore, if
external users are using tunnels for traffic destined to a variety of ports on many internal
hosts, perimeter security can become a nightmare. Depending on the placement of the
SSH server and the internal hosts, such a scenario can open far too many holes, allowing
external users to attack many different internal hosts and their services. However, it's
easy to eliminate this problem.

One nice feature of SSH tunnels is that you can put a tunnel within another tunnel. To
implement this securely, you place an SSH server on a screened subnet on your
perimeter, just as is recommended for standard SSH connections. After a user establishes
a tunnel from her local host to this SSH server, she could then establish additional tunnels
that pass through this tunnel to connect to other hosts on the remote network. In this
scenario, the perimeter configuration needs to be modified to permit tunnels to be
established to this single server and then to pass additional tunnels between that server
and other hosts. Although this still weakens the perimeter somewhat, it is more secure
than permitting dozens or hundreds of different tunneling connections to be made directly
between external hosts and various internal hosts.

Note

When you place an SSH tunnel inside another SSH tunnel, you suffer a
performance impact due to the two layers of SSH processing required and keying.

Depending on the bandwidth available to users, the overhead involved in running
a tunnel inside another tunnel may be significant.

When to Use SSH Tunnels

SSH tunneling can provide an inexpensive solution for remote users who need to run one
or more insecure protocols over public networks in a secure manner. A major advantage of
tunneling over most other VPN methods is that it can generally be deployed extremely
quickly and at minimal cost. However, configuring and using tunneling requires a certain
level of technical knowledge that many end users might not have. Also, because a
separate tunnel needs to be established for each port, it can become cumbersome to
establish several different tunnels, one or more for each protocol. Another factor is that
some SSH clients do not support tunneling; therefore, users might have to find a client
that does. For these reasons, SSH tunneling is recommended for technically proficient
users who want to use a limited number of protocols.

Secure Sockets Layer

The Secure Sockets Layer (SSL) protocol and its successor, the Transport Layer Security
(TLS) protocol, can be used to provide strong encryption for transmitted data. In this
section, we will generically refer to both protocols as SSL. Like SSH, SSL-based solutions
can use standard connections, which provide protection for a single SSL-enabled
application, and tunnels, which allow one or more applications, SSL-enabled or not, to be
passed through public networks securely. (TLS proxy servers are another alternative
discussed later in this chapter.) Although SSH and SSL-based solutions have some
similarities, you shall see that SSL is far different from SSH.

SSL Standard Connections

Without a doubt, the most widely used VPN method is web-based SSL. Countless websites
use SSL to provide secure connections between web browsers and web servers. Most users
are unaware of SSL other than seeing a little lock or other "secure" symbol at the bottom
of their browser window. All major web browsers, such as Microsoft Internet Explorer,
Mozilla Firefox, and Netscape Communicator, are SSL-enabled. SSL has become the
standard method of providing encryption for web communications. Standard HTTP traffic
uses TCP port 80; SSL-encrypted HTTP (better known as HTTPS) uses TCP port 443.

Although SSL is most commonly associated with HTTP, it can be used to provide
encryption for other protocols. In fact, default port numbers have been assigned to various
protocols that can be performed over SSL, such as SMTP over TLS/SSL (SMTPS), NNTP
over TLS/SSL (NNTPS), LDAP over TLS/SSL (LDAPS), IMAP over TLS/SSL (IMAPS), and
POP3 over TLS/SSL (POP3S). (More information on these assignments is available at
http://www.iana.org/assignments/port-numbers.)

Note

Many standard desktop applications also have web-based versions that are easily
integrated with SSL to provide secure connections. A classic example is web-
based email, which allows remote employees from anywhere on the Internet to
get secure email access through an SSL-enabled web browser. However, as we'll
discuss later, deploying such applications securely is more complicated than it
might first appear.

SSL Client Integration

SSL is easy to enable on a client if the software that needs to use it is SSL-enabled. For
example, nearly all web browsers are SSL-enabled by default. Although most browsers
also allow users to configure certain SSL settings, such as using only certain SSL versions,
users who leave the settings at the defaults should be able to use web-based SSL without
problems.

Other applications that support SSL tend to require some basic configuration changes to
enable SSL. For example, an email client, such as Eudora, is probably set by default not to
use SSL because most email users do not need to. However, Eudora can be set to either
require SSL to be used or to use SSL only if it is supported by the email server and to
connect without SSL otherwise. Configuring an SSL-enabled client to use SSL is generally
a fairly simple process. If an off-the-shelf program does not provide SSL support,

however, it is probably prohibitively difficult to try to integrate that application with SSL.
An alternative method, such as SSL tunneling, could be used instead.

SSL Server Integration

Enabling SSL support on an SSL-capable server program, such as a web server, is a fairly
straightforward task. SSL uses a signed digital certificate on the server, so the major task
in establishing SSL on a server is usually getting the proper certificate created and
installed. Many SSL-capable server programs make this process fairly easy. First, the
administrator is prompted to enter passwords or pass phrases, and the program generates
a public key pair and a certificate-signing request (CSR), which contains the public key.
Next, the administrator sends the CSR to a reputable Certificate Authority (CA), who
reviews the CSR and supporting information to confirm that the request is legitimate. The
CA generates a digital certificate by signing the public key and sends the certificate to the
administrator. Finally, the administrator installs the certificate by following the directions
for that particular server program. Now the server software is SSL-enabled.

Note

Administrators are free to use any CA they would like, or even to establish their
own CA. The value of a certificate is largely dependent on how it has been
signed. If SSL is needed for an application that external customers will use, you
will want to use a well-known and dependable CA; if you just need SSL for an
internal-only application, then creating and using your own CA might be a better
option.

When setting up SSL for a server, you should keep in mind several configuration issues.
Although configuration options vary among programs, one issue you should consider is
what level of encryption to require. Recent web browsers support 128-bit strength or
greater encryption for SSL by default, but old browsers may only support 40-bit or 56-bit
encryption. On most SSL-enabled servers, you can require a minimum encryption level. If
your users will be transferring sensitive data, you should be using at least 128-bit
encryption. However, if you configure your server to require that encryption level, users
with old browsers will be unable to use your application. In most cases, this situation does
not occur, but you should always keep in mind what capabilities your users have.

Along the same lines, it is important to remember that in most cases, you will not have
control over your external users or their hosts. Assume that your clients will act as
insecurely as possible, and establish your SSL security accordingly. If you don't establish
a sufficiently strong minimum encryption level, or if you don't require users to run SSL,
you can be sure that some connections will be made with less-than-desirable security.
Carefully consider your organization's security policies when determining what levels of
encryption your systems should support and require.

SSL Perimeter Defense Adjustments

Adding SSL-enabled services to your environment usually requires some perimeter
changes, depending on which services are being used. Because SSL-enabled services use
different ports from their standard equivalents, firewalls and other filtering devices need
to be modified to allow traffic involving those ports to be passed through. You also can
choose to implement web proxy services, either on a firewall or on a separate dedicated
proxy server. It might be possible to put a digital certificate on that device and have it
provide SSL capabilities for web-based applications. Of course, you probably want to place
these proxies on your perimeter, not on your internal network. See Chapter 15, "Software
Architecture," for more information on where to deploy application servers, particularly

web interfaces.

When to Use SSL

The most obvious case of when to use SSL is to provide encryption for HTTP sessions.
However, this concept can be extended to make web-based SSL even more useful. For
example, the Microsoft Outlook email client has a web-based equivalent: Outlook Web
Access (OWA). If SSL support is added to a server that provides OWA, VPN-based email
can be provided for remote users. Web-based SSL might be able to facilitate various
applications being delivered securelyboth web-native applications and those with
alternative web-based interfaces. And you're usually pretty safe in assuming that your end
users have web browsers with 128-bit encryption capabilities already installed. Web-based
SSL is often transparent to users.

A Note of Caution on SSL and Outlook Web Access

Be cautious when implementing web-based SSL solutions. You might want to
just enable SSL on servers and call it a solution, but always consider perimeter
defenses. For example, if you utilize Microsoft Outlook and Exchange, OWA
users might need to be authenticated to the corporate domain. Assuming that
you deploy your OWA server to a screened subnet and put it in its own domain,
you need to implement a trust relationship between that server and internal
domains. Carefully consider the perimeter defense implications of your designs;
don't be tempted just to enable SSL on servers and consider the architecture
complete and sound.

Choosing to implement SSL for non-webbased traffic, such as POP or IMAP, is a more
difficult decision. Although many POP and IMAP clients support SSL, some do not. In
general, client programs that support SSL do not automatically use it; settings and options
need to be adjusted to facilitate this. For example, as shown in Figure 16.2, Microsoft
Outlook has options that can be enabled to use SSL to protect IMAP and SMTP traffic. Still,
these changes are minor and only need to occur during initial client configuration. SSL can
provide an easy way to give clients VPN capabilities for certain applications or protocols
without requiring major client changes to be made.

Figure 16.2. Microsoft Outlook has options for enabling SSL protection
for IMAP and SMTP traffic.

SSL Tunnels

A lesser-known way of utilizing SSL is by generating an SSL tunnel, which is similar to an
SSH tunnel. After an SSL tunnel has been established, many other protocols can be sent
through that tunnel. To use SSL tunneling, an SSL tunnel server must be set up, and SSL
tunneling software must be installed on each client. The best-known software for SSL
tunneling is Stunnel. More information on Stunnel, including directions on its installation
and configuration, is available from http://www.stunnel.org/. SSL tunneling utilizes the
same port-forwarding methodology as SSH tunneling: Stunnel clients designate a local
port to listen for traffic and forward it through the tunnel to a particular port on the remote
server. Applications on the client are reconfigured to point to the local port. The Stunnel
server software runs on the same server as the remote application and listens at a
particular port. When the server receives traffic through the tunnel, it decrypts the traffic
and forwards it to the local port where the remote application is listening.

SSL Tunnel Perimeter Defense Adjustments

Like SSH tunneling, SSL tunneling might require many perimeter defense changes
because connections carried within SSL tunnels can be established to many hosts and
multiple ports on those hosts. This can severely degrade the integrity of your perimeter
defenses. A better alternative is to create an SSL tunneling server and have users
generate a tunnel to it, then generate additional tunnels inside that tunnel. This method
limits the impact of tunneling on the perimeter defenses, although it makes tunneling
more complicated and also has a negative impact on performance because of the overhead
in running all traffic through two levels of tunneling.

When to Use SSL Tunnels

Overall, SSL tunneling provides similar functionality to SSH tunneling. The most
significant difference is that SSL tunneling can be somewhat more expensive and not
deployed as rapidly if you need an external Certificate Authority to sign digital certificates
for the servers. On the other hand, this also provides a hierarchical trust capability that
SSH tunneling does not. Another factor is that certain operating systems might not have

an SSL tunneling client available, although most do.

Generally, SSL tunneling is recommended in the same scenarios as SSH tunneling: for a
group of technically savvy users who need to access a small number of protocols
remotely. Although SSH and SSL tunneling can both be beneficial, they can also be
misused by attackers to conceal malicious activity, particularly outbound communications
from a compromised internal machine. Because many organizations are more likely to
permit outbound SSL activity than SSH, SSL tunneling might be favored by attackers who
want to hide their activity from detection.

Note

Many other tunneling solutions are available besides the ones mentioned in this
chapter. Although some products might work great in your environment, others
might have serious issues, such as poor performance and instability. Thoroughly
test any tunneling software before deploying it to users, and when in doubt, go
with a well-known, proven solution.

SSL Proxy Servers

Using SSL proxy servers, also known as SSL VPNs, has become an increasingly popular
way to provide secure communications for many applications through a single method.
Despite the name, SSL proxy servers actually function as reverse proxy servers. (See
Chapter 4, "Proxy Firewalls," for additional information on reverse proxy servers.) Users
typically use a web browser to establish an SSL-protected HTTP session to the proxy
server and then provide a username and password as authentication. Assuming that the
authentication is valid, the user can then run applications through the proxy server, which
acts as an intermediary. Based on the user's requests, the proxy server establishes
connections between itself and the necessary application servers (usually web servers).
These connections may or may not be protected, depending on the sensitivity of the
communications and the threats the environment faces.

Although SSL proxy servers originally served only HTTP-based applications, some SSL
proxy servers can now provide access to non-HTTP-based applications by tunneling their
communications through SSL. However, this requires special software to be installed and
configured on the client system. One of the primary advantages of an SSL VPN over an
IPSec VPN is that an SSL VPN user can sit down at any computer with a web browser, type
in the VPN's URL, and get connected; an IPSec VPN requires client software to be
configured (and, of course, installed first if necessary). If SSL VPN users have to install
and configure special software before using non-HTTP applications, the portability
advantage of SSL VPNs is reduced or negated altogether.

SSL Proxy Server Perimeter Defense Adjustments

The use of an SSL proxy server requires minimal perimeter defense adjustments. Because
users access all the applications on one server through one protocol, the perimeter only
needs to allow incoming HTTPS connections to the proxy server. The perimeter should also
be configured to restrict outgoing connections from the proxy server to only the
appropriate ports on the necessary application servers. Of course, the proxy server's
security is critical to the security of the whole solution, so the proxy server must be
hardened as much as possible and maintained carefully.

When to Use SSL Proxy Servers

SSL proxy servers provide a relatively fast and inexpensive way to protect

communications for many applications at once, when compared to the effort in adding
protection to each individual application. Having only the proxy server directly accessible
by users reduces the number of targets that attackers can attempt to compromise. SSL
proxy servers are best suited to protecting web-based applications; when applications use
a variety of protocols, SSL proxy servers are not nearly as advantageous.

Remote Desktop Solutions

A class of VPN-like methods utilizes remote desktop software to provide remote users with
some of the same capabilities as local workstation users. Remote desktop software allows
an external user to have access through the Internet to an internal host's graphical
interface, such as a Windows XP Professional workstation. A remote user can access
applications, files, and other host and network resources through the remote desktop
software. Although not a pure VPN solution, the software offers protection for data
traversing networks. Remote desktop software packages fall into two general categories:
single session for one user at a time, and multiple session for concurrent users.

Single Session

Single-session remote desktop software allows one user at a time to have access to the
GUI of a particular host. The best-known single-session software is Remote Desktop,
which is built into Windows XP Professional, and pcAnywhere, a third-party product,
although many different remote desktop products are available. Many people do not think
of software such as pcAnywhere as a VPN option, but it can easily be configured to provide
useful host-to-host VPN capabilities. Most remote desktop software packages can provide
a strongly encrypted "wrapper" through which many applications can be run, files can be
transferred, and other resources can be utilized. Other remote desktop software does not
natively provide encryption but could possibly be run through an SSH or SSL tunnel to
provide VPN capabilities. For example, VNC (http://www.realvnc.com/) does not provide
encryption in its client software, and it recommends that tunneling methods be used to
protect connections.

The Risks of Do-It-Yourself Remote Desktops

For many years, users have covertly installed packages, such as pcAnywhere,
onto their corporate workstations to remotely access them from their home
computers. Originally, this was done primarily through modem connections, but
this has increasingly changed to Internet-based connections. In many cases,
connections made with these applications are not strongly encrypted, or not
encrypted at all. Remote desktop software might not even be configured to
require authentication!

Don't permit remote desktop packages to be implemented for usage between
internal and external hosts if you do not have the utmost confidence in the
security of both the internal and external hosts. Do not permit users to
implement and configure their own solutions because that is just an accident
waiting to happen. Block traffic that is used by such packages at your firewall,
and only permit such traffic to particular internal hosts whose security you can
verify and maintain.

Single-Session Remote Desktop Client Integration

The appropriate remote desktop client software that corresponds to the remote desktop
server software must be installed on the end users' workstations. Most products, such as
pcAnywhere, can only be installed on Windows hosts. The Remote Desktop service built in
to Windows XP Professional can be accessed remotely from various flavors of Windows and

non-Windows systems, as long as they are running the Remote Desktop Connection client1

or using Internet Explorer with the Remote Desktop Web Connection client.2 Remote
desktop products usually install like any other software and do not make changes to the
network configuration of the host.

Single-Session Remote Desktop Server Integration

As mentioned previously, the same brand of remote desktop software must be installed on
the client and the server. In general, you want to configure an internal host to have any
necessary applications or resources, and you want to install the remote desktop server
software onto that host. Of course, you want to harden this host strongly to reduce the
risk of it being compromised, because external users will be connecting directly to it. You
also want to take prudent measures to authenticate users properly, such as by requiring
strong passwords to be provided for authentication and, in the case of pcAnywhere, by
using a shared secretlike mechanism between the client and server software to further
authenticate the external host. pcAnywhere also can be configured to only accept
connections from certain IP addresses or subnets, which is helpful in certain situations.

It is absolutely critical that the server software be configured to require a sufficiently high
level of encryption and to use a cryptographically strong encryption protocol. For example,
the standard and web-based Remote Desktop clients offer 40-, 56-, and 128-bit encryption
using the RC4 algorithm for their communications. Avoid using proprietary encryption
methods because their cryptographic strength has usually not been verified through peer
reviews and research. Proprietary methods often turn out to be flawed, which means that
your traffic could be decrypted much more easily than you expect. For example,
pcAnywhere 11.0 offers three encryption levels: symmetric encryption, public key
encryption, and pcAnywhere Encoding (a proprietary method that provides a weak level of
encryption). Thoroughly research the available encryption options for all remote desktop
products; do not assume that just because the product offers encryption, the encryption is
sufficiently strong for your needs.

Single-Session Remote Desktop Perimeter Defense Adjustments

Each remote desktop software package uses one or more specific TCP or UDP ports for its
communications. Perimeter defenses need to be modified to permit traffic for these ports
to pass. Determining where to deploy the remote desktop host can be difficult, depending
on the purpose of the host. For example, if this solution is needed so that a particular user
can access his corporate workstation from home, it's unlikely you would move that user's
workstation to a screened subnet; you would leave the workstation on the internal
corporate network. However, this means you would have to allow external traffic to
directly contact the internal host. Host security, particularly host-based intrusion detection
and firewalls, is important in such a situation because external parties could target the
host.

One way around this is to use SSH tunneling to connect the external host to an SSH
server on a screened subnet and then tunnel the remote desktop software traffic through
it. Another possibility is to use a product that can be proxied by a firewall, which adds at
least a better degree of perimeter security than just allowing a pure direct connection
between an external host and an internal host. The applications and protocols that can be
proxied vary widely among firewalls, so make sure to verify your firewall's capabilities.

When to Use Single-Session Remote Desktop Software

A VPN-like solution based on remote desktop software provides a capability that no pure
VPN method can offer. When a user needs to run graphical applications that cannot be
installed on the client system or needs to interface graphically with an application that
manipulates huge amounts of data (too much to transfer from the server to the client),
remote desktop software might provide the only feasible protection option.

Obviously, single-session remote desktop software is not very scalable. Multiple session
products, discussed in the next section, provide a more robust implementation. But for an
isolated useone external user who absolutely needs VPN-like capabilities to a particular
host on the networksuch a solution is inexpensive and easy to deploy. Note that single
session connections might be slow due to the amount of graphics being transmitted over
the public network. However, when a graphical application must be run on an internal host
and have its results sent to an external host, nothing can be done to alleviate the
problem.

Multiple Session

Multiple-session remote desktop software is more commonly referred to as a terminal
server . A terminal server, such as Citrix MetaFrame or Windows Terminal Services,
establishes a desktop standard and allows multiple users to receive virtual copies of the
same host desktop at the same time. Because a terminal server grants access to virtual
interfaces, not the server's actual interface, none of its users has access to the others'
sessions or data. Terminal servers provide a much more robust and scalable solution than
single-session software. In addition, most terminal servers offer 128-bit encryption, often
SSL-based, for its users' sessions. This section uses Citrix MetaFrame as an example, but
other products, such as Windows Terminal Services, have similar capabilities and
requirements.

Multiple Remote Desktop Client Integration

To use a terminal server, each host must have the appropriate client software installed.
The Citrix MetaFrame client is called ICA Client; it is available for many operating
systems, including several versions of Windows and UNIX, Macintosh OSs, PDAs, and even
some types of cell phones. There is also a Java ICA Client applet that can be loaded onto a
web server, which users can then access through a web browser. ICA Clients are free of
charge and available from the Citrix website at http://www.citrix.com.

Multiple Remote Desktop Server Integration

A terminal server should have its own dedicated host. The host should be strongly
hardened to reduce the risk of system compromise, of course; this is particularly
important because external users will be connecting to this server, so it will be directly
exposed to attacks from the outside. After the terminal software has been installed, it
should be configured to require all clients to connect using sufficiently strong encryption
and strong passwords. Then all desired user applications should be installed on the
terminal server.

Multiple Remote Desktop Perimeter Defense Adjustments

Some terminal servers require multiple TCP or UDP ports to be used, whereas others only
use a single port. Some firewalls have proxying capabilities for particular terminal
services, but many do not. In most cases, you will probably just have to open holes in
firewalls and packet filters to allow such traffic through. Of course, you should place your
terminal server on a secured subnet, not your internal network, if at all possible.

When to Use Terminal Server Software

Terminal server software can provide a reasonable VPN-like solution for certain situations.
Because the only traffic that is passing between the terminal client and server is graphics,
keystrokes, and mouse movements, a terminal server can handle virtually any application
and any protocol because the applications and protocols are not passing their traffic across
the connection. Unlike the VPN methods we have discussed, which could not handle UDP-

based applications, a terminal server-based solution would not know or care that UDP was
being used on the internal network.

Any time you have graphical applications that must run on a host but be accessed by
remote users, particularly over low-bandwidth connections, terminal servers should be
strongly considered. Many applications might not be portable due to resource issues,
platform requirements, data volumes, software licensing issues, or excessive costs, among
other reasons. The only feasible way to access these applications remotely and securely is
by implementing a remote desktop solution.

However, if you want to use a terminal serverbased VPN across the Internet, you should
consider the risks associated with doing that. The terminal server's native encryption
might not be strong enough, or the encryption implementation might contain serious
security flaws. In addition, terminal servers might have authentication issues. Remember
that a terminal server is designed primarily to provide remote application usage on a local
network, not to secure data that is traversing public networks. Consequently, you might
find that to achieve a sufficiently secure solution for Internet usage, you will need to
tunnel terminal server traffic inside a standard VPN solution, such as IPSec, rather than
rely solely on the terminal server's encryption and authentication mechanisms.

IPSec

In Chapter 7, we discussed many of the characteristics of IPSec. Before we examine how
IPSec can be implemented optimally, let's review the three types of IPSec architectures:

Host-to-host The entire connection between the client and the server is encrypted.
This is comparable to the encryption that standard SSH or SSL connections provide.

Host-to-gateway The entire connection is encrypted except for the portion between
the gateway and the remote server. The gateway is usually located on the perimeter.
Host-to-gateway provides protection similar to SSH or SSL tunneling from a host to a
remote SSH or SSL server or similar to using an SSL proxy server.

Gateway-to-gateway The connection between the two gateways is encrypted, but
the connections from the client to the client-side gateway and from the server to the
server-side gateway are unencrypted. Both gateways are typically located on their
respective network perimeters. A gateway-to-gateway IPSec VPN provides similar
encryption to SSH or SSL tunneling between a client gateway and a remote SSH or
SSL server.

What's the difference between using SSH or SSL and using IPSec? Although SSH, SSL, and
IPSec might provide similar encryption capabilities, they are different from a functional
standpoint. For every additional application you use through SSH or SSL, you have to
establish additional connections and tunnels. IPSec makes one connection from a client to
the remote VPN gateway or host, and it tunnels all application traffic through that one
connection. Certain IPSec architectures can also conceal IP addresses, which is a
significant security consideration in some environments. From a perimeter defense
perspective and from a usability perspective, implementing VPNs using IPSec instead of
SSH or SSL has many advantages. Let's look at how IPSec-based VPNs fit into perimeter
defenses.

IPSec Client Integration

Most operating systems in use today include native IPSec clients, although some still
require a separate IPSec client program to be acquired, installed, and configured. Some
organizations also choose to use IPSec clients other than those built in to their systems;
this is most often done to take advantage of additional features offered by the clients or to
achieve full interoperability with a certain IPSec gateway (that is, using the same vendor
for both the IPSec clients and IPSec gateway). Besides the additional time and resources
needed to deploy third-party IPSec clients, such software also modifies the operating
system's networking functions, which can cause operational problems.

On Windows systems, most nonnative IPSec clients fall into one of two categories:

Clients based on shim technologies actually add a new layer between the existing
network adapter and the TCP/IP protocol that is normally bound directly to the
network adapter. This new layer is responsible for processing all traffic and
implementing IPSec for all appropriate traffic. Because the shim is part of the existing
network configuration, no routing changes are necessary for it to work properly.

Clients that create a new network adapter, in addition to existing network adapters.
Because this IPSec-specific network adapter is separate from the regular network
components, the host requires routing changes so that traffic that needs IPSec
processing goes through the new adapter and non-IPSec traffic goes through the other
adapter.

For UNIX-based IPSec clients, multiple implementation methods are available. IPSec
support can be added directly to the kernel, added as a new device driver that is
recompiled into the kernel, or added as a loadable kernel module. Examples of free UNIX-
based IPSec clients include Openswan (http://www.openswan.org/) and strongSwan
(http://www.strongswan.org/).

As already mentioned, IPSec clients sometimes require routing changes to be made on the
host. This is particularly true when a client needs to contact internal hosts and external
hosts; only the traffic destined for the internal hosts must be handled using IPSec,
although all the traffic could be. This isn't just because of the way the client software
works; often it is due to the organization's security policy. It might be desirable to route
all traffic through the VPN connection and then permit the remote VPN gateway to route
traffic to external or internal hosts as appropriate. Of course, this causes a significant
performance hit as compared to allowing the VPN client to make direct requests to other
external hosts without utilizing the VPN connection to do so.

There is one other important point to know regarding IPSec client software. If you are
making a connection between a single external host and a VPN gateway, you should
configure the client software so that other hosts cannot use the tunnel. If you want to
connect a remote network to your VPN gateway, you have to configure the IPSec software
on the client side as a gateway, of course, to pass through traffic only from the authorized
hosts on that local network.

IPSec Server Integration

IPSec servers can be deployed to different types of devices. Chapter 12, "Fundamentals of
Secure Perimeter Design," contains a good discussion of VPN basics. To quickly review,
the three most commonly used systems are as follows:

VPN concentrators These dedicated boxes are used solely for VPN functions. Besides
handling the establishment, maintenance, and termination of VPN connections, they
might also perform functions such as firewalling, packet filtering, and Network Address
Translation (NAT). The advantage of using a concentrator is that it is a single-function
device, dedicated to VPN.

Firewalls Many firewalls also provide support for IPSec. Using a firewall for VPN
functionality is possible as long as the VPN overhead does not adversely affect the
firewall's other operations. This solution is generally less expensive than a dedicated
VPN concentrator.

Routers Some routers have IPSec capabilities. The advantage of this is that a VPN
can be established between two IPSec-capable routers, which provides an inexpensive
gateway-to-gateway VPN.

Note

Although most devices implement IPSec according to standards, some have
proprietary IPSec implementations that deviate from standards. If a VPN server
runs a proprietary IPSec implementation, its users might be required to use a
particular IPSec client, particularly in order to take advantage of proprietary
features.

IPSec Perimeter Defense Adjustments

IPSec requires some interesting changes to perimeter defenses. Encapsulating Security
Payload (ESP) mode uses IP protocol 50, whereas Authentication Header (AH) mode uses

IP protocol 51. The Internet Key Exchange (IKE) negotiation uses UDP port 500. However,
IPSec implementation can result in other things as well. NAT is often incompatible with
IPSec. Because AH mode makes authentication value calculations based on the entire
packet, which includes the source and destination IP addresses, any NAT must occur
before IPSec is used on the packets. ESP mode does not have the same problem because
it does not include the entire header when it makes its authentication value calculations.
In general, if you want to use NAT, you should use ESP to provide authentication instead
of ESP. However, there are still cases where ESP and NAT do not work well together, such
as when a NAT mapping times out, causing the port used by IKE to change.

This becomes more complicated when Port Address Translation (PAT) is used instead of
NAT. PAT relies on the use of port numbers. Remember, these are TCP and UDP port
numbers, stored within the TCP or UDP payload portion of the packets. If the payload is
encrypted, the port numbers are encrypted too, and the PAT devices are unable to process
the packets because they cannot access the port number. Even if the payload is not
encrypted, the structure of IPSec packets is different from that of non-IPSec packets, and
many PAT devices can't correctly parse the IPSec packet structure.

To resolve conflicts between IPSec and address translation, some IPSec implementations
now support a feature called NAT Traversal (NAT-T). If both endpoints state during the IKE
negotiation that they support NAT-T, they next check to see if a NAT or PAT device
between them is altering either of their IP addresses or source ports. If address
translation is in use, the endpoints move their IKE negotiations from UDP port 500 to
4500 and wrap all their ESP packets within UDP packets. Known as UDP encapsulation ,
this separates the IPSec information from the new outer UDP header, which is
subsequently manipulated by the NAT or PAT device without any impact to the IPSec
headers. Unfortunately, because standards for NAT-T are still not finalized, there may be
interoperability problems between different types of endpoints.

Note

VPN passthrough refers to the concept of successfully allowing VPN traffic to go
through a perimeter defense device, even when that device performs NAT, PAT,
or other actions that could adversely affect VPN traffic. VPN passthrough is often
achieved by allowing VPN traffic to bypass functions such as NAT.

Whether you are implementing IPSec services on a VPN concentrator, a firewall, or a
router, you have several options on where to place the IPSec services. This is discussed in
detail in Chapter 12. Likely places for standalone VPN servers are on your perimeter, such
as your DMZ or a screened subnet, and in parallel with your Internet firewall. Your design
decision also depends on which IPSec architecture you want to implement.

IPSec Architectures

As we discussed earlier in this chapter, three types of IPSec architectures exist. Each is
appropriate to meet certain types of needs.

Host-to-host is most appropriate when external users need to access a single host.
This requires software installation and configuration on the target host as well as each
client that needs to access that host. Of course, installation is not necessary if the
host operating systems have built-in IPSec support.

Host-to-gateway is the best option for remote access, when many external users need
to access a variety of internal hosts and resources. Each user's system must be IPSec-
enabled (if it is not already) and configured appropriately. On the remote network,
only the gateway needs to be configured; no changes are necessary for each host on

the network that the external users will contact.

Gateway-to-gateway is most commonly used to provide VPNs between separate
external networks, such as two business partners, or to provide VPN capabilities
within a single network, also known as an intranet VPN. The biggest advantage of this
architecture is that no changes need to be made to the VPN clients or the hosts they
contact.

Other VPN Considerations

We have already discussed several aspects of VPN integration. Other VPN issues also need
to be considered when designing a VPN architecture. Two items that are particularly
important are the usage of proprietary VPN systems and issues caused by compromised or
malicious VPN clients.

Proprietary VPN Implementations

In the "IPSec Server Integration" section, we mentioned that some IPSec implementations
do not strictly adhere to the IPSec standard and might be considered proprietary. In
addition, some VPN solutions implement proprietary VPN protocols or proprietary versions
of standard VPN protocols. Such solutions require users to install a particular VPN client on
their workstations. You must be particularly careful when evaluating a proprietary VPN
product to ensure that it has client software available for all the operating systems your
users might utilize. Also, keep in mind that as new versions of operating systems are
released, a significant lag might be present before the proprietary client software is
available for that operating system.

Warning

Be cautious about using products with proprietary VPN protocols; such protocols
are likely to have been tested and reviewed less thoroughly than standard VPN
protocols and therefore are more likely to have vulnerabilities and other
weaknesses.

Compromised or Malicious VPN Clients

Because VPN client hosts are usually external and are typically not under the control of
your organization, your environment might be at serious risk if one or more of the client
hosts is compromised or is acting maliciously. When a VPN connection is established
between a client and your network, you can consider that client to be on an extended
portion of your network. If Trojans have compromised the client hosts, remote attackers
might be able to connect to a host and pass through the VPN connection onto your
network. Depending on your VPN architecture and perimeter defenses, attackers might be
able to enter your internal network and do serious damage to your resources.

To make this situation even worse, VPNs complicate the monitoring of network activity.
Because by definition VPNs encrypt traffic, they can interfere with the normal operation of
network intrusion detection systems (IDSs), antivirus software, content monitoring
software, and other network security measures. When you are planning a VPN
implementation, you should pay particular attention to where your network security
systems currently reside. Your VPN should be designed so that decrypted traffic from it
passes through your regular network security systems. Alternatively, you might have to
move or add network security measures so that the traffic is monitored. For example, an
additional network IDS sensor might need to be deployed, or host IDS software might
need to be added. If you do not monitor the traffic that has been sent through the VPN,
you greatly increase the risk of incidents from external clients occurring through your
VPN.

VPN Design Case Study

Now that we have examined many different aspects of VPN integration, let's tie all the
VPN concepts together by reviewing a case study. By analyzing a real-world situation, you
will gain a much better understanding of the importance of VPN integration issues. We
start with a list of requirements and business needs, and then we describe and critique
various potential VPN architectures. This gives you some great examples of how to
evaluate the strengths and weaknesses of a VPN design.

Case Study: Home Users and Multiple Applications

A network engineer at your organization has designed a VPN architecture. The purpose of
the VPN is to provide limited access to a few corporate applications from employees' home
computers. The expectation is that the solution will be used for occasional access
primarily on nights and weekends. The user community for this VPN has been fairly well
defined, as follows:

Approximately 500 remote users exist, who will have an estimated maximum of 50
concurrent connections.

Users will access the VPN from their personal computers only, not from corporate
computers.

The majority of the users will connect to the Internet through broadband access or
other high-speed methods, with the remainder using dial-up.

Management has determined which applications and resources must be accessible through
the VPN, as follows:

The corporate intranet server, which includes many static web pages, as well as
several web-based applications. The web pages and some of the applications do not
utilize sensitive data, but a few of the applications contain information on personnel
and operations that must remain confidential.

Microsoft Exchange email, which is accessed through a Microsoft Outlook interface. All
users have received training on Microsoft Outlook; therefore, management has
mandated that Outlook is the only permitted email client. Because many emails
between internal employees contain sensitive, unencrypted data, it is vital that the
content of these emails does not pass across the Internet in plain-text format. Also, it
is desirable that end users not be able to easily download and store corporate emails
on their home computers, primarily for data retention and liability reasons.

The corporate mainframe, to which users connect using TN3270 emulation. Only a
small percentage of the remote users need mainframe access; however, the data that
they will be accessing is sensitive.

Now that we have reviewed the user community characteristics and the business
requirements, let's look at a few designs that attempt to meet these needs.

Terminal Server

Using a terminal server for VPN-like services has some advantages:

Because users need secure access to a variety of applicationsMicrosoft Outlook, plus
multiple web-based and mainframe-based applicationsa terminal server would provide

a single method of accessing all these resources, without requiring changes to the
resources.

Because all application components are available through the terminal server, users
do not need to install business applications, such as mainframe terminal emulators or
email clients, on their home computers.

A few terminal servers could meet the needs of 50 concurrent users during peak times
and provide redundancy in case a single terminal server became unavailable.

External users would only directly connect to the terminal server. The terminal server
would then initiate its own connections to other hosts as needed.

However, the terminal serverbased design does have some disadvantages:

Because users' home computers are being used, the chosen terminal server would
need to have clients for several different operating system types and versions. In
most cases, the users would have to install terminal server client programs on their
home computers, which could require major technical support resources, not to
mention the possibility of significant software licensing expenditures.

Performance for these users, who are primarily connected to the Internet through dial-
up connections, is likely to be sluggish at best and unacceptably slow at worst.
Because the screen graphics are transmitted from the server to the client, users with
slow network connectivity are likely to become frustrated at times with the
performance.

Network communications may not be protected adequately if the terminal server
permits the usage of weak encryption protocols and too-small encryption key lengths.

Although a terminal server could be used to create a VPN-like solution, some significant
issues are associated with it. Let's look at another likely option: an IPSec-based VPN.

IPSec

An IPSec-based design has several positive features:

One IPSec-enabled firewall, or a dedicated IPSec concentrator, should have no
problem handling 50 concurrent VPN sessions.

External users would be directly connecting to the IPSec-enabled server. Decrypted
traffic would then be passed from that host to other hosts. This allows direct
connections to internal hosts through the VPN only; therefore, non-VPN users cannot
make such connections.

Compared to a terminal server solution, performance for IPSec users should be much
better over slow connections.

However, IPSec also has some definite disadvantages:

As with the terminal server solution, multiple issues are possible with users' home
computers. Although many or most of the client hosts may already have IPSec clients
installed, the clients still need to be configured on all of the hosts. This is not a trivial
undertaking.

Users need to have access to the client interfaces for all applications they use. The
web-based applications should be easy because virtually every computer has a web
browser installed, but the other applications will be considerably more difficult. If
users can utilize OWA instead of the full Microsoft Outlook client, they will not need to
install Microsoft Outlook on their home computers. However, OWA only has some of
Microsoft Outlook's functionality, so more information is required before making a
decision. Finally, the users who need mainframe access will have no choice but to

install and configure terminal emulator software.

Microsoft Outlook Email Security

Over the years, many vulnerabilities in the Microsoft Outlook email client have
been well publicized. Countless viruses have taken advantage of these
vulnerabilities, sometimes with disastrous results. An alternative to using the
full Outlook email program is deploying OWA instead. You can think of OWA as
"Outlook Lite." It provides the core Outlook functionality, yet it is a separate
program that is completely web based. Therefore, the vulnerabilities that
Outlook has generally do not apply to OWA, although it has vulnerabilities of its
own. Viruses for Outlook are usually targeted at the full client and not at OWA.

Another, less obvious advantage exists for using OWA instead of Outlook for
remote users. I used to work at a company that had stringent data-retention
policies. All email was automatically deleted from corporate systems after a
certain number of days. Also, employees were forbidden by corporate policy
from downloading email or any other corporate data to noncorporate
workstations. If users were permitted to connect to corporate Exchange servers
using the full Outlook client, they would have been downloading emails to their
personal computers' hard drives. By using OWA, they were able to retrieve their
emails, but because OWA is web based, there was no easy way to download the
emails onto their workstations. OWA was helpful to us in supporting corporate
data-retention requirements.

From a purely technical perspective, IPSec is an elegant, robust, and efficient VPN method
that definitely meets the needs and requirements as outlined at the beginning of the case
study. However, when you consider the potential user and support-related issues, an
IPSec-based design might be resource intensive to deploy and maintain. If one of your
goals is to minimize user interaction and technical support costs, you might want to
consider an alternative VPN method, such as SSL.

SSL-Enabled Applications

It is obvious that SSL could be used to provide encryption for the web applications and
pages on the corporate intranet server. And as previously mentioned, Microsoft's OWA is
available to provide a web-based interface to Outlook. OWA traffic can easily be encrypted
using SSL because it is based on HTTP. But what about the mainframe access? Well, a
little research on the Internet turned up dozens of Java-based TN3270 emulators, several
of which have SSL support built in. You can set up a dedicated server that acts as an SSL-
enabled TN3270 proxy; users connect to it and are forced to authenticate themselves
before then being connected through the proxy to the mainframe.

As we did with the first two designs, let's look at the advantages and disadvantages of
relying on SSL-enabled applications:

The cost of SSL-enabling a server is low, especially when compared with the cost of
deploying a terminal server or a VPN concentrator.

The performance of the applications should be goodcertainly much better than with a
terminal server.

To provide sufficient encryption, a small number of users may need to upgrade their
web browsers to versions that use 128-bit encryption.

Besides a few browser updates, no other installations or configuration should be

necessary, with the exception of the small group of users who require mainframe
access. Limited resources will be needed to assist them with downloading and
configuring the chosen TN3270 emulator.

Various changes would need to be made to the required resources. The corporate
intranet server would need to be SSL-enabled. More significantly, OWA would need to
be deployed, which can be a major project. The TN3270 proxy would also need to be
set up, requiring a significant effort.

External users would be directly connecting to the intranet and OWA servers. One
potential workaround for this is the implementation of a reverse proxy server, which
would add at least some degree of separation between external users and internal
resources.

The most important unanswered issue at this point is how to authenticate users. If we are
allowing users to connect to the intranet server and other resources using SSL, how are
we authenticating them? One possibility is to issue digital certificates to all home-based
users and then activate checks for SSL client-side certificates, but that might be complex
and difficult to support. However, after a user has been authenticated to a particular
server through a client-side certificate, the user can run multiple applications on that
particular server, if you have configured the server to permit that. This solution provides
SSL-based authentication while being relatively convenient for users.

Case Study Conclusion

Of the three options we have reviewed (terminal server, IPSec, and SSL), which is the
best? Although all three can provide the required functionality and meet the identified
needs, each has serious weaknesses that must be carefully considered. The best method
in this case really depends on what the organization's security policies are, how much risk
the organization is willing to incur, and how much money and time it is willing to spend on
deploying and maintaining a solution. Unfortunately, there is no "magic answer" as to
which method is clearly the right choice.

Summary

In this chapter, we examined the topic of VPN integration, and you learned how VPN
technologies can be integrated with other defense components. The potential VPN methods
we reviewed include standard SSH and SSL connections, SSH and SSL tunneling, SSL
proxy servers, remote desktop software, and IPSec. Each of these types has advantages
and disadvantages, of course, and each is best suited to certain types of usage. To choose
the best solution, you must consider several factors, including the characteristics of end
users and their systems, which applications will be used, and what effect everything will
have on perimeter defenses. By gathering and evaluating all the pertinent information on
the need for a VPN, you can choose an optimal method that secures your organization's
data and resources.

References

1 Microsoft. "Get Started Using Remote Desktop." August 25, 2004.
http://www.microsoft.com/windowsxp/using/mobility/getstarted/remoteintro.mspx.
November 2004.

2 Microsoft. "Windows XP Remote Desktop Web Connection Overview." August 22, 2002.
http://www.microsoft.com/windowsxp/using/mobility/getstarted/webconoverview.mspx.
November 2004.

Chapter 17. Tuning the Design for
Performance
As we discussed in Chapter 12, "Fundamentals of Secure Perimeter Design," performance
is an important element to include in the design of a network. Networks that do not offer
acceptable performance to their users are frequently not used. It is also important to
consider performance when designing the security infrastructure for a network because
many techniques that are used to protect networks have performance impacts. Managing
these impacts in your design is essential if you hope to deliver a secure network that is
acceptable to its users. This can be difficult because performance issues can be hard to
quantify prior to implementation, and adding security might decrease performance. This
chapter discusses performance issues as they apply to security. We provide you with
guidance on how different elements of your security infrastructure can contribute to
performance problems and how you can reduce or eliminate the performance impacts of
your design decisions.

Performance and Security

Performance and security are not necessarily directly competing design goals. Although
many of the steps you must perform to secure a network do have performance costs, it is
your job to identify the design elements that add the required security while allowing the
network to meet its performance goals.

Defining Performance

When your users complain of poor network performance, they could be referring to several
distinct problems. For example, they could be experiencing long download times from their
favorite FTP site, or they might be experiencing slow processing of their commands on a
remote server. Different types of performance issues can cause each of these problems.
Therefore, we begin our discussion of performance with a few definitions.

Network Bandwidth and Latency

Network bandwidth is a measure of how fast information can flow across a network
segment. It is typically measured in bits per second (bps). A network that can transfer
500KB of information in 16 seconds would have a bandwidth of 256Kbps (500 * 1024 * 8 /
16). This is a measure of how much information "fits" in the network in a given second.
Bandwidth is shared among the different devices that are hooked up to a network
segment. Wide area network (WAN) links are normally limited to two devices, which
means that all the bandwidth is available to transfer data between them; however, LANs
can have hundreds of hosts competing for the network's bandwidth. On a LAN, the
available bandwidth between two hosts might be much lower than the total network
bandwidth if many other hosts are trying to transfer data at the same time. Fortunately,
LAN bandwidth is cheap. Common LAN technologies have large bandwidth capacities.
100BASE-T Ethernet networks are extremely common, and they are rated for 100Mbps.
This is in direct contrast to WAN links. A T1 circuit is relatively slow (1.544Mbps)
compared to 100BASE-T Ethernet, and it can cost thousands per month.

Tip

Because bandwidth is shared between the devices that need to communicate
across a network, when you're determining bandwidth requirements, it is
important to factor in the number of simultaneous network conversations that
will be occurring. The easiest way to control this is by limiting the total number
of computers attached to the network.

Network latency is a measure of how long it takes for a packet to travel from one point in
a network to another. It is frequently measured by sending a test packet to a host, which
the host then returns to the sender. The roundtrip time is then calculated to determine the
latency. Several contributing factors can add latency to a packet:

Propagation This is the time it takes for the packet to travel from the start to the end
of a particular transmission medium and is largely a function of distance. For example,
neglecting other factors, a packet traveling from New York to California is going to
have a larger propagation delay than a packet traveling from Manhattan to Queens.

Gateway processing This is the time taken by each device between the transmitter
and the receiver that must process the packet. As a packet travels between network
segments, it might have to pass through routers, switches, firewalls, network address
translations (NATs), VPNs, and other types of network devices. Each of these devices
takes time to process the packet.

Available bandwidth A packet might have to travel across many network segments
to reach its destination. The time it takes for the packet to travel across each segment
is directly affected by each network segment's available bandwidth.

Packet size Larger packets take longer to transmit than smaller packets. This time
becomes more pronounced when available bandwidth is low or when a gateway-
processing device is required to examine the entire packet.

Note

The ping command is frequently used to measure network performance, but it is
important to note that it is a measure of latency and not bandwidth. By default,
ping transmits a small packet and then waits to receive it back from the
destination device. This correctly determines the roundtrip time between the two
devices, but it does not tell you anything about the bandwidth between the two
devices. Correctly measuring bandwidth requires that a much larger amount of
data be transmitted between the two devices to attempt to completely use up all
available bandwidth between them. Ping can be told to transmit larger packets,
but this is still insufficient to reach the transmission rates that are normally
necessary to saturate the network. Other available tools, such as ttcp, are
specifically designed to test network bandwidth. Cisco IOS 11.2 and above
implement a version of ttcp that is available as a privileged command. The tool
ttcp is also available free on many UNIX distributions.

Response Time

Response time is the amount of time it takes a response to be received after a request is
made. Response time is a function of the latency between the requester and the responder
plus the processing time needed by the responder to calculate the response. Interactive
protocols that require frequent bidirectional conversations, such as Telnet, are affected by
response time. Response time is primarily what determines whether users perceive a
service to be fast or slow. Because of this, when a request is received that will take a long
time to calculate, some services immediately return an intermediate response to the user
to indicate that they are working on the problem.

Throughput

Throughput is the measure of how much information can be reliably transmitted between
two devices on a network. Throughput is principally a function of bandwidth, but it also is
affected by protocol overhead. Protocols that are required to transmit large amounts of
data in a timely manner are more affected by throughput restrictions. These include
applications such as file transfer protocols, video-conferencing, and Voice over IP (VoIP).

Understanding the Importance of Performance in Security

It is worth spending some time discussing why we should care about performance when
designing our security infrastructure. Remember, for a network to be secure, it must
maintain confidentiality, integrity, and availability to its users. When performance is too
low, the network fails to maintain availability. This can be true even when the service is

still responding to requests. The performance of network services can directly impact the
acceptability of those services. If we offer services securely, but at a service level below
the users' tolerance, the services will not be used. Can we really consider the services
secure when the users cannot or will not use them?

Of course, different applications have different performance requirements. It is an
important part of the security-design process to identify the acceptable performance levels
for the services on the network. This requires that you establish metrics to use to measure
performance and that you determine acceptable values for each of these metrics. The
following are some commonly used metrics:

Response time

Throughput

Maximum simultaneous users

Minimum availability (for example, 24x7x365)

Maximum downtime

Mean time between failure (MTBF)

Keep in mind that acceptable levels for each of your metrics will vary depending on the
type and context of the request. For example, it is a commonly held rule of e-business
that a visitor typically waits no longer than eight seconds for a web page to download.
However, when placing an order, visitors are frequently willing to wait much longer than
eight seconds to receive an order confirmation.

Network Security Design Elements That Impact
Performance

Almost every decision you make concerning a network's security infrastructure impacts its
performance. From the choice of which firewall to field, to the architecture of the network,
many factors combine (sometimes in complex ways) to affect the network's overall
performance. When designing your network, you need to understand what the individual
performance impact of each design element is so that you can predict what the cumulative
impact will be for the resulting network.

The Performance Impacts of Network Filters

Because perimeter defense relies so heavily on packet filters and firewalls to protect
networks, it makes sense to start our performance discussion with them. Network filters
perform the important job of determining which packets should be allowed to enter our
networks. The process they go through to make this decision takes time, and the amount
of time taken directly impacts the latency of the packet. Assuming similarly performing
hardware, the more complex the decision that needs to be made, the longer it will take to
reach the decision. From a performance point of view, we should prefer algorithms that
can make simple, quick decisions. However, substantial security advantages result from
performing more complex analysis of incoming packets. The following four filtering
techniques demonstrate this security/performance tradeoff:

Packet filters

Stateful firewalls

Proxy firewalls

Content filters

Packet Filters

As we discussed back in Chapter 2, "Packet Filtering," packet filters are one of the most
basic forms of network filters. All decisions are made based on the contents of the packet
header with no reference back to previous packets that have been received. The most
common fields on which to filter are source IP address, source port, destination IP
address, destination port, and status flags. A typical filter rule might be to allow
connections to TCP port 80 on a web server. Assuming the web server is at IP address
192.168.1.5, the Cisco ACL would look like this:

access-list 110 permit tcp any host 192.168.1.5 port 80

To make the filtering decision, the packet filter need only examine the packet's header for
the destination IP address (192.168.1.5) and destination port (80). No other information is
required. This is a simple operation that takes little processing time to complete, resulting
in little added latency to the packet. Be careful when adding access lists to routers that
already have high CPU utilization. The added load, minor as it might be, could cause the
router to start dropping packets.

Tip

Apply access lists on incoming interfaces to minimize the performance impact.
When they are applied on an incoming interface, the router does not need to
make redundant routing decisions on packets that are being rejected.

When security decisions can be made based on small amounts of information,
performance impacts are small. Unfortunately, as we explained in Chapter 2, several
problems exist with packet filters, including problems protecting against spoofed packets
and difficulties allowing return traffic back into the network without opening up
unintended holes in the filter. To address these deficiencies, the filtering device must
perform additional work.

Stateful Firewalls

Stateful firewalls (covered in Chapter 3, "Stateful Firewalls") address some of packet
filtering's shortcomings by introducing a memory to the packet filter in the form of an
ongoing connections table. Performance is impacted due to two additional tasks that the
firewall must perform on this table. First, when a new packet is allowed through the
firewall, the firewall determines whether the packet is the start of a new network
conversation. If it is, an entry is added to the ongoing connections table. Second, when
the firewall receives the return packet, a lookup must be performed to find the
corresponding entry in the ongoing connections table before access can be granted. As you
could imagine, on a busy firewall, this table can grow large. As the table grows, the time
necessary to locate entries also grows, increasing the time necessary to make the access
decision. Stateful firewall vendors employ hash algorithms to attempt to reduce this
overhead, but it cannot be completely eliminated.

Tip

Most stateful firewall vendors allow you to tune the firewall by increasing the
size of the connection table and corresponding hash table. Increasing these
settings can noticeably increase performance and is recommended if your
firewall can support the increased memory requirements.

If performance is still unacceptable, some products allow you to disable the memory
feature on a per-rule basis. Using this feature increases performance, but at the cost of
reduced security.

Proxy Firewalls

Proxy firewalls have the potential to make the best security decisions, but they are the
worst performing of the three types of network filters we have discussed. Why use them?
As we described in Chapter 4, "Proxy Firewalls," proxy firewalls place themselves in the
middle of network conversations. Clients connect first to the proxy firewall, and the proxy
firewall makes the request to the server on the client's behalf. To accomplish this, the
proxy firewall must maintain two network connections for every ongoing network
conversation. Every ongoing connection requires its own data record that records the
source and destination of the connection and the current protocol state. When a packet is
received, the proxy must examine the data portion of the packet and determine whether it
is making a valid request based on that protocol state. This enables the proxy to deny
requests that are invalid or out of sequence for the current protocol. For instance,
according to RFC 921 (the RFC for Internet mail), during an SMTP session, a mail from:

command should precede a rcpt to: command. By understanding the normal states that

a protocol should support, the proxy can reject requests that would break the state model
of the protocolin this case, by rejecting any rcpt to: commands that are issued prior to a
mail from: command being received. Although this approach has a substantial security

benefit, it comes at the expense of high memory and CPU requirements. Careful
consideration should be given to the choice of the firewall's hardware platform, especially
when filtering high-bandwidth traffic.

Content Filters

Content filters protect a network by attempting to detect malicious activity in the content
of a packet. Email filters are the most common type of content filters, but they also exist
for other types of network traffic. As described in Chapter 10, "Host Defense Components,"
most of these tools are signature based. They contain a large database of malicious
activity signatures. When a new message is received, the content filter must search the
message to determine whether it contains malicious signatures. The amount of time this
takes is dependent on the size of the signature database, the size of the message, and the
speed of the computer performing the filtering.

Signature databases are guaranteed to grow over time. Little benefit would result from
removing signatures from these databases. The outcome would be known attacks that the
filter would not be able to detect. As the size of the signature database increases,
performance of the content filter decreases. It is important to remember this when
determining the appropriate hardware on which to host your content filter.

Another important factor to consider is the percentage of malicious traffic to normal
traffic. When a malicious message is detected, most content filters need to perform
additional work, such as sending out an alert or writing a log entry. This extra work is not
an issue when most messages are normal. However, when the number of malicious
messages becomes large, this extra work can undermine the ability of the content filter to
function. It is possible for an attacker to exploit this problem by sending a large volume of
malicious messages to induce a denial of service.

Network Architecture

Because a network that starts out slow will only become slower if we add security devices,
it is useful to discuss ways that network design affects network performance. The
following four network design issues, which can directly impact the overall performance of
a network, are discussed in depth in the subsequent sections:

Broadcast domains

WAN links

TCP/IP tuning

Routing protocols

Broadcast Domains

Broadcast messages are the most expensive type of packet in terms of performance that
can be transmitted on a network. Two reasons explain this. First, when a normal packet is
sent out on a network, most hosts can ignore the packet if it is not being sent to them.
However, every host in the same broadcast domain must process a broadcast packet, even
if the packet is not relevant to it. As discussed in Chapter 13, "Separating Resources,"
each host in the same broadcast group must take a small performance hit for every
broadcast packet received. Second, broadcast messages consume some of the network
bandwidth from every host in the same broadcast domain, even when the network is
implemented using network switches. Normally, network switches are able to intelligently

direct packets to the intended recipient without consuming network bandwidth from other
connected hosts. However, this is not possible with broadcast packets because they are
supposed to be sent to all hosts.

Tip

To minimize the performance impact of broadcast messages, keep the number of
hosts in a broadcast group as small as practical and try to eliminate or replace
protocols that generate many broadcast messages.

WAN Links

WAN links allow geographically distributed networks to be connected. They are normally
implemented using circuits that are provided by common carriers such as telephone
companies, which charge a recurring fee to provide the WAN service. WAN services are
sold in a wide variety of capacities, and the fee for service can grow large for high-
bandwidth connections. Table 17.1 lists some of the most common circuit types.

Table 17.1. Bandwidths for Common Circuit Types

Circuit Type Bandwidth

Dial-up modem 9.656Kbps

Switch 56 56Kbps

ISDN BRI 128Kbps

Cable modem Approximately 1Mbps

Digital Subscriber Line (DSL) 256768Kbps

T1 1.544Mbps

T3 45Mbps

OC3 155Mbps

OC12 622Mbps

OC48 2.45Gbps

When establishing a WAN connection, it is essential that you carefully analyze the
bandwidth requirements for the connection. If you order too small a circuit, the network
performs unacceptably. If you order too large a circuit, you waste your company's money.
Finding an appropriate balance can be tricky, especially when large price increases exist
between levels of service. If circuit prices are reasonable in your area, always opt for
more bandwidth than you think you will need. You will always find a use for it later. If
larger circuits are too expensive, though, you will need to make a careful price-versus-
performance analysis that will require a detailed understanding of your WAN performance
requirements.

After the appropriate circuit has been set up, it is important not to waste bandwidth over
the connection. Following are some tips to help you avoid unnecessary WAN usage:

Do not bridge the networks because this forces all broadcast traffic on both networks
to flow over the WAN link. Route between them instead.

Do not make one network reliant on the other for basic network services. For example,
if you are running a Windows network, place a domain controller on each side of the
circuit.

Use network filters to restrict WAN traffic to essential connections.

Cache frequently referenced materials locally. Just as Internet providers use web
caches to improve performance, any frequently referenced materials should be cached
locally to prevent redundant WAN usage to retrieve the same information.

Try to schedule batch jobs that send large amounts of data over the WAN link for
periods of low activity.

TCP/IP Tuning

Many TCP/IP stacks are not set up to perform optimally by default. To get the most
performance possible, examine some of the specific controls available for your servers to
optimize TCP/IP performance for your environment. Following are some specific issues for
which you should look:

Maximum transmission units (MTUs) If you transmit a packet with too large an
MTU, it might have to be fragmented to reach its destination. This adds substantial
latency to the packet, and in some cases, it might prevent delivery. To address this,
many manufacturers set the MTU to the smaller of 576 and the MTU of the outbound
interface. This is normally small enough to avoid fragmentation, but it can
significantly reduce transfer efficiency. RFC 1191 describes a method to dynamically
discover the MTU. It works by sending out packets with the Do Not Fragment bit set.
When a compliant router receives one of these packets but cannot forward the packet
because the next link has a smaller MTU, it sends back an Internet Control Message
Protocol (ICMP) error message that includes a new recommended MTU size. This
allows the transmitting host to reduce the MTU to the largest value that will still
permit the packet to reach its destination without being fragmented. Most
manufacturers support RFC 1191, but it might not be turned on by default.

Note

Some networks block all ICMP messages at the network's border. This can
break several TCP/IP protocols, including the mechanism on which RFC 1191
relies to function. For an RFC 1191compliant operating system to determine
a correct MTU, it must be able to receive ICMP type 3 (Destination
Unreachable) and code 4 (Fragmentation Needed and Don't Fragment Was
Set) packets. If all ICMP messages are filtered, the sending host assumes
that the current MTU is supported, which might cause unnecessary packet
fragmentation. In some implementations, it might disable communications
entirely if the Do Not Fragment bit is set on all outgoing packets. For this
reason, it is important to carefully consider what types of ICMP messages
should be allowed into and out of your network instead of just creating a
generic "deny all" ICMP rule.

Window size The TCP window value determines how much TCP data a host can
transmit prior to receiving an acknowledgement. This is part of TCP's error-correction
mechanism. When the value is small, errors in transmission are quickly detected. This
is good if the circuit is unreliable. For reliable circuits, a larger TCP window size is
more appropriate. TCP is designed to dynamically vary the window size to adjust for
circuit quality. This mechanism works well for reasonably high-performance circuits.
When circuit speeds are extremely high (greater than 800Mbps), the maximum
window size is exceeded and performance suffers. To address this, RFC 1323 was

proposed. RFC 1323 adds extensions to TCP to support extremely high-performance
networks, including an increase in the maximum window size.

Tip

When working with extremely high-performance networks, you should use
operating environments that support the RFC 1323 extension. Examples of
operating systems that support RFC 1323 include AIX 4.1, HP-UX, Linux
(kernels 2.1.90 or later), Microsoft Windows (2000 and above), and Sun
Solaris (versions 2.6 and above).

Socket buffer size The send and receive socket buffers hold data during
transmission until an acknowledgment for the data has reached the transmitting host.
At this point, the acknowledged data can be flushed from the buffer, allowing new data
to be transmitted. When these buffers are too small, performance suffers because the
connection between the two hosts cannot be filled up completely with data. The
amount of data that will fit between two hosts is directly related to the bandwidth and
latency between the hosts. It can be calculated by the following formula:

amount of data = bandwidth * roundtrip time delay

The resulting value is the optimum size for the transmit and receive buffers for
communication between the two hosts. Of course, different values would be obtained
for conversations between different hosts. Currently, TCP does not support calculating
this value dynamically, so a reasonable maximum should be chosen. Some
applications allow the users to specify the buffer sizes, but this is uncommon. For
most applications, the only way to increase the buffer sizes is to increase the system-
level defaults. This should be done with care because it causes all network
applications to use additional system memory that they might not require. Keep in
mind that you will only gain a performance increase if both hosts are using sufficiently
sized buffers.

Routing Protocols: RIP Versus OSPF

Routing is the process of deciding how to deliver a packet from one network to another. To
deliver a packet, each router between the source and destination devices must know the
correct next-hop router to which to send the packet. Routers maintain routing tables to
make these decisions. These tables can be configured in one of two ways: by manually
entering routing information into each router or by using a routing protocol. Routing
protocols are designed to automatically determine the correct routes through a network by
exchanging routing information with neighboring routers.

Two of the most common routing protocols in use on LANs are Routing Information
Protocol (RIP) and Open Shortest Path First (OSPF). RIP is included as a standard routing
protocol on most routers and was the first major routing protocol for TCP/IP. RIP is easily
implemented and normally works just by turning it on. For this reason, many
manufacturers use it as the default routing protocol. This is unfortunate because RIP
suffers from many deficiencies, including substantial performance problems.

RIP has two major performance problems. First, it cannot make routing decisions based on
bandwidth. RIP uses hop-count as its metric to determine the shortest path between two
networks. Paths with lower hop-counts are preferred over paths with higher hop-counts,
even if the bandwidth of the lower hop-count path is much lower. For an extreme
example, see Figure 17.1. Router A has a 100Mbps connection to Router B, which has a
100Mbps connection to Router C. In addition, Router A has a 128Kbps connection to
Router C. If Host 1 attempts to send a packet to Host 2, the preferred path from a
performance standpoint would be A-B-C, but RIP would choose A-C, forcing the packet to

travel across the extremely slow link.

Figure 17.1. RIP networks occasionally make poor routing choices.

RIP's second problem is that it has an inefficient method of sharing routing information
across a network. Every 30 seconds, routers that are running RIP must broadcast their
entire routing table to each neighboring router. On large networks, these tables are big
and can consume a substantial amount of network bandwidth. If the network includes slow
network links, this route information can bring performance across the link to a crawl. In
addition, RIP has other deficiencies that can make it a poor choice as your routing
protocol. The most significant of these is that it takes a relatively long time for RIP routes
to propagate throughout the network. In some cases, this can mean that RIP might not
stabilize when routes are changing rapidly.

OSPF was created to provide a nonproprietary routing protocol that addressed the
deficiencies of earlier routing protocols, such as RIP. OSPF includes the ability to
represent a cost for each interface, which allows it to make decisions based on the
bandwidth differences between paths. OSPF is significantly more efficient when sharing
routing information across the network. It transmits routing changes only when they occur
instead of broadcasting them at fixed intervals. The improvements that OSPF brings do
come at the cost of implementation complexity. OSPF networks are more difficult to
implement than RIP networks.

Case Studies to Illustrate the Performance Impact of Network Security
Design Elements

Following are two case studies to illustrate some of the concepts covered so far. In the
first, we examine performance issues that might occur when connecting a field office to
corporate headquarters. In the second, we examine performance problems that can crop
up when packet latency becomes high.

Case Study 1: Two Networks Connected Using 128K ISDN

The network presented in Figure 17.2 is a classic example of a field office connection to
corporate headquarters. This office is responsible for processing sales orders for its local
region, and its network has been connected to corporate headquarters over an ISDN BRI
WAN circuit. The network's main resource is a file server. It contains product information,
customer lists, and other materials that the field office uses to sell the company's products
to its clients. Most of the sales transactions can be performed locally; however, when a
new sale is processed, real-time inventory quantities must be queried from a server at
corporate headquarters. Every hour, collected sales order information is uploaded to the
corporate database. The field office network is modest and is organized as a single
network subnet, which contains a dozen PCs, three network printers, and the file server.
The network used to be a collection of different operating systems, including Windows 95,
Windows NT, NetWare 4, and Mac OS 7. This changed when all systems, including the file
server, were swapped out for Windows 2003 systems. The corporate headquarters network
is large with dozens of subnets. It is mainly a TCP/IP network, but IPX is also in use due
to some infrequently used Novell file servers. In addition, the marketing department has a
few Mac OS X systems configured to run AppleTalk. This was the simplest method the
marketing staff could find to enable continued access to the printers when it upgraded
from earlier Macintosh systems.

Figure 17.2. Case study 1 discusses the performance issues in low-
bandwidth WAN connections.

[View full size image]

The field office has been complaining for months about sporadic performance problems on
its network. The workers are concerned with slow response time when checking inventory
levels because it makes it difficult for them to respond appropriately to their customers.
This problem is intermittent, but it is frequent enough to affect business. The company has
asked you to determine what is causing the performance problem.

Given this information, what type of questions should you ask? You should focus your
attention on several clues. The field office has a small-bandwidth connection back to
corporate headquarters. It would not take much unnecessary traffic to affect performance.
What could some of the sources of unnecessary traffic be? Look for unnecessary protocols.
In addition to TCP/IP, the corporate network is running IPX and AppleTalk. Because the
field office used to have NetWare and Mac OS systems, it is possible that IPX and
AppleTalk were once in use. It is reasonable to assume that the routers might be
configured to pass this traffic. Now that the field office has standardized on Windows
2003, these extraneous protocols are no longer needed. Reconfiguration of systems
relying on legacy protocols can significantly reduce network traffic and improve
performance.

Another potential source of traffic is the routing protocol. The example did not mention
which was being used, but it is highly possible that the office is using RIP. Because
corporate headquarters has a large number of networks, RIP routing announcement
packets will be large. Should you have the field office switch to something more efficient,
such as OSPF? In this case, that might be overkill. Because the field office router has only
two possible places to send packets, it might be better to use a static route.

Why is the problem sporadic? Could it be the hourly transmission of sales information to

corporate headquarters? If this information does not need to be available immediately,
perhaps it would be better to hold off transmission of the sales information until after
business hours.

The last issue you might look at is the size of the circuit. Perhaps the office has outgrown
its current bandwidth. In this case, the best course of action would be to purchase
additional circuits or to upgrade to a faster type of circuit.

Case Study 2: Satellite-Based Network

The network shown in Figure 17.3 collects weather data at several remote sites across the
continental United States. These data-collection sites have been in place for many years.
Each uses an old Solaris 2.5 workstation connected serially to a weather data collection
unit as well as a router connected to a satellite radio. The workstations send data on
weather conditions whenever a change from the last transmitted value is detected. When
conditions are stable, the rate of transmission is low. However, when conditions are
variable, the data rate can be high. The equivalent of T1-sized circuits has been purchased
to address this problem. However, even with the large satellite circuits, the scientist
working on the project still experiences packet loss during rapidly changing weather
conditions. You have been asked to determine what the problem is. Where do you begin?
One of the major attributes of a satellite-based network circuit is that it has high latency.
It takes a long time for a signal to travel the distance up to geosync orbit (45,000
kilometers) and then return to Earth. Even when bandwidth is high, this added time could
cause performance problems if the network protocol is not set up to handle the added
delay. If TCP is the protocol being used to transmit the data, it is possible that the packet
buffers are too small or the maximum window size has been reached. Either or both of
these issues could cause reduced performance.

Figure 17.3. Case study 2 discusses performance issues with large
latency applications.

To determine this, we must calculate the amount of data needed to fill our satellite pipe.

Based on the given circuit speed bandwidth of 1.544Mbps and the roundtrip time of 1
second for a satellite circuit, our bandwidthxdelay product is 1544Kb, or close to 200KB. It
turns out that Solaris 2.5's default packet buffer size is 256KB. This is large enough to
prevent delays; however, Solaris 2.5 is not RFC 1323 compliant. The maximum window
size for non-RFC-1323 systems is 64KB. This is more than likely the problem because it
would prevent us from making maximum use of the bandwidth of our circuit. To address
the problem, we would need to upgrade our Solaris system to a version that does support
RFC 1323. Solaris systems from 2.6 on are RFC 1323 compliant.

Impact of Encryption

Encryption provides powerful security advantages when used appropriately. It is also one
of the most computationally expensive protection measures available in our security
toolkit. In this section, we will discuss cryptography from a performance standpoint,
including the differences in ability and performance between public key and symmetric
key cryptographic systems.

Note

If you would like to learn more about cryptographic services, see Appendix B,
"Crypto 101." It provides a basic introduction to the subject and its terminology.

We will also discuss performance characteristics of network cryptographic protocols at the
network layer, such as IPSec, and transport layer, such as SSL.

Cryptographic Services

As discussed in Chapter 7, "Virtual Private Networks," cryptography is often used to
provide four important security services: confidentiality, integrity, authentication, and
nonrepudiation.

Each of these services uses particular cryptographic techniques, and each has varying
impacts on the performance of your systems. Confidentiality and integrity services affect
performance for as long as they are in use. Because of this, they are normally provided
using symmetric key cryptography. Efficient symmetric key algorithms exist that allow
high-performance systems to be built using relatively low-end equipment. Public key
cryptography can also be used in theory to provide confidentiality and integrity services,
but this is not common because public key cryptography requires significantly more work
and time to encrypt and decrypt data than symmetric key cryptography.

Public key cryptography makes up for its performance problems by offering the ability to
authenticate users and uniquely identify the creator of a message. Because authentication
and nonrepudiation are typically only performed once per session, the additional work
needed for the public key algorithm does not unduly affect the performance of the entire
session. Protocol developers frequently combine the best aspects of both types of
cryptography when designing their protocols. It is common for public key techniques to be
used to authenticate users and then exchange session details, including a shared secret.
This shared secret is then used to generate a key used to encrypt the rest of the
conversation using symmetric key cryptography. In this way, the strengths of both
techniques are maximized while their weaknesses are minimized.

Understanding Encryption at the Network and Transport Layers

Cryptographic services can be added to almost any layer of the network stack. The
decision of which layer to implement your cryptographic services on is dependent on the
specific security goal you are trying to accomplish. In the following sections, we will
discuss cryptography at the network and the transport layers.

Network Layer Cryptography

Network layer cryptography allows private conversations to occur across untrusted
networks. They can be organized as network-to-network, network-to-host, or host-to-host
links. The major cryptographic service offered is confidentiality. Performance impacts are
driven primarily by the increased CPU utilization of the sending and receiving devices.
This impact grows with traffic volume; high-bandwidth circuits use more CPU cycles than
low-bandwidth circuits.

Assuming sufficient network bandwidth, performance of a VPN is mainly determined by the
choice of algorithm and the hardware platform. A variety of popular algorithms are in
common use, including Digital Encryption Standard (DES), Triple DES (3DES), Advanced
Encryption Standard (AES), and Twofish. However, the choices available to you will be
limited by those supported by your VPN device. In general, algorithms that use larger keys
are more secure, but they also perform significantly worse. Table 17.2 shows some
common algorithms and the key sizes they support.

Table 17.2. Symmetric Key Algorithm Key Sizes

Algorithm Key Size

RC4 40 bits

FWZ-1 4 8 bits

DES 4 0 or 56 bits

3DES 112 bits

Twofish 128 bits

AES Variable in 32-bit increments; typically 128, 192,
or 256 bits

Even though algorithms with key sizes of 56 bits or lower, such as DES, have been
decrypted using brute-force methods, you should not immediately discard their use. If
immediate discovery of the contents of your messages is your primary concern, a 56-bit
key algorithm might be more than enough to provide the necessary security while
allowing you to use much higher performing encryption algorithms.

The speed of the hardware platform is the other major determinant of VPN performance.
Encryption is a CPU-intensive operation. Because of this, platforms with faster processors
perform better. Some hardware vendors also support hardware cryptographic accelerators.
These are coprocessors that are optimized to perform cryptographic operations.

Tip

Be wary of manufacturer performance claims. Performance claims are often
highly optimistic. If possible, test the performance of a device in your
environment prior to committing to it.

When implementing a VPN in your environment, it is tempting to use preexisting
equipment to implement the VPN service. Most firewalls and routers offer this ability
either as a standard feature or as a low-cost option. The major performance impact of
network layer encryption is CPU utilization on the encrypting and decrypting devices. You
should be careful when adding a VPN to an existing router or firewall. If the CPU
utilization is already high, then adding the VPN might cripple the device's ability to

perform its other duties.

Tip

If CPU utilization is too high but a hardware upgrade is not possible, consider
reducing the amount of network traffic being encrypted. Most VPN devices allow
you to set filters that specify a subset of the network traffic to encrypt. Using this
feature can dramatically reduce CPU load.

Transport Layer Security (TLS)

Transport Layer Security (TLS) is an important protocol for providing confidentiality,
integrity, and authentication services, and it is in widespread use across the Internet. It
was originally named Secure Sockets Layer (SSL) and was created by Netscape. SSL
version 3 was the foundation used by the Internet Engineering Task Force to create TLS.

TLS is most commonly used for sensitive web connections, and it can also be used to
protect other application protocols such as SMTP. Because of TLS's popularity, it is
important to discuss some of its performance characteristics. TLS is composed of two
different protocols: the record protocol and the handshake protocol. The record protocol
carries the traffic of the TLS connection and can support several encryption protocols,
including RC4, DES, 3DES, and Fortezza. The actual encryption used is chosen during the
negotiations that occur at the start of a TLS session. These negotiations are handled by
the handshake protocol, which authenticates the server to the client, optionally
authenticates the client to the server and then negotiates session details, including the
exchange of a master secret that will be used to generate the symmetric keys used by the
record protocol.

The SSL performance cost is a combination of the one-time session setup costs performed
by the handshake protocol, followed by the continuous cost of the record protocol as it
encrypts the session traffic using the chosen encryption protocol. Of the two, the record
protocol would seem to be the more dominate because its performance impact lasts for the
entire session, whereas the handshake protocol's impact is limited to once per session.
This turns out not to be true. There are two main reasons for this. First, web sessions tend
to be short, with an average data transfer of approximately 4,000 bytes. This limits the
amount of time over which the handshake costs can be amortized. Second, the SSL
handshake, at least from the point of view of the server, turns out to be an expensive
operation.

During the SSL handshake, both the client and the server are asked to perform public key
cryptographic operations. However, the server performs the majority of the work. During
the handshake, the client receives the server's certificate, which it uses to extract the
server's public key. It uses this key to encrypt a secret, which the server eventually uses
to generate the shared secret on which the record protocol relies. Before the server can
make use of this secret, it must decrypt it. This decryption operation requires roughly two
to three times more work than the encryption operation. During a typical SSL web
transaction, the server might have to perform 100 times more work to negotiate the
session than it would use to encrypt the data to be transferred.

The designers of SSL were aware of this problem. To help alleviate this, they included the
ability to cache session details so that subsequent SSL sessions could resume the previous
session without performing any of the public key operations. During the initial
communication between client and server, the client can present a session ID that it
received during the previous handshake. If the session details are still in the cache, the
session can be resumed. Performance improvements as cache hits increase are
impressive. Netscape reports the ability to handle 2.5 times more operations per second
when session reuse is at 100%.1

Tip

If SSL performance is low, try increasing the size of the session cache and the
length of the session timeout. This increases the chances of cache hits.

If performance is still too low, try limiting the sections of the website that
require SSL protection. Most e-commerce sites do not switch to SSL protection
until a financial transaction is about to occur. This limits the amount of SSL
sessions the site must accommodate.

Using Hardware Accelerators to Improve Performance

Another method you can use to boost performance is to offload the CPU workload to a
coprocessor that is specifically designed to perform cryptographic operations. This
provides two performance benefits. First, it significantly reduces the load on the main
CPU. Because the main CPU does not have to perform the cryptographic operation, its time
can be spent performing its normal activities. Second, because hardware accelerators are
designed specifically to perform the mathematical operations that cryptography requires,
they can perform cryptographic operations more efficiently than general-purpose
computers.

Hardware accelerators are available for a wide variety of platforms, including Cisco PIX
firewalls, HP-UX servers, Sun Solaris servers, Windows servers, and Linux servers, and a
variety of protocols, including SSL and IPSec. When considering the purchase of one of
these devices, keep the following details in mind:

Support for the appropriate protocol (IPSec, SSL).

Support for your hardware platform.

Performance when executing session encryption.

Performance when negotiating a session. This is especially important for SSL
accelerators.

Cost.

Accelerator Cards and Performance Bottlenecks

Be sure you understand what an accelerator accelerates before you purchase
one. In a site where I worked, a CryptoSwift eCommerce Accelerator card was
added to an underperforming secure web server. It made a noticeable
improvement in the use of the secure website. The page had many hits from
many different users, obviously generating a new session negotiation for every
visitor. When the same card was added to another secure website, the
performance didn't improve. In this case, only five to six users were on the
website at a time, causing few key negotiations. The performance issue in this
case turned out to be problems in the back-end database.

Whether you should consider a hardware accelerator depends on your performance goals
and the availability of a product that supports your environment and your budget. The
price of hardware accelerators can be high. If your current hardware can support the

workload, hardware acceleration is wasted money.

Case Studies to Illustrate the Performance Impact of Encryption

These two case studies illustrate some of the cryptographic performance concepts we have
covered so far. The first case study examines link encryption performance between two
networks. The second case study looks at the performance of web servers when encrypting
HTTP sessions.

Case Study 3: Link Encrypting Between Two Routers

A large organization (ALO) has purchased a 768Kbps frame-relay connection between its
main headquarters and one of its business partner's field offices (BFO). A Cisco router, as
shown in Figure 17.4, terminates each side of the connection. The ALO side has a Cisco
3640 router, and the BFO side has a Cisco 2611 router. Because ALO is not in control of
the security policy of the BFO network, it has placed a firewall between its network and its
Cisco 3640 router. Rules have been established on the firewall to prevent unauthorized
network traffic from entering the ALO network. In addition, due to the sensitivity of the
information that needs to be sent between the two networks, an IPSec encrypted tunnel
has been set up between the two edge routers. Cisco's documentation shows that the
2611 router would not be able to provide sufficient performance when using the 3DES
algorithm. DES performance, however, looks acceptable. Because of this, a business
decision has been made to use the less secure but faster 56-bit DES algorithm.
Performance between the two networks is acceptable, but it is slower than expected given
the relatively large bandwidth connection that was purchased. The ALO management has
asked you to look into the problem.

Figure 17.4. Case study 3 examines the link encryption performance
issues.

[View full size image]

In this case, the problem is more than likely the performance hit from the encrypted
tunnel. Running a tool such as ttcp between the two sites can verify the actual available
bandwidth.

Tip

Never run ttcp during normal production hours. To measure the bandwidth, ttcp
has to consume it all. Not only would running ttcp during business hours cause
its results to be wrong, but it would also bring the network to its knees while ttcp
was running.

In this case, ttcp reports performance in the 260Kbps range. This is far below the
bandwidth of the WAN link, so we need to look further into our configuration to determine
the problem. An examination of the CPU utilization of both routers taken during the ttcp
test will reveal the problem. The Cisco 3640 will more than likely be reporting CPU
utilization rates at or below 50%. This will not be the case of the Cisco 2611. This router
has a much slower CPU and will likely be reporting utilization rates above 85%. At this
level, packet-forwarding performance is affected, increasing latency and potentially
causing packets to be dropped. With encryption, the weakest link sets the overall
performancein this case, the Cisco 2611.

Now that we have identified the likely cause of the problem, what can we do about it?
Because performance is acceptable, the easiest answer might simply be to ignore it. This
is somewhat unsatisfactory, though, because ALO is paying for WAN bandwidth of which it
is not able to take advantage. Reducing the bandwidth of the circuitif it substantially
reduced the pricemight be a compensation for this. However, we need to be careful not to
reduce the bandwidth too low or it will become the bottleneck. Another solution might be
to reduce the key size of the encryption protocol. Forty-bit DES might reduce the load
sufficiently to allow full performance to be achieved, although this would come at the
expense of a substantial weakening of the confidentiality of the connection. An alternative
solution might be to look at another tunneling protocol. Cisco routers support a proprietary
tunneling protocol called Cisco Encryption Technology (CET). CET performs better than
IPSec, so when your VPN consists entirely of Cisco products, CET might be a viable option.
Your last option is to upgrade the hardware. If you have the budget, you could solve the
problem by upgrading the Cisco 2611 router or adding a crypto accelerator card to it.

Case Study 4: SSL Web Server

A company maintains a server that has a website it uses to provide private company
information to its large traveling sales force. After a recent embarrassing defacement of
the company's public website, it became much more security conscious and has configured
an SSL version of the website on the server. Client certificates have been installed on all
the sales force laptops, and the website has been configured to require client-side SSL
authentication. Almost as soon as the SSL website went online, the complaints started to
come in. The sales force stated that the website was almost unreachable, and when it did
respond, it took forever for a page to download. You have been asked to help eliminate the
performance problems while still maintaining the security of the site.

By reusing the existing server, it is likely that the company did not consider the additional
load that the SSL protocol would add to the server. CPU performance is more than likely
the cause of the problem, and CPU utilization measurements bear this out. To reduce the
load, you might look at SSL session reuse. If the session timeout values or session cache
sizes are too low, the server performs unnecessary full SSL handshakes. Increasing these
values might reduce the magnitude of the problem. If performance is still too slow, a
hardware upgrade might be appropriate. Assuming that the budget is available, a faster
computer or an SSL accelerator could be used to decrease the performance hit that SSL is
causing. If this is not possible, the only remaining option is to limit the required number
of SSL sessions. If some data on the site were less sensitive than other data, then
removing it from the SSL side of the web server would reduce the work that the server
needs to perform.

Using Load Balancing to Improve Performance

Sometimes the amount of work that must be performed exceeds the capabilities of any
single device available to us. In this case, the only way to increase performance is to
divide the work between multiple devices. By dividing the work in such a way that many
devices can tackle it, we create a much more scalable and potentially reliable solution.
These benefits come at the expense of added complexity and cost. When deciding to use
load balancing, you will have to weigh the need for performance against the added costs
in equipment, staff, and time needed to build and maintain the system.

Load balancers use various methods to direct requests to a pool of mirrored servers. One
of the simplest methods to distribute the workload is DNS round-robin. This system works
by having the DNS server provide the IP address of a different server from the pool every
time a DNS request is made. Although simple, this solution does not work well for high-
performance systems. This is due to many factors, but the largest is the problem of client
networks caching the results of the first DNS query for the server. This causes all clients
on a network to send their requests to a single server in the pool. If the number of users
on the network is large, this can completely undermine DNS round-robin's ability to
balance the traffic.

More sophisticated solutions such as F5's Big IP Controller and Cisco's Local Director rely
on a dispatch controller to distribute the requests to the pool as they arrive. These
products perform two important functions. First, when a dispatcher receives a packet that
is the start of a new network conversation, it must deliver the packet to a server in the
pool that has the capacity to handle the new request. Second, when a packet arrives at
the dispatcher that is part of an ongoing conversation, the dispatcher must have the
intelligence to deliver the packet to the server that has been previously assigned to
handle the request. The sophistication used to make the first decision is the major
difference between the various products on the market.

Load balancing can also be used to increase availability. If one of the devices in the group
breaks down, the other systems can take up the load and continue operation. If you are
going to rely on this to maintain availability, keep in mind the loss of performance your
solution will experience when it loses a system. You will need to make sure a minimum
number of systems is always available, even if one of the systems fails. Also, if you are
truly concerned about redundancy, don't forget to have a redundant load balancer. Without
one, a load balancer failure will bring down the entire system.

Problems with Load Balancing

Load balancing does not improve all situations. Certain types of problems are difficult to
divide among various servers. If a problem cannot be divided or if the work necessary to
divide it would exceed the performance gained from distributing it, then load balancing
will not help. Another problem with load balancing occurs if the handoff of a request from
one server to another requires the second server to perform expensive setup operations.
SSL is a classic example of this. As we discussed earlier, SSL handshakes are so
expensive that the SSL servers cache session details so that new sessions do not have to
go through the entire handshake. When using some load-balancing systems, it's not
guaranteed that a returning client will be redirected back to the server that handled the
previous request. This might actually result in performance lower than before the load-
balancing solution because almost every request will be forced to make a full SSL
handshake. More sophisticated load-balancing devices include the ability to redirect SSL
session requests back to the original server. This is accomplished by tracking the session
ID in the header of the packet and sending successive packets from a client (with the
same session ID) to the same back-end server. In addition, some products support the
ability to off-load all SSL functions, freeing up significant processing overhead on the web

servers.

Layer 4 Dispatchers

Two major types of dispatcher products are on the market: Layer 4 dispatchers, such as
the previously mentioned F5 Big IP Controller, and Layer 7 dispatchers, such as Radware's
Web Server Director. The layer numbers are taken from the Open System Interconnection
(OSI) reference model.

Layer 4 dispatchers make delivery decisions based on information contained within the
Layer 4 (transport) header and Layer 3 (network) header of the TCP/IP packet. This
information includes the source and destination IP addresses, source and destination
protocol addresses (ports), and other session information, such as whether the packet is
the start of a session or a continuation. Because the different pieces of information in the
header of the packets are always in the same locations within the packets, Layer 4
dispatchers do not have to perform much work to locate the information on which they will
make their delivery decision. This enables fast decisions and fast switching.

When a packet arrives at a Layer 4 dispatcher, the dispatcher determines whether the
packet is the start of a new session or the continuation of a previously started session. If
it is a new session, the dispatcher chooses a server to handle the new connection and
forwards the packet to it. The way this decision is made varies depending on the load-
sharing algorithms the dispatcher supports. Common algorithms include round-robin,
weighted round-robin, least connections, least load, and fastest response. If the packet is
a continuation of a session, the dispatcher looks up the connection details and forwards
the packet on to the server handling the session.

Layer 7 Dispatchers

Layer 7 dispatchers look above the transport layer into the application data (OSI Layer 7)
to make their delivery decisions. This allows them to make more intelligent decisions
when delivering packets. One major advantage with Layer 7 dispatching of web servers is
that different web servers in the pool can serve different types of content. Layer 4
dispatchers are unable to make decisions based on content. This means that when a Layer
4 dispatcher is used, all servers in the pool must have identical content. This is not a
major issue if your site is fairly static. However, it is a major issue if your site content is
changed dynamically. Keeping all your servers up to date can be a major undertaking,
requiring significant network, storage, and computational resources. Having a shared file
system eliminates the synchronization problems, but it introduces significant load on the
servers. The servers must fetch a copy of the requested information from the common file
server before the page can be returned to the client.

Content-based (Layer 7) dispatching provides an alternative to full replication or common
file systems by making use of information that is contained within the HTTP request to
route the packet. The dispatcher can look inside the web request to determine what URL
has been requested and then use that information to choose the appropriate server.

The cost of this ability is a significant increase in the complexity and required resources
for each delivery decision. Because the application data is pretty freeform and not
structured into the rigid fields typified by the packet header, a substantially more
expensive search must be conducted within the application data to locate the information
from which the delivery decision will be made. Because of this, high-performance Layer 7
dispatchers tend to be more expensive than similarly performing Layer 4 solutions.

Mitigating the Effects of DoS Attacks

As we stated at the beginning of this chapter, performance is an important requirement for
a secure network. This includes maintaining performance during network attacks. Denial
of service (DoS) attacks have become common on the Internet and can be devastating to
unprepared organizations. To consider your network properly protected, you need to
include DoS protection as part of your perimeter.

An attacker can use many methods to launch a DoS attack against your site. Most are
either based on bandwidth consumption or resource consumption. In a bandwidth
consumption attack, the attacker continuously sends a large volume of spoofed packets
into your network, filling up your WAN connections and potentially overwhelming the
routers and firewalls that the traffic needs to pass through. A resource consumption
attack, on the other hand, attempts to consume vital resources on the servers that make
up your network. Any resource that, if exhausted, will stop the server from functioning can
be targeted. This includes resources such as CPU cycles, hard disk space, and the TCP
half-open connections buffer.

The type of defense needed to protect your network will vary based on the type of attack.
To illustrate this, we are going to cover a couple classic DoS attacks and provide advice on
how you can defend against them. The attacks we will cover are ICMP flooding and SYN
flooding.

ICMP Flooding

ICMP flooding is a type of bandwidth consumption attack where a large amount of ICMP
packets is sent to your network in an attempt to consume all your network bandwidth. The
ease at which this can be done is dependent on how big your network circuits are. There
are two main methods attackers use to create ICMP floods. The first uses distributed
denial of service (DDoS) techniques. With DDoS, the attacker gains the ability to control a
large number of computer systems on the Internet. These are referred to as zombie
systems. All the zombies can be controlled simultaneously by the attacker. To launch the
ICMP flood, the attacker instructs all the zombies to begin sending spoofed ICMP packets
to the target (see Figure 17.5). If the attacker has enough zombies, this can cause a
devastatingly large amount of traffic to reach the target network. DDoS attacks have been
responsible for taking down the largest sites on the Internet, including eBay and Yahoo!
They can be used for many types of DoS attacks, not just ICMP floods.

Figure 17.5. DDoS attacks use a network of zombie servers to send
overwhelming volumes of packets to a target network.

[View full size image]

The second common ICMP flooding technique is called smurfing . This method, named after
the first tool to popularize the technique, relies on spoofing and TCP/IP broadcast
addresses.

If you send a ping packet to the broadcast address of many networks, the packet will be
received by every host on the network. Many operating systems will reply to these
broadcast pings. Put another way, for the cost of one ICMP packet to a broadcast address,
you may receive many reply ICMP packets. To use this in an attack, all the attacker needs
to do is find a network where many hosts respond to a broadcast ping. He then spoofs a
stream of pings destined to the broadcast address of this network using the target's IP
address as the source address (see Figure 17.6). The result will be a much larger stream
of ping packets heading toward the target. It is not that hard to find a network that
contains hundreds of hosts that reply to the broadcast ping. Assume the attacker is using
a 56K dial-up line to send the broadcast pings. The typical maximum upload transfer
speed for 56K modems is around 4Kbps, but for highly compressible data, the speed can
get as high as 10Kbps. Also assume that the attacker has found a broadcast network that
has 200 responding hosts. The attacker can create an ICMP flood at a rate of 2000Kbps
(2Mbps). This is sufficient to take down a site that is being serviced by a single T1 line.

Figure 17.6. Smurfing uses broadcast pings to amplify the attacker's
bandwidth.

So, how do we defend against the flood? A good start is to make sure you are not a
potential source of an ICMP flood. As we discussed in Chapter 6, "The Role of a Router,"
you should make sure you have disabled directed broadcasts. This will prevent your site
from participating in a Smurf attack.

If you are the recipient of the flood, you need to be able to stop it before it reaches the
circuit that will become saturated. For many sites, this will be the WAN circuit to their ISP.
This presents you with a problem. You could perfectly filter out the extraneous ICMP
packets at your perimeter router, but still be down because all your WAN circuit bandwidth
has already been consumed. This means that it will be your ISP, not you, who will need to
take action. This makes having a responsive ISP an important part of your network's
perimeter security.

The type of filter your ISP will need to install depends on the type of flood. Smurf attacks
can often be handled by filtering out all packets coming from the source network being
used by the attacker to launch the attack. This assumes that the source network is not
one that you need to communicate with! DDoS attacks though can be harder to defend
against than Smurf attacks.

In a DDoS attack, all the packet source addresses will likely be random, making it
impossible to use source address as our filter criteria. We may still be able to use a filter,
though, if we don't need the packet type that is being used to attack us or if there is some
other unique aspect to the attack packets that would allow us to differentiate them from
our normal traffic. For example, most networks do not absolutely need to support ping
traffic. If all the DoS packets are pings, we can safely block ping packets to bring the
attack under control. If the DoS packets are a type we must accept (such as HTTP packets
heading toward your public web servers or SMTP packets heading toward your mail
servers), there may be some other unique feature of the packets we can use to
discriminate them from normal traffic (such as excessive size).

If the DoS traffic is a type we must support, and we can not easily discriminate it from
normal traffic, our next best defense is rate limiting. With rate limiting, we instruct the
filtering router to only allow so much bandwidth to a particular category of traffic (for
example, ICMP). Any traffic above this limit is discarded. This prevents the traffic category
from consuming all the available bandwidth. Although you will likely be throwing out some
good traffic with the bad, at least your network will be back up.

SYN Flooding

SYN flooding uses the session handshake required to set up a TCP connection against us.
As we discussed in Chapter 2, three packets are required to set up a TCP connection.
These are the SYN, SYN-ACK, and ACK packets. When a server receives a SYN packet from
a client, it needs to have a way of remembering that it has been asked to establish a
connection to the client while waiting for the client to respond to its SYN-ACK packet. The

server does this by recording the SYN request in its half-open connections buffer.
Normally requests are cleared from the half-open connections buffer when the server
receives the ACK packet from the client, thus finishing the three-way handshake. If no
ACK is received, the server will eventually time out the connection and remove the entry.
As a last option, a TCP reset packet is sent to the server to clear the entry.

The half-open connections buffer has a limited size and, when it fills up, the server is no
longer able to accept new connections. The SYN flood attack abuses this feature by
sending SYN packets to the server with no intention of finishing the handshake. As long as
the attacker can send SYN packets faster than the server times out the half-open
connections, the buffer will quickly fill up and the server will be unable to respond to new
requests.

Two methods are commonly used to protect against SYN flood attacks: TCP half-open
connection monitoring and TCP establishment proxying. With TCP half-open connection
monitoring, your firewall (or router) watches the amount and/or age of half-open
connections received by internal servers. When a preconfigured threshold is exceeded, the
firewall begins sending TCP resets to the server to clear the half-open connections from
the buffer. This frees up new slots in the buffer, allowing the server to continue receiving
requests. Even though some of the half-open connections that will be cleared are going to
be for valid connections, this is better than being completely offline.

A more sophisticated answer, though, is available in TCP establishment proxying. With
this solution, the firewall responds to all SYN packets for internal servers by sending out a
SYN-ACK packet on behalf of the server. If an ACK packet is eventually received from the
client, indicating a normal three-way handshake, the firewall creates a connection to the
server on behalf of the client and then binds the two connections together. If no ACK
packet is received, the firewall will eventually drop the SYN packet, thus preventing the
server from ever seeing the connection. As long as the firewall has sufficient memory to
hold all the half-open connections, this is a very effective strategy for protecting against
SYN floods.

Firewalls are not the only devices used to prevent DoS attacks, though. As we discussed in
Chapter 11, "Intrusion Prevention Systems," IPS is becoming more popular and more
powerful. Vendors such as Juniper, Radware, TippingPoint, and Top Layer Networks offer
system that are very effective at blocking SYN floods and other types of DoS attacks.

Summary

This chapter highlighted some of the more important issues involved in performance-
tuning your perimeter security. Performance and security often seem at odds with each
other, but careful design can help minimize the impact that security has on performance.
Remember that almost any security feature you want to implement will come with varying
levels of performance impacts. You should be especially careful when implementing
encryption in your design. Cryptographic techniques offer tremendous security
advantages, but they are expensive from a performance standpoint. Try to identify as
early as possible the performance requirements of your network, prior to building or
revising your network structure. Performing this initial analysis will help you choose
appropriate security measures that permit the security policy to be enforced while still
allowing the network users sufficient performance to carry out their work efficiently.
Security and performance must be in balance for the ultimate objectives of the network to
be met.

References

1 Netscape Corporation. Performance Tuning, Scaling, and Sizing Guide, Netscape
Enterprise Server, p. 80.
http://enterprise.netscape.com/docs/enterprise/60/perf/perf60.pdf.

Chapter 18. Sample Designs
Let's put together all the security design information presented in Part III, "Designing a
Secure Network Perimeter." Each chapter has presented a substantial amount of material
you must incorporate into your designs to ensure they reflect the needs of your
organization. As we have discussed, designing a secure network perimeter requires you to
achieve a balance between conflicting factors, such as security, performance, and
usability. For example, deciding to use 3DES encryption on a VPN implemented using low-
end routers might provide the best protection for the connection, but the performance
impact caused by the encryption might reduce performance unacceptably. In other
instances, it might be difficult to determine when to follow a particular piece of design
advice. To help integrate all this material, this chapter provides case studies to illustrate
how network designs vary depending on the unique needs of the organization. The case
studies were chosen to highlight several distinct design situations:

A telecommuter who is using a broadband connection to access the corporate network
via the Internet

A business that has only a basic Internet presence

A small e-commerce site that has a corporate network as well as several systems
accessible from the Internet

As an example of a more complex architecture, we also discuss a multizone design that
was presented by a candidate for a GIAC Certified Firewall Analyst (GCFW) certification.
This design was submitted as part of a GCFW practical assignment that received an honors
status. We begin with a review of core design criteria for a network security perimeter.

Review of Security Design Criteria

Before we start our discussion of the case studies, let's review what we have covered so
far in the design section of this book. In Chapter 12, "Fundamentals of Secure Perimeter
Design," we described the factors that must be considered when designing your network's
perimeter. Put simply, this means you must incorporate the answers for each of the
following three questions in every design you create:

What needs to be protected?

What are the threats?

What are the business requirements?

Before embarking on the design of the perimeter, you must establish what it is you are
protecting. At one level, this will be the servers, workstations, databases, and other
network devices located on the network. At a deeper level, though, it is the information
contained on the network along with the services the network must offer. To begin your
design, you must determine what will compose your network. If you are starting from
scratch, this is relatively easy, but when adding security to an existing network, the
discovery process can be difficult. This is especially true when the network is large and
not well documented.

Where Does This Wire Go?

During an assignment to add a private WAN link between two government
organizations, I discovered an unlabeled T1 line in one of the network closets
that was connected directly to the first organization's backbone network. No
one in the organization seemed to know what it was being used for. The
management of this organization was concerned with security and had spent a
small fortune on the installation of firewalls and other perimeter security
devices, so I was a bit surprised they allowed this line to exist. When I asked
the IT group why they allowed the connection, they told me it had been
installed before any of them had joined the organization, and they were afraid
that if they disconnected it, someone might complain. For the record, they did
eventually unplug the line, and no one ever complained.

Next, you need to determine what threats you should be concerned about. All networks
attached to the Internet need to worry about external attack. Whether the attack is from a
script kiddy or malicious code, you can be guaranteed that if you're hooked up to the
Internet, you are under attack. Some organizations, though, need to consider more
directed attacks. If your organization is famous in any way (or has a name that is close to
someone who is) or has information that would be useful to an attacker (such as credit
card data), you will almost certainly come under attack from determined outsiders. These
attackers will spend significant time analyzing the security of your network. Protecting
against these attackers requires significantly more effort than preventing access by
amateurs. Even more difficult to protect against is the determined insider . Preventing
individuals who have been already granted some access to your network from gaining
more can be extremely difficult and requires you to consider considerably more internal
security controls than you would need to defend against purely external attacks.

Extortion Is a Common Motive for Attack

In the early days of the Internet, computer attackers were in it for the
challenge, the glory, or just simply malicious intent. That is rapidly changing as
criminal elements have started to learn how to make money off of the Internet.
Consider the case of Authorize.Net, a large Internet-based credit card
processing service. In the fall of 2004, it began receiving extortion requests. It
did not pay the extortionists, so starting on September 15th, the extortionists
began a crippling distributed denial of service (DDoS) attack. This attack
prevented Authorize.Net from processing thousands of credit card transactions
for its customers, causing an untold amount of financial loss. Given this type of
result, it's no wonder that many victims decide to pay. However, extortionists
rarely disappear once they've found a willing participant. It is much better to be
fully prepared for these attacks, which is how Authorize.Net has responded. The
company has redoubled its security efforts to create a network it feels is
ironclad against future DDoS attacks.

When designing the security perimeter, you must also determine what the business
requirements for the network are. As we have emphasized throughout the book, network
security is a means to an end, not an end to itself. It is important that the business
reasons and business constraints are taken into account as you design your security
architecture. To begin with, you need to know what services need to be provided to your
users and customers. You also need to determine how reliable and accessible these
services need to be. A network that provides a basic website describing a company's
services might not need to be as reliable and fast as a network that hosts an e-commerce
site that processes all the sales requests for a large company.

You must also consider the amount of resources in terms of money and time that should
reasonably be spent to secure the network. We would like every network we build to have
every security control we can think of, but we must always be cognizant that the purpose
of the network is to support the business. A network design that is unaffordable but
securely designed will never be implemented.

As we go through the case studies that follow, try to keep in mind these three basic design
criteria. To focus your attention, ask yourself the following questions as you review each
design:

Does the design sufficiently protect the major resources of the network?

Does the design place the emphasis on protecting the right resources?

Does the design sufficiently account for the likely ways it might be attacked?

Does the design support the business goals, or are the security controls likely to
impact business operations negatively?

Case Studies

Presented next are four security designs to address four different business situations. Each was chosen
to illustrate the need to vary your designs based on the specific business needs of an organization.

Case Study 1: Telecommuter Who Is Using a Broadband Connection

The situation presented in Figure 18.1 shows an increasingly common way for users to access private
corporate network resources. The user has subscribed to a cable company's broadband Internet service
and is using this connection to work from home. These types of connections are becoming increasingly
popular and represent a significantly different security problem from the slow dial-up connections they
are replacing.

Figure 18.1. In this design, a telecommuting user relies on a Virtual Private
Network (VPN) to tunnel across the Internet to reach the corporate network.

Previously, home computer users had limited exposure to Internet attacks because they were only
accessible while they were dialed-in to the Internet. A potential attacker would need to time his attack
to coincide with the time the user was using the Internet. This is not true with broadband services, such
as cable and DSL. These types of connections, much like typical office Internet connections, are always
on, making it much easier for the attacker to access the home computer.

Because of this problem, combined with the low security awareness of the typical home computer user,
broadband-connected home computers have become a frequent target of computer attackers, which has
resulted in many home user systems becoming compromised. These systems have then been used to
commit other acts of cyberattack, including participating in denial of service (DoS) attacks.

The problem of home computer security has become important to companies as they begin to allow their
employees to access private network resources from home. If home computers become compromised,
the attacker can use them to circumvent the network's perimeter security.

The user's companyin this case, Big Company, Inc.is concerned about these security problems but wants
to allow the employee the flexibility of working from home on a high-speed connection. The company
has asked us to create a secure home network design for the user.

The following is the design criteria the company provided to us:

The user's home computer is the primary resource that must be protected.

The company is specifically worried about the outsider threat. It recognizes that by allowing the
home user to log in remotely, it is extending its security perimeter to include the home user's
computer system. If the user's computer becomes compromised, it could be used to access the
corporate network.

From a business need perspective, this company views this service as a nice-to-have but not a
business essential. High redundancy is not needed, and the solution must be reasonably
inexpensive.

The company is also specifically worried about the following issues:

The always-on connection subjects the home computer to direct network attack.

Malicious code could be introduced onto the home computer through the receipt of an email
attachment or the downloading of software that contains malicious code.

The user's browser might contain vulnerabilities that are exploitable if the user visits a malicious
website.

The user's connection to the corporate network might be monitored or altered as it travels across the
Internet.

To address these concerns, this design uses several perimeter security techniques to secure the home
network. To start, a cable modem/DSL router has been placed between the home computer and the cable
modem. These devices have become popular because they allow multiple home computers to share a
broadband account, but most also include basic firewall functionality. For this case study, a Linksys
Etherfast cable/DSL router has been chosen. Note that this device does not include wireless LAN
capability. This was intentional because the company did not want to take on the additional risk of
wireless networks at its employees' homes.

Because this home network is only used to access the Internet and does not host public network
services, no externally initiated connections are needed. This enables us to use the default configuration
of the cable/DSL router, which only allows connections initiated from the internal network to proceed.
This defense measure prevents a broad range of attacks from proceeding. Some employees, though, may
be tempted to modify this configuration to support peer-to-peer file sharing programs, which require an
open port to work efficiently. Employees who use this service will need to be specifically cautioned
against it because it would significantly weaken the security of the solution.

In addition to the cable/DSL router, the design also calls for a personal firewall product to be installed on
the user's home computer. Personal firewalls such as BlackICE (http://www.iss.net), ZoneAlarm
(http://www.zonelabs.com), and Tiny (http://www.tinysoftware.com) enable you to specify which
applications are allowed to send and receive information over the network. For instance, we can tell the
personal firewall to only allow connections destined to hosts on port 80 from Internet Explorer or
Netscape Communicator.

To enable the home user to securely access private corporate resources, the Check Point SecuRemote
client is installed on the user's home computer and is configured to establish an AES-based IPSec VPN
connection to the corporate firewall whenever a packet needs to be sent to the corporate network. Basic
username/password authentication is used whenever the VPN is established. The SecuRemote client
supports stronger, certificate-based authentication but requires a Public Key Infrastructure (PKI).

The last element of this security architecture is the installation of an antivirus product such as Symantec
Norton AntiVirus on the home computer. With the cable/DSL router and personal firewall products
preventing most forms of direct attack, the next most likely way of gaining access to the home computer
is the introduction of some form of malicious code. If the user downloads a program from the Internet

that contains a Trojan horse or receives an email with a virus attached, the computer can still become
compromised. To help prevent this, the AntiVirus tool has been configured to scan each downloaded file
and each received email message for known malicious code patterns. Because these types of products
are only as good as the content of their malicious code signature database, the antivirus tool has also
been configured to check for new malicious code signatures on a daily basis.

As you can see from this description, even with small networks, you still need to consider all the design
criteria when building the security perimeter. Understanding what you need to protect, how it might be
attacked, and how much effort you should spend to secure it are fundamental issues that affect every
design you create. In this network, what we needed to protect was narrow and consisted of a single
workstation. We were specifically concerned with a direct attack from the Internet, plus the indirect
attack from malicious code. Because our budget was small, we had to limit ourselves to inexpensive
measures. Given these constraints, we were still able to come up with a design that should be highly
effective at protecting the user's home computer while allowing secure access to the corporate network.

Case Study 2: A Small Business That Has a Basic Internet Presence

In this case study, a small sales company wants to set up an Internet connection but does not intend to
sell products directly over the Internet. The owner of the business has read several horror stories about
companies being taken over by attackers and has specifically asked for as secure a design as possible,
but he does not have a large budget. Following are the specific design requirements and business needs
the company has established:

The workstations and Windows servers are the primary resources that must be protected. The
company needs to establish an information website for its customers, but the site is not considered
essential to the business operations.

The company does not know of any individuals or organizations that would specifically want to do
them harm, but the company does store customer information, including credit card data, on
Windows servers.

Employees must be able to send and receive email.

Employees must be able to browse their suppliers' websites.

The company website is not expected to get a large volume of traffic.

The design must be secure, but the budget for security devices and software must be kept as low as
possible.

The external connection that has been arranged with the ISP is a burstable T1 line provisioned for a
continuous usage of 256Kbps.

Note

Burstable T1 lines allow the full 1.544Mbps of a T1 line to be used some of the time, but the
ISP only guarantees the continuous bandwidth level that has been agreed upon.

The resulting design is shown in Figure 18.2. The IT resources of the company are limited to a dozen PCs
running Windows, two Windows servers acting as primary and backup domain controllers, and a network
printer. The following features have been added to the network to meet the design requirements:

A Nokia IP350 device has been added to act as both the border router and the external firewall.

A web cache proxy, located in a screened subnet, is being used to control and protect the users' web
sessions.

A network intrusion detection system (IDS) is monitoring the local network.

The website and email services have been outsourced to a web hosting company.

Figure 18.2. In this design, a small business outsources the hosting of Internet-
accessible services to a third party.

[View full size image]

The first line of defense for the network is the Nokia IP350, which runs a version of the Check Point Next
Generation (NG) FireWall software. We have installed a T1 card in the Nokia to allow it to act as both the
border router and the external firewall. Of course, if the Nokia were to become compromised, the entire
network would be exposed to the Internet. This is a design compromise that has been made to reduce
cost; the money that would have been spent on the router can now be spent on a more sophisticated
firewall. Other security measures, such as the IDS, will be counted on to provide the defense in depth
necessary to back up the Nokia. The rulebase for the Nokia is shown in Table 18.1.

Table 18.1. Rulebase for the Nokia IP350

Source Destination Service Action

Workstations Web cache
server

HTTP, HTTPS, FTP in
service

Allow

Web cache
server

Internet HTTP, HTTPS, FTP, DNS Allow

Firewall All All Deny, Log

All Firewall All Deny, Log

Local
network, web
cache server

All Ping Allow

Any Any Any Deny, Log

This rulebase has three main features. First, there are no rules with the Internet as a source, which

prevents external attackers from initiating a connection to the company's internal computers. Second, all
web and FTP connections from the LAN must be proxied through the web cache server before they can
reach the Internet, which allows us to configure the web cache server to restrict which websites the
employees can visit and provides the additional security benefit of terminating the external website
connection at the web cache server instead of a workstation's browser, thereby preventing some
malicious website attacks. Last, the rulebase makes no allowance for remote management or monitoring
for any of the security devices. This network is sufficiently small, so a decision has been made to
administer and monitor each system from its respective console.

The next device that needs to be discussed is the web cache server. To keep the cost down, this server
has been implemented entirely from open source products. A PC that is running a hardened version of
Red Hat Linux server hosts the open source Squid Web Cache Proxy software (http://www.squid-
cache.org). This process is the only one running on the server that is listening to network ports.

Squid supports proxying of HTTP, HTTPS, and FTP connections and can limit by IP address the computers
that are able to make use of its services. In this case, the proxy has been configured to allow hosts in
the IP range of the workstations to connect to it. Squid also can limit which web and FTP sites users can
visit. Currently, this company's users are allowed to surf to any site, but the company has reserved the
right to block access to any sites it deems inappropriate or unsafe. In addition to the workstations, the
IDS has been allowed to use the web cache server, but Squid has been configured to allow it to connect
to only the Snort website (http://www.snort.org) and the company's website.

The last specific security device to talk about is the IDS. Like the web cache server, the IDS is
implemented using only open source software. Red Hat Linux is again used as the operating system to
host the Snort IDS software. Snort is a highly capable IDS, especially when its signature database is
kept up to date. Luckily, the Snort community is active, and it continually updates the Snort signatures.
It is not uncommon for a new Snort signature to be available for a new attack before any of the
commercial providers has been able to update its signature databases. The reason the web cache has
been configured to allow the IDS to connect to the Snort website is to allow the latest Snort signatures
to be conveniently downloaded.

You might notice that no web, mail, or DNS servers are on the network. All these services have been
outsourced to NTT/Verio, a web hosting company. For a small monthly fee, NTT/Verio provides space on
one of its web servers to host the company's website. Administration of the website is performed using
Microsoft FrontPage. In addition to the website, NTT/Verio provides WebMail, a web-based email system,
which allows employees to send and receive email using their web browsers. By outsourcing these
services, the design eliminates the need to handle externally originated connections, reducing the risk of
network compromise substantially. However, it does require that the company trust NTT/Verio to secure
the web and email services. To provide one additional level of protection, a small shell script has been
placed on the IDS sensor that checks whether the home page of the website has been modified. If it has,
the shell script generates an alert, providing a limited amount of protection should the NTT/Verio-
maintained website become corrupted.

This case study shows some of the compromises you might have to make due to the business needs of
the organization. Not every site requires three layers of firewalls with a full-time security administrator.
In this case, it made more sense to outsource the harder elements to secure. It is unlikely that this
company would dedicate the effort to properly administer the security of its public services. Outsourcing
these services to a firm that provides them full time was a more secure solution. Always remember that
each design must be attentive to the needs of the situation.

Case Study 3: A Small E-Commerce Site

In this case study, a small organization has decided that it could dramatically boost sales by accepting
orders over the Internet. At the same time, it is concerned with some of the news reports about
cybercrime and the possibility that private customer data might be stolen, opening up the potential for
lawsuits. The company has asked us to create a design that allows it to sell products over the Internet
while protecting customer data. It has provided a reasonable but not overly large budget for the design.
These are the design guidelines the company has established for the assignment:

The primary resource that must be protected is customer data, but the design must provide

reasonable protection for the other devices on the network, such as user workstations.

It is important that the site be available to customers, but a highly redundant design has been
rejected as too expensive.

The company is specifically concerned with an attack from determined outsiders.

The company expects only a moderate number of visitors and estimates approximately 1,000 visitors
per day with fewer than 5% of these visitors actually ordering anything.

The company wants to maintain control of all equipment and has rejected the idea of outsourcing
any part of its network.

Employees need to be able to send and receive email.

Employees need to be able to access external websites.

The resulting design is shown in Figure 18.3 and shows a fairly classic network security design, although
certain security design features are not visible from the diagram.

Figure 18.3. In this design, a small e-commerce site uses several defensive
measures to protect customer data.

Here is a quick description of the major features of the design:

A border router connects the network to the Internet and provides some basic filtering.

Just behind the router, a firewall enforces the majority of the access control for the network.

Public services and private services have been separated by being placed on different network
segments that are separated by the firewall. The firewall also maintains a special segment for
management systems.

The web server holds only transaction data for a short period of time. Periodically, the order server
removes all current transactions from the web server for processing.

Inbound email is cached on the email relay server until the Internal email server retrieves it.

Split DNS is being used. The public DNS server provides name resolution for public services only.
The private DNS server contains records for all systems, but external users cannot access it.

Intrusion detection sensors are located on the public, private, and management network segments to
watch for unusual activity.

The workstations located on the "Internal" network can connect to the proxy firewall to gain access
to external web and FTP servers. No other internal systems are allowed to connect to the outside.

All security log entries are sent to the log server, which generates alerts when suspicious activity is
detected.

All configuration of security devices is performed from the management console.

Traffic that is entering the network must first pass through the border router; therefore, it is the first
device we can use to enforce access control for the network. A thorough discussion of how to securely
configure routers is included in Chapter 6, "The Role of a Router," so we will not go into depth about how
this router should be configured. However, it is worth mentioning that ingress filters have been installed
on the router to block packets that have illegal addresses. In addition to the ingress filters, an egress
filter has been put in place to block outbound packets if they do not have a valid source IP address. The
purpose of this egress filter is to make it harder for the site to be used to attack other sites should one of
the servers be compromised.

The primary security device for this network is the Juniper NetScreen-204 firewall appliance. The
NetScreen-204 comes with four Fast Ethernet interfaces, which we have used to create four security
zones for this network:

The Internet zone connects the network to the Internet and is completely untrusted.

The Public Services network holds all servers that must provide service to users from the Internet.

The internal network holds private servers and workstations that external users do not need to
directly access.

The Management network holds the log server and the management console.

The rulebase on the firewall controls what traffic can flow between each of these zones. Table 18.2
shows the rules we are using to secure the network.

Table 18.2. NetScreen Rulebase

Incoming
Zone

Outgoing
Zone Source Destination Service Action

Internet Public Any Web Server HTTP,
HTTPS

Allow

Internet Public Any Mail Relay SMTP Allow

Internet Public Any DNS Server DNS Allow

Internal Public Order Server Web Server SSH Allow

Internal Public Int. Mail
Server

Mail Relay SSH Allow

Internal Internet Int. Mail
Server

Any SMTP Allow

Internal Internet Int. DNS
Server

Any DNS Allow

Internal Internet Workstations Any HTTP,
HTTPS,
FTP

Allow

ALL Management All Devices
Group

Log Server Syslog Allow

Management Any Management
Console

Security
Devices
Group

SSH Allow,

Management Internet Management
Console

snort.org HTTP,
HTTPS

Allow

Any Any Any Any Any Deny, Log

A lot is going on in this rulebase, so let's go over it step by step. The first three rules are designed to
allow the public to access the public servers. The fourth rule allows the order server to retrieve customer
transactions from the website. The company has built a custom e-commerce application that takes the
following steps to protect customer information. When the web server accepts a customer transaction, it
writes the details of the transaction to a file, which it then places in a special directory. This directory is
only accessible to two accounts on the web server: the account that the web software is running as, and
an account created for the order server. The web server is running a Secure Shell (SSH) daemon to allow
the order server to periodically log in and retrieve the customer transaction files. In this way, the
customer details are swept off the more exposed web server to the order server where they can be better
protected. Using this arrangement, even if an attacker did gain control of the web server, he would only
be able to capture a few customer transactions.

The fifth rule on the firewall allows the internal email server to retrieve inbound mail messages from the
mail relay server. Normally, a mail relay server would use Simple Mail Transfer Protocol (SMTP) to
transfer inbound messages to an internal mail server, but a security decision was made not to allow
traffic to originate from the Public Services network to the internal network, which should block an
attacker from accessing the internal network, even if she manages to compromise one of the public
servers. Still, we need to allow the network's users to receive mail. To accomplish this, the internal
email server periodically retrieves queued messages from the mail relay server using the same method
that the order server uses to retrieve information from the web server. It logs on to the mail relay server
using the SSH protocol and downloads the queued messages.

To enable outbound email, the sixth rule allows the internal mail server to send SMTP information to the
Internet. In some situations, this might open up the internal mail server to attack from a malicious mail
server. However, in this case, the risk is minimized due to our choice of firewall. The NetScreen-204

includes advanced packet inspection techniques such as malformed packet protection and protocol
anomaly detection. These features should limit (though not eliminate) the ability for an attacker to
compromise the mail server.

The seventh rule allows the internal DNS server to resolve DNS requests for external sites. Just like with
SMTP, the NetScreen-204's packet inspection techniques will be needed to protect this network
conversation.

The eighth rule allows the workstations to access web and FTP services on the Internet. Again, the
NetScreen-204's packet inspection capabilities will provide the protection necessary to protect the
workstations as they go out on the Internet.

The ninth rule allows any device on the network to send Syslog traffic to the log server. This rule allows
all security log entries to be consolidated on a single server and is especially important for consolidating
the log entries for the multiple IDS sensors deployed on the network. Consolidating the logs simplifies
their analysis and makes it easier to defend against log modification. When an attacker gains control of
a server, one of the first things he will do is modify the log files to erase evidence of his attack. Moving
the log entries to the log server prevents this from happening. It also makes it easier to detect malicious
activity. By centralizing all the log entries, it becomes possible to look for attack behavior across
systems. A special process runs on the log server to look at the incoming log entries for these signs of
attack. The log server has a modem attached to allow it to dial a beeper service to notify administrators
when an attack has been detected.

The tenth rule allows the management console to log in to all the security devices on the network,
including the IDS systems and the border router using the SSH protocol; this, in turn, allows each of
these systems to be remotely administered. The firewall can also be remotely administered using SSH.

The last rule is the standard "deny all" rule. If none of the other rules match, this rule denies and logs
the traffic. This rule enforces the design concept of least privilege.

The firewall and router do a good job of limiting access to the network, but they cannot prevent access
to the public services on the network. Public services such as web, mail, and DNS must be provided to
allow customers to place their Internet orders. This also allows attackers to communicate with these
services. In acknowledgment of the additional risk that the public servers are exposed to, two additional
security controls have been established for this zone. First, an aggressive patch management program
has been instituted for all publicly accessible servers. Whenever a patch is released to correct a serious
vulnerability in any software running on these servers, it is expeditiously tested and then deployed as
soon as possible. If testing determines that the patch does not work properly though, other mitigating
controls will need to be developed on a case-by-case basis. The second control is the installation of
Cisco's Security Agent, a host-based intrusion prevention system, on each of the public servers. As we
discussed in Chapter 11, "Intrusion Prevention Systems," host-based IPS systems can often detect and
prevent attacks that are imperceptible to firewalls and network-based IDS tools. Although they can be
expensive, both to purchase and to maintain, their use here on the servers most likely to come under
direct attack is justified.

The public zone is not the only area of the network that we must protect. To provide additional security
to the entire network, each network segment has an IDS installed on it. As with the previous case study,
we have opted to use Snort as our IDS. This is the purpose for the rule just before the deny all rule. The
management console needs to be able to download the latest signatures for the Snort sensors on a
regular basis. In addition to the standard signatures, we are also adding a few custom signatures to
detect traffic that is specifically unusual to our network, instead of relying purely on the default
signatures.

To understand how this might be useful, let's look at the sensor located on the management network.
Only a limited amount of traffic should be traveling across this network segment. By deciding which
traffic is allowed, we can set up signatures to look for traffic that is abnormal. If we limit our discussion
to TCP traffic, the following packets should be allowed:

TCP packets that are leaving the Management network use only HTTP, HTTPS, and SSH.

TCP packets that are entering the Management network are replies to previous Management Console
requests.

TCP traffic that is local to the Management network is only the Management Console logging in to
the Log Server or the IDS using SSH.

Any traffic that does not match one of these conditions is invalid and might indicate that an attacker has
gotten past our other defense measures. To detect this, we can add custom signatures to our
Management network Snort sensor. For example, to detect invalid TCP packets leaving the Management
network, we add the following rules to the sensor (assume that the Management network has been
allocated the IP range 192.168.10.0/24):

[View full width]
var MgmtNet 192.168.10.0/24
alert tcp $MgmtNet any -> any 1:21 (msg: "Invalid TCP Packet destination on Management
 Network";)
alert tcp $MgmtNet any -> any 23:79 (msg: "Invalid TCP Packet destination on Management
 Network";)
alert tcp $MgmtNet any -> any 81:417 (msg: "Invalid TCP Packet destination on Management
 Network";)
alert tcp $MgmtNet any -> any 419:442 (msg: "Invalid TCP Packet destination on Management
 Network";)
alert tcp $MgmtNet any -> any 444: (msg: "Invalid TCP Packet destination on Management
 Network";)

The combination of these five signatures triggers if any TCP packet is sent out of the management
network that is not destined to an HTTP, HTTPS, or SSH server. Additional rules would need to be added
to alert on unauthorized UDP and ICMP traffic.

These types of signatures would produce many false positives if placed on a typical network. However, in
the special case of the Management network, if any of these rules were to trigger, it would be possible
that an attacker had gotten past the firewall. This idea can be extended to any network segment where it
is convenient to enumerate legitimate traffic.

Unlike our previous case study, this organization made the decision to rely heavily on e-business.
Breaches in security could easily put the company out of business, which justified a larger investment in
security but still did not free us up to spend money on security indiscriminately. We had to address the
need to protect the network resources (especially the customer data) while keeping the need for security
in balance with the other business requirements. The design that resulted provides defense in depth for
the critical elements while keeping the overall expense of the design to a minimum.

Case Study 4: A Complex E-Commerce Site

In this last case study, we review the design produced by Rita Will as part of the requirements for her
GCFW certification. As part of a practical assignment, GCFW students were asked to create a secure
network architecture for a fictitious entity named GIAC Enterprises (GIACE), which is in the business of
selling fortune cookie sayings. The requirements for the assignment included the following details:

The business will be run entirely over the Internet.

Expected sales are $200 million per year.

Three classes of external users must be accommodated: customers who purchase the sayings,
suppliers who provide the sayings, and business partners who translate and resell the sayings for
the foreign market.

GIACE management considers security a fundamental requirement of its business. It is willing to
spend significant funds to ensure that a secure system is developed.

Reading a bit into the assignment, we can extract the following design criteria:

The most important resources this network must protect are the fortunes, which constitute GIACE's

intellectual capital, and the customer, supplier, and business partner records that GIACE must
maintain.

All GIACE revenue is generated from its website. Due to this, it is essential that the website be up
24x7.

Suppliers must be able to securely provide new fortunes.

Business partners must be able to securely access fortunes.

The network must protect itself against determined outsiders. In addition, there is some concern
about attacks launched by business partners and suppliers.

Based on the sales projections, GIACE expects to be a high-volume site, which must be accounted
for in the design.

The design that Rita submitted to meet these requirements was awarded honors by the GCFW Advisory
Board and is shown in Figure 18.4. It can be downloaded at
http://www.giac.org/practical/Rita_Will_GCFW.zip. It is a good design for securing the proposed
network, but it is by no means the only way the network could have been secured. You need only look at
the hundreds of student practicals posted at http://www.giac.org/GCFW.php to see just how many
different ways this problem can be approached.

Figure 18.4. Rita Will's GCFW design uses several security zones to enforce
security across the network.

[View full size image]

Rita's design uses two firewalls to break the network into five major security zones. These are the
Internet, the DMZ, the proxy layer, the security network, and the internal network. As a way of
organizing this discussion, we describe the security features of each zone security separately.

The Internet

This zone is unlabeled on the diagram, but it is the network formed between the border routers and the

external firewall. Access to the Internet is provided by a pair of Cisco routers, which are using the Hot
Standby Routing Protocol (HSRP) to allow one of the routers to take over for the other, should one of
them fail. This is the first example of the redundancy features that have been included to make sure
availability of the network is high. The routers are also being used to provide some packet filtering,
including ingress and egress filters similar to the ones described in the previous case study.

Located just in front of the routers are the border firewalls and two Cisco VPN concentrators. The
concentrators allow suppliers, vendors, and employees to establish secure VPN connections to the
network from the Internet and have been set up to fail over to each other should one stop working. The
concentrators can use hardware accelerator cards to provide high performance and support several
authentications systems. For this design, the token-based RSA SecurID system is being used to
authenticate users prior to granting access.

The border firewalls are a pair of Nokia firewall appliances that are also set up to fail over to each other.
Like the Nokia appliance chosen in our second case study, these appliances run Check Point FireWall-1.
The firewalls provide the first major access restrictions for the network. The size of the rulebase is
largely due to the complexity of the design, so we will not go over it in detail. Here are the highpoints:

Allow external visitors to browse to the cacheflow reverse proxy. This rule allows visitors to access
the GIACE public website.

Allow the public websites to connect to the internal database servers.

Allow the Internet proxy to connect to external websites. This allows internal users to browse
websites on the Internet.

Allow mail into and out of the external mail server.

Allow DNS queries between the DMZ and the Internet.

Allow the suppliers, partners, and employees who have established VPNs with the Cisco VPN
concentrator to reach the FTP drop box server.

Allow employees who have established VPNs with the Cisco VPN concentrator to reach the internal
GIACE network.

Drop all other unnecessary traffic.

Using this rulebase, the firewalls effectively block all but the bare essential traffic from entering the
GIACE network. This is a good implementation of the design concept least privilege.

The DMZ

Strictly speaking, this zone should be referred to as a screened subnet because it is a network segment
protected by a firewall; however, it is not an insecure area located between two secure areas. As
Chapter 1, "Perimeter Security Fundamentals," mentions, these two terms are often used
interchangeably.

The zone holds all the servers that are accessible to external users. This includes the cacheflow reverse
proxies, the public web servers, the external DNS servers, the external mail server, and the FTP drop
box server. Each of these servers plays a public role for the GIACE network.

This zone is considered a high-risk network segment. Because of this, extra security precautions have
been implemented. To start with, all servers have been hardened by removing all unnecessary services
and making sure that all the remaining services are as up to date as possible. Also, although not
specifically mentioned in Rita's practical, presumably good vulnerability scanning and patch
management practices are being performed on all the servers in this zone. This is to ensure that
exploitable vulnerabilities are detected and eliminated as quickly as possible to reduce the window of
opportunity available to attackers if vulnerabilities are discovered in any publicly accessible services.

Next, a Snort IDS sensor has been located in the zone to watch for suspicious activity. If an attacker
manages to circumvent some of the security controls in place, it is hoped that this sensor will provide a
sufficient warning for the onsite staff to respond appropriately.

The most important servers in the zone are the web servers. The web servers provide the primary
interface between GIACE customers and GIACE. All sales transactions are conducted on these systems
and then recorded on the internal network database servers. To enable the web servers to keep up with
the expected volume of traffic, all external web requests first pass through one of the cacheflow servers.

Blue Coat cacheflow servers are being used as reverse proxies for all connections from the Internet to
the public websites. Cacheflow servers are designed to protect web servers while accelerating SSL
connections. Because of the reverse proxies, external users never directly access the public web servers.
Because many attacks against web servers require a direct TCP connection to the web server, placing the
proxy between the Internet and the web server provides a substantial security improvement. By using
the cacheflow servers, this design maximizes the performance and availability of the GIACE public
website.

Other servers on the network include the DNS, mail, and FTP servers. Each has some specific security
controls worth mentioning.

The DNS servers provide name resolution for external users. This network uses the split DNS concept, so
these servers only contain records for publicly accessible servers.

The external mail server sends and receives email from the Internet. It is implemented using a Sun
Solaris server running Sendmail. To prevent malicious code from entering the network via email, the
server runs Trend InterScan's VirusWall software. This software scans each incoming or outgoing email
message for viruses. Scanning incoming mail for viruses is a powerful way of protecting the network
from malicious code. Keep in mind, though, that scanners are only as good as their signature databases.

The last server on the DMZ is the FTP drop box server. Suppliers, partners, and employees use this
system to exchange files. Due to the rules in place on the border firewalls, this server is only accessible
to internal users or to users who have established VPNs through the Cisco VPN concentrator. In addition,
username/password authentication is required, adding a second layer of defense to protect the server.

The Proxy Layer

The proxy layer protects internal and security network systems while allowing these systems to access
network services located on other networks. Because this layer is directly on the path to the rest of the
GIACE network, another Snort IDS sensor has been placed in front of it to watch for suspicious traffic.
This provides some extra defense should an attacker get by the border firewalls.

The proxy layer uses four devices to form a kind of proxy firewall. These include a cacheflow server, the
internal mail server, a SOCKS server, and a bypass router. Each device allows different types of
communications.

Probably the most used from a traffic volume point of view is the cacheflow server. Similar to the
cacheflow server used on the DMZ, this server proxies web requests for the internal and security
network zones. Any internal system that needs to communicate with a web server must pass the request
through the cacheflow server, which allows GIACE to restrict the websites that employees can access
while protecting the requesting system from malicious websites.

The internal mail server passes email into and out of the internal networks. By allowing only this system
to send and receive email from the external mail server, this design limits the server's exposure to
attack.

In addition to the web proxy that the cacheflow servers provide, two SOCKS servers have been used to
provide proxy services for SOCKS-aware applications. SOCKS is a standards-based protocol that
performs network layer proxies at the transport layer. It is used in this design to provide external access
for some proxy-aware applications, such as RealAudio.

The last device is a Cisco 3660 router that allows network traffic that SOCKS or cacheflow servers
cannot proxy.

Located just behind the proxy layer is the internal firewall, which creates the remaining two security
zones. Following is a summary of the proxy layer's rulebase:

Allow the internal network to make use of the cacheflow web proxies.

Allow the internal network to send and receive email from the internal mail server.

Allow website maintainers to log in to systems in the DMZ. This requires that the maintainer
authenticate to the firewall to prove his identity.

Allow the internal network to FTP to the FTP drop box server.

Allow remote employees who have VPNed into the Cisco VPN concentrator to gain access to the
internal network.

Allow systems on the security network to manage the security devices located throughout the
network.

This rulebase puts in place the access restrictions that form the two remaining security zones: the
internal network and the security network.

The Internal Network

The internal network holds all the internal systems, including employee workstations and GIACE
databases. This network contains a broad amount of information that is valuable to GIACE. This is why it
has been protected with so many layers of defense.

The Security Network

The security network contains the systems that manage and monitor the security of the network. Two
servers on the network manage the GIACE security devices. These servers must be carefully protected
because they would grant an attacker the ability to circumvent almost all security controls on the
network if one of them were to be compromised.

Another system on the security network is the RSA ACE server, which provides the authentication
service for the SecurID tokens. The ACE server is accessed when users VPN in to the Cisco VPN
concentrator. It is also used by the internal firewall to authenticate the website maintainers prior to
allowing them to log in to the DMZ.

Next, this network holds a system that analyzes the results from the Snort IDS sensors. All alerts that
the sensors generate are forwarded to this system. When a critical alert is received, the security network
alerts a security administrator.

The last two servers on the security network centralize and protect all security log data generated on the
network. As we mentioned in the third case study, attackers like nothing better than to erase the
evidence of their attacks. By moving log data into a protected place, we can prevent attackers from
erasing their footprints.

This design is pretty involved, so it is somewhat difficult to get your hands around all its security
features. To recap, let's summarize some of the design's better qualities:

Extensive redundancy is used throughout the network. No single point of failure will bring down a
critical network service.

Performance and security concerns at the web servers are addressed using a reverse proxy server to
accelerate SSL content while protecting the web servers from direct Internet attack.

Multiple layers of firewalls create distinct security zones. These zones group systems at similar risk
levels. This makes it easier to enforce appropriate security controls in each zone.

Mail is virus scanned before it enters or leaves the network. Assuming the virus signatures are kept
up to date, this is a powerful way to prevent network compromise.

VPN technology allows partners, suppliers, and employees to gain remote access to appropriate
internal resources. This, in combination with the firewalls, allows appropriate individuals into the

network while restricting them to just the set of services they should get access to.

All remote access is strongly authenticated through the use of SecurID tokens. This is a substantial
improvement over username/password authentication and provides a high level of confidence that
you know the identity of the person to whom you are granting access.

Summary

In this chapter, we provided four security designs for you to review. The first three were
chosen to highlight the requirement to match the needs of the business with the design of
the perimeter security. In each case, we started with a description of the business needs
for the network and moved from there to a design to meet those needs.

We followed these case studies with an example pulled from the practical assignment of a
GCFW honors student. This example was substantially more complicated than the previous
case studies and provided an interesting assortment of security techniques. Studying other
professional's designs is one of the best ways to discover new ways to protect the
networks you are responsible for.

Now that you have learned how to design secure networks, it's time to learn how to
administer, test, and improve them. The next and final part of this book is on perimeter
assessment. In it, you will learn how to maintain your security perimeter, monitor it for
unusual activity, troubleshoot it when problems crop up, and test it to make sure it is
functioning. Chapter 23, "Design Under Fire," builds on the principles of creating and
maintaining a security perimeter by presenting a lesson on improving the security of the
network through adversarial review. This chapter uses two more GCFW practicals to
demonstrate how even good security designs can be improved by looking at them through
the eyes of an attacker.

Part IV: Maintaining and Monitoring
Perimeter Security

 19 Maintaining a Security Perimeter

 20 Network Log Analysis

 21 Troubleshooting Defense Components

 22 Assessment Techniques

 23 Design Under Fire

24 A Unified Security Perimeter: The Importance of
Defense in Depth

Chapter 19. Maintaining a Security
Perimeter
Welcome to Part IV, "Maintaining and Monitoring Perimeter Security." In Part I, "The
Essentials of Network Perimeter Security," and Part II, "Fortifying the Security Perimeter,"
we talked about the primary components of the defense perimeter, such as firewalls,
routers, hosts, intrusion detection systems (IDSs), intrusion prevention systems (IPSs),
Virtual Private Networks (VPNs), and policies. In Part III, "Designing a Secure Network
Perimeter," you learned how to deploy these elements according to their strengths while
taking into account their weaknesses to create a unified defense architecture. After your
security perimeter has been set up, two processes must continuously take place:
administration of the perimeter's components and evaluation of its effectiveness.
Mastering these concepts is the final step on the path to defense in depth.

This chapter discusses core principles of maintaining a security perimeter. One of the
requirements for effective perimeter maintenance is awareness of the operating
environment, which is why we begin with a section on system and network monitoring. In
this chapter, you learn how to gather monitoring requirements and see how to implement
them using free or relatively inexpensive software. We build on the monitoring processes
by examining ways to respond to system fault events and malicious incidents. We also
talk about the process of managing changes to the infrastructure throughout the evolution
of the security perimeter so that the infrastructure's components stay effective in the face
of changing threats and business requirements.

System and Network Monitoring

In the context of perimeter security, the primary goal of system and network monitoring is to provide
administrators with the awareness of the state of a protected environment. We discussed monitoring in
the context of intrusion detection in Chapter 8, "Network Intrusion Detection," and Chapter 10, "Host
Defense Components," where we tuned IDS sensors to automatically detect events that are frequently
indicative of misuse. System and network monitoring also involve anomaly detection but concentrate on
availability and performance parameters of the resources. Security professionals should be interested in
seemingly mundane issues, such as server uptime, network utilization, and disk space availability for
numerous reasons:

Monitoring helps detect interruptions in availability of the services that the security perimeter is
meant to protect. A host's partition might have filled up, a critical process might have died, or a
denial of service attack might have taken a system offline. Ensuring availability, as you might recall,
is one of the key objectives of information security.

Monitoring helps detect changes in the performance and availability of the system, which might be
indicative of misuse. Administrators who routinely monitor their systems are able to sense even the
slightest change in the behavior of the host or device and are wonderful intrusion detection sensors.

Monitoring helps detect bottlenecks and shifts in performance of the infrastructure, which might
indicate that the design or the implementation of the security perimeter is not properly tuned. For
example, a web-based application might function too slowly over HTTPS if its servers cannot cope
with the load that SSL imposes on them. Monitoring can help determine which aspects of the security
perimeter need to be fine-tuned and in what way.

Monitoring helps detect unexpected changes in the environment that might adversely impact the
effectiveness of the security perimeter. For example, a new server might have been brought online
without proper hardening, or hasty changes to the firewall rule set might have unintentionally blocked
access to a critical service.

A well-defined monitoring process allows administrators to detect problems at an early stagehopefully
before the problems escalate into critical incidents. One of the most powerful ways to increase
effectiveness of this process is to perform monitoring centrally, which generally involves configuring a
serveror a cluster of unified serversto observe multiple resources throughout the network. A centralized
monitoring infrastructure often benefits from the use of client modules that report to the central server
information gathered from remotely monitored systems. You should already be familiar with such a
configuration because it is frequently used to manage multiple firewalls, VPN nodes, or IDS sensors
centrally.

In this section, we look at a typical way of implementing a centralized monitoring infrastructure. To
illustrate monitoring concepts, we use a popular monitoring application called Big Brother; however, the
same monitoring principles apply to other applications of this nature.

Big Brother Fundamentals

Big Brother is a flexible software tool for performing network- and system-monitoring functions
(http://www.bb4.org). Numerous products can fulfill monitoring needs; a small sample of these includes
BMC PATROL (http://www.bmc.com), HP OpenView (http://openview.hp.com), IBM Tivoli
(http://www.ibm.com/software/tivoli), and Nagios (http://www.nagios.org). Unlike several other
contenders, Big Brother focuses solely on monitoring aspects of system and network maintenance,
without offering features to remotely manage devices. This makes it a lightweight application that is
particularly well suited for demonstrating monitoring concepts. As a result, we use Big Brother in the
examples throughout this section for many of the reasons we would consider using it on our networks:

It is free for noncommercial use.

It is relatively inexpensive for commercial use.

It runs on Windows and UNIX-based operating systems.

It is relatively easy to set up and maintain.

It supports a wide range of monitoring and alerting requirements.

It is expandable through the use of custom scripts.

It has been around since late 1996 and has established itself as a trustworthy monitoring tool.

Big Brother is able to track the status of remote nodes by attempting to connect to monitored systems
over the network. In this role, Big Brother can detect the availability of a system via ping packets, as well
as by attempting to elicit an expected response from specific TCP services. Big Brother also supports the
use of agent modules that run on remote nodes as Big Brother clients and gather local information, such
as CPU performance, disk space utilization, and process status.

Note

The commercial version of Big Brother, called Big Brother Professional Edition, supports several
enhancements to the free version. In particular, the Professional Edition offers a simplified
installation routine and point-to-point encryption. You can purchase the commercial version from
Quest Software (http://www.quest.com/bigbrother).

Big Brother's architecture consists of four core components that are integrated into a unified application.
These components, described in the following list, can run on distributed systems to achieve the desired
extent of scalability or can coexist on a single server:

The BBNET host probes remote systems to determine the availability of monitored network services.

The remote client agent runs on a monitored system and gathers performance and resource
availability data local to its host.

The BBDISPLAY host generates and displays web pages that administrators can look at to determine
the status of monitored devices, services, and processes.

The BBPAGER host issues notification alerts and processes event-escalation measures.

If Big Brother determines that a monitored parameter has exceeded an acceptable threshold, it alerts
administrators by displaying a warning on the BBDISPLAY's web page. Figure 19.1 shows how Big Brother
consolidates status information regarding multiple systems onto a single summary page. Icons on Big
Brother's summary matrix represent the current status of monitored parameters for each system. A green
square represents the normal state of the system, which is the case for most services in this figure. A
flashing star icon for the HTTP service on "lemon" indicates that Big Brother experienced problems
connecting to the web server on "lemon" over the network. Administrators can obtain additional
information regarding the problem by clicking the icon. Additionally, Big Brother can send the alert via
email, pager, Short Message Service (SMS), or a custom script.

Figure 19.1. Big Brother presents a unified view of monitored resources by using
icons to represent the status of observed attributes.

[View full size image]

Now that you know a little about fundamental capabilities of monitoring software, the next section covers
how to determine which resources should be observed in the first place and how to set up such
monitoring.

The Capabilities of HP OpenView

Of course, Big Brother isn't the only game in town when it comes to monitoring networks and
systems. A wide variety of offerings are available to suit different requirements and budgets.
HP OpenView is a product at the higher end of the price and functionality spectrum. The
foundation of the OpenView family of products is the OpenView Network Node Manager
(NNM). This application provides the framework for performing basic monitoring and
discovery functions by using Simple Network Management Protocol (SNMP), ping, and other
network probes, as well as for collecting historical data and handling event notification.

An extension of NNM, which is more full featured and expensive, is a product called OpenView
Operations. This application is aimed at enterprises that require more extensive managing
and monitoring features, along with native support for additional devices and applications.
OpenView Operations also supports programmable actions that can respond to system events,
such as by automatically restarting a crashed process. A core component in OpenView
Operations, called Service Navigator, allows administrators to "teach" OpenView about
relationships between particular services distributed throughout the network. For example, if
a router goes down, Service Navigator (if appropriately configured) can flag all the services
this event might affect, such as email or a mission-critical database. This functionality can
help to assess the event's impact, determine its root cause, and assist in the troubleshooting
process.

HP OpenView isn't for everyone due to its high price and significant implementation
complexities. However, if a particular feature is important to your business and slimmer or
less expensive tools do not support it, you should look into enterprise-centric solutions such
as HP OpenView.

Establishing Monitoring Procedures

Be sure to define your goals and priorities before rolling out a monitoring solution. For example, if you are
maintaining an e-commerce site that makes a significant portion of its revenue via the Internet, you
might be interested in focusing on the following data points:

Bandwidth utilization

Server load

Where your hits are coming from

What percentage of site visitors purchase a product

Considering that most of us operate under the constraints of limited staff, it is impractical to treat all
changes in the state of the environment with the same urgency. Moreover, monitoring all aspects of
performance and availability on each system is likely to produce so many alerts that those that are truly
important will be drowned out by the noise of inconsequential events. Knowing when a firewall process
dies is likely to be more important than receiving notifications every time a user's workstation is
rebooted.

We have been using risk analysis to define the extent of hardening and segregation for security perimeter
components throughout the book. Similarly, we can define monitoring requirements based on the
resource's importance and the likelihood that its availability might be disrupted. For example, if email
communications are a critical business function for your company, you might consider monitoring
numerous aspects of the mail server's availability and performance, such as the accessibility of the host
over the network, the status of the mailer's processes, and the state of file system utilization. If that
same mail server has been acting flaky, you might be interested in adjusting monitoring criteria to help
track down the cause of the problem or to enable yourself to react to problems more quickly. In that case,
it might help to adjust the thresholds for alerts or to monitor additional attributes, such as auxiliary
system processes, as well as CPU and memory utilization.

Note

Monitoring and alerting go hand in hand. It is not uncommon to monitor more devices and
attributes than we want to be alerted about. We then configure alerting thresholds so that we
are notified of events that warrant immediate attention. Events that are less critical might not
require a real-time response. Additionally, historical information that is collected through the
monitoring process will be available for when we need to troubleshoot problems or to determine
the relationship between events that we were alerted about.

Monitoring applications, such as Big Brother, can keep track of multiple attributes for resources
throughout the network and offer you the flexibility to drill down into specific parameters of individual
systems that need to be observed. Let's see how to establish monitoring procedures to track aspects of
the environment that are most likely to require a watchful eye:

Hosts and devices

Accessibility of network services

Local system attributes

Hosts and Devices

One of the first steps in setting up a monitoring system is to define which hosts and devices should be
watched over. As we discussed a few paragraphs earlier, you need to strike the balance between your
ability to handle information and the number of systems that warrant your attention at this stage. So that
you see what's involved in configuring core aspects of a monitoring system, let's take a look at how to
accomplish this with Big Brother. Big Brother uses a text file called bb-hosts to list the systems it should
observe. The bb-hosts file follows the format of the regular hosts file, with the addition of directives that
are specific to Big Brother.

For every system that you want to monitor, you can specify which attributes should be observed. A good

starting point is ensuring that the host or device is accessible over the network. This can be defined for
Big Brother by using a bare-bones bb-hosts file like this:

#
THE BIG BROTHER HOSTS FILE
#
192.168.214.132 apple # BBPAGER BBNET BBDISPLAY
192.168.214.17 lemon #
192.168.214.97 peach #

In this bb-hosts file, we defined apple as the host that houses Big Brother components that centrally
monitor other systems. (Note that the apple host will be monitored as well.) Because we did not define
directives for lemon and peach, Big Brother only checks whether it can access them over the network via

an ICMP echo request (ping).

Specifying IP addresses for hosts, as we did in the bb-hosts file, makes the monitoring system more self-
contained and decreases the possibility that a domain name resolution problem will skew monitoring
results. However, maintaining IP addressto-hostname mappings specifically for the monitoring system
creates additional administrative overhead. Furthermore, defining IP addresses within the monitoring
system might be impractical when observing hosts that dynamically obtain IP addresses from a DHCP
server. To address this, you can configure Big Brother to use the host's native domain name resolution
mechanisms, such as DNS or its hosts file. You can accomplish this by simply specifying 0.0.0.0 for IP
addresses in the bb-hosts file.

Some systems are configured not to respond to ICMP echo requests, or a firewall between the monitored
system and the monitoring host will not let such traffic through. You can use the noping directive to

prevent Big Brother from performing the ping test. In such cases, you will probably want to check the
accessibility of specific services on the monitored host instead.

Accessibility of Network Services

One of the most useful features of monitoring programs is the ability to determine whether a remote
service is accessible over the network. After all, a service might have crashed or have gotten disabled
even if its host maintains network connectivity. You can use one of two primary methods to determine the
accessibility of a TCP-based service:

Check whether the monitored port is open by initiating a plain TCP connection with the service
without exchanging data. You can do this with a half-connect, in which the monitoring server does not
complete a three-way TCP handshake. Most monitoring systems, however, complete the handshake
and close the connection as soon as it is established.

Attempt to initiate a conversation with the remote service using the application-level protocol that is
appropriate for the monitored service. For example, we could check the accessibility of a POP service
by actually attempting to access a mailbox.

Port probes that are based on plain TCP connections obtain information without requiring us to program
the monitoring system with knowledge of the protocol specific to the observed service. However, this
technique does not help us detect problems with remote applications that accept TCP connections but do
not respond properly. By programming the monitoring system to know the application-level protocol of
the monitored service, we allow it to detect problems with greater accuracy and granularity. Another
advantage of the application-level approach is that it can work with TCP- and UDP-based services.

Monitoring systems usually come with built-in support for determining accessibility of popular network
services, such as SMTP, Telnet, FTP, POP, SSH, and IMAP. For example, the following line in Big Brother's
bb-hosts file can be used to determine whether SMTP and SSH services run on the remote system plum:

192.168.214.101 plum # smtp ssh

Big Brother usually attempts to evoke a response from the application when testing its availability,
instead of simply verifying that it can establish a TCP connection. In most cases, Big Brother
accomplishes this by sending the string quit to the remote service. Big Brother can handle some services

in a slightly more intelligent manner by attempting to follow their protocols to make the test less
obtrusive. For example, it sends ABC123 LOGOUT to IMAP services and sends an identifying string with the
prefix Big-Brother-Monitor when connecting to the SSH service.

Tip

Sometimes, it makes sense to check whether a particular service is not running on a remote
system. For example, if you transfer files only through Secure Shell (SSH), you might want to be
alerted if a particular host suddenly starts accepting FTP connections. You can set up Big Brother
to do this by using an exclamation mark (!) prefix when specifying directives in bb-hosts, like

so:

192.168.214.101 plum # smtp ssh !ftp

When testing accessibility of remote services, do not be surprised to see error messages in logs on the
systems being observed. Monitoring tools often do not bother exercising all options of the remote service;
they close the connection as soon as they receive some data in return or without exchanging data at all.
For example, the Sendmail daemon may record a message such as the following one whenever Big
Brother verifies accessibility of the SMTP service:

[View full width]
Feb 24 16:50:02 apple sendmail[23130]: NOQUEUE: apple [192.168.214.129] did not issue MAIL
/EXPN/VRFY/ETRN during connection to MTA

Big Brother has provisions for verifying service accessibility through plain TCP-based connections instead
of exchanging data through a simplistic application check. To configure Big Brother to perform such
probes, you can append :s (which stands for "silent") to the applicable directive in bb-hosts, like this:

192.168.214.101 plum # smtp:s ssh

Unfortunately, this approach does not eliminate spurious log messages in many cases because Big
Brother often confuses the monitored service by establishing a full TCP connection and not exchanging
meaningful data. For example, using the :s suffix to test the SMTP service may not prevent Sendmail
from issuing the alarming message shown previously. However, using :s might be effective for

eliminating errors in the logs for certain software, so you might want to give this option a shot if the need
arises.

Logging Incomplete OpenSSH Connections

The OpenSSH daemon may create the following log entry when a client initiates a connection
to its port and closes the socket without going through the full SSH connection negotiation
process:

[View full width]
Feb 24 16:51:03 apple sshd[19925]: Did not receive ident string
 from 192.168.214.129.

This message might indicate that a monitoring system is configured to observe the SSH
service via plain TCP connections. The message is different when the system attempts to
exchange data with the remote SSH service. Here's an example:

[View full width]
Feb 24 16:52:46 apple sshd[1295]: Bad protocol version
 identification 'Big-Brother-Monitor-1.9e' from 192.168.214.129

Of course, similar messages might appear in the logs when the SSH server is subjected to a
port scan, so be careful not to blindly disregard these messages when examining the logs.

Monitoring web servers often warrants special considerations because web-based services are ubiquitous
and are frequently critical to company operations. As a result, monitoring applications frequently offer you
the ability to retrieve specific web pages. To set this up with Big Brother, you can use the bb-hosts file to
specify which URLs to monitor:

192.168.214.17 lemon # https://lemon/cart/order.jsp
192.168.214.97 peach # http://peach/

The preceding configuration lines set up Big Brother to verify the availability of the /cart/order.jsp
page on server lemon via HTTPS and to check the root page on server peach via HTTP. Clicking the HTTP

icon on Big Brother's summary page enables you to see details of the established HTTP connection, as
shown in Figure 19.2.

Figure 19.2. Big Brother can capture details of the HTTP response when
connecting to the desired URL (in this case, to http://peach/).

[View full size image]

By monitoring applications, you can determine the accessibility of network services without installing
additional software on monitored systems. However, obtaining detailed information about local attributes
of the monitored resources often requires the further cooperation from the monitored system.

Local System Attributes

Several attributes that are local to the monitored host might warrant your attention not only because they
are critical to the host's function, but also because they can serve as an early warning system. Detecting
the following conditions might help you discover problems before a host's network service stops being
accessible over the network:

File system is almost full.

CPU utilization has exceeded an acceptable threshold.

Critical processes are failing to run.

One of the most effective ways to observe these attributes is through the use of a monitoring agent that
reports its findings to a monitoring server. Figure 19.3 shows a configuration screen of such an agent for
Big Brother, with the client module running under Windows. Typical of such configurations is the need to
define the central server to which notifications will be sent (in this case, 192.168.214.132).

Figure 19.3. A GUI-based configuration utility defines monitoring settings for Big
Brother clients that are running under Windows.

[View full size image]

In this example, we set up the Big Brother client to monitor the state of two local services: Event Log and
IPSec Policy Agent. Also, the client is set to issue a warning-level alert when the C: partition becomes
90% full and a panic-level alert when the partition's utilization reaches 95%. Even when the system is
functioning normally, you can obtain useful information about the state of its resources. For instance,
Figure 19.4 shows a status page displayed on Big Brother's central server when the remote host's file
system utilization is below alarming thresholds. Status green means everything is OK with this particular
attribute of the monitored host.

Figure 19.4. Monitoring systems can offer useful diagnostics information even
when remote nodes operate below alarming thresholds.

[View full size image]

Another way to obtain detailed information about a monitored system is via SNMP. The use of the
application-specific monitoring agents we've discussed so far requires that client software be deployed on
systems that need to be observed. One of the biggest advantages of using SNMP is that it is already built

in to numerous devices and applications. An SNMP-compatible monitoring server can periodically poll
remote SNMP agents for performance and availability attributes, such as configuration parameters,
network statistics, and process details. For instance, here are some of the many attributes that Cisco
routers natively expose via SNMP:

MAC and IP address accounting

CPU utilization

Memory availability

Startup and running configuration

Network interface status

Note

Universal support for SNMP is one of the biggest advantages of this protocol, as well as a
potential weakness. The SNMP vulnerability announced in February 2002, which we mentioned
in Chapter 6, "The Role of a Router," simultaneously affected SNMP implementations of
numerous vendors. Don't assume that an implementation of an established protocol is bug free.
Even if the software has been around for years, you never know what dormant vulnerabilities lie
within.

SNMP agents can also issue alerts to the monitoring system when a predefined condition occurs on the
local device. These traps are generated asynchronously, regardless of the regular polling schedule the
monitoring system implements. Traps can notify the monitoring system of an event that threatens
performance or availability of the device. You can use the following command to enable all supported
SNMP traps on a Cisco router (you will also need to use the snmp-server host command to specify where

the traps should be sent):

router(config)#snmp-server enable traps snmp

One of the notifications that is enabled by using this command is the authentication trap, which alerts
administrators when a remote host fails to properly authenticate when attempting to access the SNMP
agent. This notification can help detect SNMP network scans and brute force attacks targeting the device
over SNMP. If you are not interested in enabling all SNMP traps that the router supports, consider
activating at least the authentication trap using the following command:

router(config)#snmp-server enable traps snmp authentication

Tip

Big Brother offers limited support for SNMP polling and trap handling through the use of add-on
modules that can be downloaded from http://www.deadcat.net.au.

Versions of SNMP

SNMP has been around since 1988 and has been exposed to scrutiny by standards bodies,
network engineers, and system administrators. As a result, numerous revisions have been
made to the original SNMP protocol, but some of them failed to gain the community's
acceptance and were phased away. One of the more popular phased-out SNMP provisions was
the party-based authentication specification of SNMPv2 (now called SNMPv2p or SNMPv2
classic), which attempted to provide a more secure alternative to SNMPv1's community string
authentication. Cisco routers used to support party-based authentication through the use of
the snmp-server party command but stopped supporting it after release 11.2 of IOS. 1

Instead, Cisco followed the example of many other vendors in limiting itself to handling only
the SNMPv1-style community string authentication defined by SNMPv2c.

Additionally, Cisco adopted a full implementation of SNMPv3, which includes a rich set of
cryptographic security mechanisms. One of the few major vendors that still supports the
enhanced security framework of the SNMPv2 generation is Sun, which uses user-based
authentication mechanisms defined by SNMPv2u in its Sun Management Center product. (Sun
sometimes refers to this protocol as SNMPv2usec .)2

Another method of obtaining detailed information about remote system attributes is available, in addition
to using SNMP or custom monitoring agents. This third method involves remotely executing commands
that are native to the monitored host. For example, Mercury SiteScope (http://www.mercury.com) can
obtain data from remote Windows machines through the PerfMon API, which Microsoft designed to gather
performance-related information. To obtain detailed information from UNIX hosts, SiteScope executes
commands such as ps and uptime on the remote system via Telnet or SSH. When it comes to remotely

executing commands or obtaining potentially sensitive information from the observed systems, you must
take care to prevent attackers from exploiting the monitoring channel. We examine such considerations in
the next section.

Security Considerations for Remote Monitoring

Attackers can exploit monitoring mechanisms, just like any other service operating on the network, to
obtain sensitive information or to gain unauthorized access to remote systems. When selecting and
configuring a monitoring solution, consider the following factors relating to its defenses:

How sensitive are the monitoring communications that traverse the network, and should they be
encrypted? You might not be concerned about the confidentiality of CPU statistics carried across the
internal network, but you might not want to use clear-text SNMP to retrieve a router's running
configuration across the Internet.

How strong is the authentication scheme that prevents unauthorized entities from accessing
monitored resources? Many monitoring solutions rely solely on IP addresses for access control.
Additionally, SNMPv1 and SNMPv2c support only the use of community strings, which can be
intercepted over the network or brute-forced via tools such as SolarWinds
(http://www.solarwinds.net).

Do monitoring mechanisms provide write access to observed resources? Even though we have been
focusing on read-only aspects of system monitoring, SNMP can also be used to modify settings on
remote devices. For example, an attacker with write access to a resource might be able to manipulate
a router's ARP table or otherwise change the configuration of the system.

Can the monitoring infrastructure be exploited to grant attackers elevated access to the systems? For
example, a vulnerability in Big Brother allowed execution of arbitrary commands on the monitoring
server with the privileges of the Big Brother user (http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CAN-2000-0450). Even if the server were restricted to accept status information from only
specific IP addresses, systems hosting Big Brother agents could have been used to obtain access to
the monitoring server.

Unauthorized access from monitoring agents to the central server is a particularly significant concern
because the server is often located in a more secure area than the agents. Consider the configuration in
Figure 19.5, where the server on the internal network collects performance and availability information
from hosts on the screened subnet. If this scenario were implemented using Big Brother, client modules
that run on public servers would be sending notifications to the monitoring server's TCP port 1984 and
could exploit the CAN-2000-0450 vulnerability described earlier. (IANA officially assigned port 1984 for
Big Brother's client-to-server communications.)

Figure 19.5. The central monitoring server could be exposed to attacks coming
from a host on the screened subnet if agents can initiate connections to the

server.

[View full size image]

To minimize the risk of such attacks, run monitoring services as user accounts with constrained access.
Big Brother, for instance, should be set up as a dedicated user without administrative privileges. If
possible, also configure the hosts so that connections are initiated from the more secure subnet to limit
the possibility of privilege escalation across network security zones. In the case of SNMP, for example,
this would involve using the polling mechanisms when observing hosts across subnets as well as limiting
trap communications to a single subnet. Monitoring applications might allow you to set up dedicated
servers in each subnet for collecting status reports and then link them together; this way, the amount of
traffic crossing subnet boundaries is minimized.

Perhaps one of the safest ways to monitor devices is by remotely probing their ports from the central
server, as we discussed in the "Accessibility of Network Services" section. This method does not provide
detailed information about the local state of the observed machines, but it also does not require that
additional software be enabled on remote systems. Moreover, monitoring services that need to be
accessible over the network, such as HTTP, DNS, and SMTP, often can be tested over channels that are
already open. When a packet-filtering device blocks access to remote services from the network where
the monitoring server is located, be sure to open access only to and from IP addresses that are required
for monitoring to take place.

Monitoring products out of the box rarely provide many options when it comes to restricting which

systems can obtain status information from a remote agent or who can submit status reports to the
central server. Most products support restrictions based on IP addresses. To set this up in Big Brother, for
example, you need to edit its security file to list addresses of hosts that should be able to communicate
with the monitoring server.

Note

Monitoring products can provide supplementary modules that enhance the security of
communications between the monitoring components. For example, you can purchase an add-on
to HP OpenView Operations, called Advanced Security, to support encryption and cryptographic
authentication.

IP-based restrictions form a useful layer for improving the security of the monitoring infrastructure and
are most effective when combined with strong authentication in client-to-server communications.
Cryptographic authentication is supported in SNMPv3; you should take advantage of it when setting up
your monitoring infrastructure. SNMPv3 can also encrypt its messages, which helps to protect their
confidentiality. As SNMP agents are beginning to adopt the security mechanisms of SNMPv3, it is
becoming easier to find a monitoring system that can support them. Here is a list of some of the products
able to securely communicate with SNMPv3 agent modules:

HP OpenView and IBM Tivoli, with the help of an add-on called SNMP Security Pack
(http://www.snmp.com/products/snmpsecpack.html)

Castle Rock SNMPc Network Manager (http://www.castlerock.com)

AdventNet SNMP API for implementing SNMP support in Java-based applications
(http://www.adventnet.com/products/snmp)

MG-SOFT SNMP management software (http://www.mg-soft.com)

Net-SNMP, a popular set of free SNMP utilities for UNIX, utilized by applications such as Big Brother
(http://net-snmp.sourceforge.net)

By this point in the chapter, we have discussed the fundamental principles of setting up system and
network monitoring in a secure and reliable manner. After such infrastructure is in place, administrators
can connect to a central server to view the status of the network's hosts and devices. The next step in
maintaining a security perimeter is ensuring that administrators are alerted when critical conditions occur
and empowering administrators to quickly respond to such events.

Incident Response

An incident , in the context of this chapter, is an anomalous event that can impact the
confidentiality, integrity, or availability of the infrastructure. The anomaly might be
malicious, or it might be an indicator of a system fault. In either case, we need to know
how to set up alerts that warn us about a potentially threatening condition. Both IDS and
system-monitoring mechanisms are useful for detecting suspicious events, but they are
not of much help if administrators are not actually aware of conditions that these systems
observe.

One way to remain apprised of the state of your resources is to periodically check the
status screens of the monitoring system or the IDS console. Relying solely on this
approach, however, does not allow detection and reaction to problems as soon as they
occur. This is an especially significant concern for organizations that need to respond to
incidents around the clock but cannot afford to hire personnel to observe the alert screen
of the monitoring system 24 hours a day. Configuring IDS and monitoring systems to send
out alerts and knowing how to respond to alarm conditions is an integral part of effective
security perimeter maintenance. In this section, we discuss how to configure notification
options in a way that is consistent with your security policy and monitoring requirements.
Additionally, we examine considerations for responding to detected system faults and
malicious events.

Note

Relying solely on automation of IDS or of the monitoring systems to detect all
suspicious events in real time is dangerous. We illustrated limitations of this
approach in Chapter 8 in the discussion of false positives and false negatives.
Therefore, be sure to combine automated alerting with manual examination of
data that such systems collect.

Notification Options

An old slogan of a New York telephone company reminded people that "We're all
connected." Accessibility of system administrators, wherever they are, allows systems to
get in touch with them in close to real time whenever a device requires attention. When
evaluating or deploying an IDS or a monitoring system, consider the following aspects of
its notification functionality:

What means of alert notification do you require? Some of the more popular options are
email, pager, and SMS-based messages. It might also be possible to integrate the
notification mechanism with other applications already in use in your organization.

What alert acknowledgement options do you find useful? If a critical alert is sent to
multiple administrators, you might want to have the ability to let your colleagues
know that you are working on the problem so that your efforts do not overlap.

How configurable is the notification logic? You might want to send alerts to different
people depending on the day of the week or the time of the day, or issue alerts to
different devices depending on the event's severity. Also, plan for outages in your
notification scheme because the primary notification mechanism might fall victim to a
system fault or an attack.

Tip

Keep in mind that some of the cheaper paging devices, especially those that are
purely numeric, do not guarantee a message will be delivered. To ensure that an
alert eventually reaches the administrator when he is back in the
communications range, you might want to subscribe to paging services that can
queue messages to guarantee their delivery. Alternatively, or in conjunction with
this, consider configuring the monitoring system to periodically reissue alerts
until one of them is acknowledged.

One of the advantages of having a centralized alerting configuration is that only a single
host needs to have the ability to generate alerts destined for the mailboxes or pagers of
system administrators. This eliminates the need to set up dial-out modems on every
observed system for dialing a numeric pager or the need to enable each server to send
email when its business purpose does not require such functionality. In Big Brother, for
example, a central server consolidates performance and availability information, and only
the host that is designated as BBPAGER issues notification alerts. To eliminate a single
point of failure, you might consider setting up multiple alert-generating systems or
configuring them to operate in a failover mode.

General Response Guidelines

Make sure your company's policies and procedures clearly explain what an administrator
should do when responding to an alert. Creating and distributing a document that answers
the following questions will help you make sure problems are resolved in a consistent and
thought-out manner that has the support of management and technical personnel:

Who is responsible for responding to alerts? Defining this in advance helps ensure that
the qualified staff members are available, according to relevant policies and business
requirements. Also, this helps prevent administrators from failing to respond because
they think somebody else will react to the alert.

Whom should the administrator notify of the problem? As we already discussed, it is
often worthwhile to let other administrators know that someone is responding to the
alert. Additionally, the company's management should probably be notified of severe
or prolonged conditions.

What troubleshooting and investigative steps should the administrator take when
resolving a problem? Consider creating a document that explains how to handle
problems common to your infrastructure. (Chapter 21, "Troubleshooting Defense
Components," addresses this aspect of perimeter maintenance.)

How should the administrator connect to the troubled system? VPN access might come
in handy when the administrator is away from the hosting facility. You might also
want to define transportation options if she needs to travel to the hosting facility.

When should the administrator call for help? It's possible that the person who is
responding to an alert might not be the best person to resolve a particular problem.
Specifying in advance when to involve a colleague, or even an external vendor, and
empowering the administrator to do so even during off-hours helps to expediently
resolve problems.

How should the administrator document the cause of the problem and its resolution in
a way that might help the company learn from this experience?

It is not uncommon for the administrator who is responding to the alert to perform a
preliminary examination and then to call in the heavy artillery for in-depth

troubleshooting. One such scenario, perhaps most relevant to this book, is when the
administrator suspects that the event is malicious in nature. Your security policy should
account for the need to investigate such situations and define the roles and
responsibilities for the staff involved in responding to malicious incidents.

Responding to Malicious Incidents

Any anomaly, whether reported by an IDS or a monitoring system or recognized by a
human, might turn out to be a malicious incident. After the event is deemed to be
malicious, the specialized procedures created for handling such situations should guide
your staff's response. These procedures can be broken into several phases, as defined in
Computer Security Incident Handling Step by Step , published by the SANS Institute.3 The
following list presents a high-level overview of these phases:

Preparation Tasks in this phase need to take place before an actual response to a
malicious incident. They involve formalizing policies and procedures, training team
members, and preparing communication channels for contacting people inside and
outside your organization.

1.

Identification In this phase, a primary handler is assigned to the incident. He begins
the investigation by determining whether the incident is, indeed, malicious. If it is, he
assesses its scope, establishes a chain of custody for collected evidence, and notifies
appropriate personnel.

2.

Containment The purpose of this phase is to set the stage for further analysis while
preventing the incident from escalating. Here, the handler creates a backup of the
affected systems to make sure that pristine evidence is available for later use. He also
assesses the risk of continuing operations by reviewing logs, interviewing observers,
and consulting with system owners. Determining the extent of the compromise and
either taking appropriate systems offline or attempting to otherwise block the
attackers' access achieves containment.

3.

Eradication At this point in the response effort, the handler determines the cause of
the malicious incident, reinforces the system's defenses, and closes any
vulnerabilities that might have allowed the attack to succeed.

4.

Recovery This phase is devoted to restoring and validating affected systems,
returning to business as normal, and continuing to closely monitor systems that were
compromised. At this point, the organization needs to decide whether it is ready to
resume operations.

5.

Follow up In this phase, the incident handler creates a report that consolidates the
team's experiences that relate to the incident. This "lessons learned" process helps
improve the organization's defenses by addressing factors that allowed the
compromise to occur. At this stage, the team implements the follow-up actions
management approved.

6.

As you can see, responding to alerts, whether they relate to a system fault or a malicious
event, is no easy matter. As we discuss in the following section, you might be able to
automate responses to some of the simpler events that require immediate action and that
can be addressed without directly involving the administrator.

Automating Event Responses

Automating responses to events that are unlikely to be false alarms helps to expedite
problem resolution. For instance, a monitoring system might detect that a critical process
on the observed host died, issue an alert to the administrator, and automatically start a
new instance of the process. When configuring such functionality, you might want to set
limits on the number of times the system attempts to take corrective action in a given

time period. If the process repeatedly dies soon after being restarted, chances are good
that the automated recovery mechanism cannot help in this situation, in which case an
administrator should become directly involved. Even if the fault was automatically
resolved, the administrator should still follow up to assess the scope of the problem,
determine its cause, verify that the corrective action was acceptable, and attempt to
prevent the fault from reoccurring.

Another type of automated response can take place when an intrusion detection system or
an intrusion prevention system detects a malicious event. Such products may allow you to
automatically respond to the attackfor instance, by resetting the offending network stream
or dynamically reconfiguring the firewall to block the attack. As we discussed in Chapter
8, "Network Intrusion Detection," and Chapter 11, "Intrusion Prevention Systems," such
automated response carries the advantage of shunning the attacker as soon as malicious
actions are observed, but it is often dangerous because it might deny service to a
legitimate user. When deciding whether to enable such intrusion prevention functionality,
weigh the risk of mistakenly blocking an authorized user against the risk of not blocking a
particular attack right away.

In our discussion about maintaining a security perimeter, so far we have looked at
monitoring the infrastructure for faults and malicious events and discussed how to
efficiently respond to alarming conditions. An effective way of decreasing the rate at which
anomalies occur in the first place is to ensure that perimeter components are updated in a
controlled manner. We examine the process of managing changes to the environment in
the following section.

Accommodating Change

The reality of maintaining a security perimeter built perfectly in tune with the
organization's business needs is that at some point it will need to change to accommodate
new requirements and emerging threats. The ability of the infrastructure to handle change
in a controlled manner is one of the main attestations to the quality of its design,
implementation, and maintenance. This section discusses rolling out patches,
reconfiguring systems, and detecting environment changes without compromising the
security of your network.

Fundamentals of Change Management

The general concept of change management refers to the ability to handle changes in
business or technical areas of the organization. In the confines of this chapter, we focus
on processes that support changes to network infrastructure and applications. One
example of a process that might require change management is the rollout of a critical
patch to web server software that needs to take place without causing prolonged
downtime, crippling its applications, or exposing new security weaknesses. Similarly, a
change to a firewall's rule set should take place without inadvertently denying authorized
traffic or exposing internal systems to new threats. To accommodate such adjustments to
the infrastructure, a robust change-management process should incorporate the following
elements:

Buy-in from management and technical personnel

Communications regarding proposed changes

Prevention and detection of unauthorized changes

Ability to test changes before deployment

Procedures to verify proper system operation

Ability to roll back undesired changes

The majority of change-management situations benefit from a process that incorporates
these steps. However, the extent of each phase might differ, depending on how
complicated or risky the change is. For example, migrating a mail server from Microsoft
Exchange to Lotus Notes is likely to require more planning and testing than adding a
routine security patch to a server. Next, we examine these elements in greater detail so
that you are better positioned to set up a change-management program that matches your
needs.

Obtaining Buy-in from Relevant Personnel

You should obtain buy-in from relevant parties regarding the reasons for implementing the
change before rolling it out. For instance, you might have valid reasons for wanting to
block all outbound SMTP access from your screened subnet, but you might not realize that
several servers hosted there have valid business reasons for generating email. We
recommend formalizing the change-approval process so that management and technical
personnel have a chance to voice objections to upcoming modifications. This procedure
helps prevent making rushed choices that cause adverse side effects. The process should
also define individuals who are authorized to make final decisions regarding proposed
changes; this eliminates unending discussions and resolves potential conflicts.

Communicating Proposed Changes

You should keep business and technical personnel apprised of proposed modifications so
that they are not caught off guard when the change occurs. Establish a procedure for
notifying appropriate parties of scheduled changes and verify that all relevant parties have
a way of obtaining necessary information. Also, do not forget to notify end users that
systems might be inaccessible for a certain time period. To help alleviate inconvenience
caused to end users by potential service disruptions, consider scheduling the change to
take place during off-time hours.

Tip

To make notification to relevant personnel of planned service disruptions easier,
consider preparing template documents that describe some of the more common
downtime scenarios. The templates should explain when the event will occur,
which services will be impacted, and when systems are scheduled to resume
normal operation. You might also want to explain how users or the organization
will benefit from upcoming changes so that they are more supportive of your
plans.

Preventing and Detecting Unauthorized Changes

You are probably well versed in enforcing access controls by this point in the book.
Implementing such controls will help prevent unauthorized or inadvertent changes to your
systems. Also, integrity-assessment tools, such as Tripwire, are useful for detecting
unapproved changes or for tracking authorized changes that mold your system during its
lifespan. To prevent unpleasant situations in which administrators' actions are second-
guessed, your security policy should clearly define who is authorized to make changes and
what approval and communication process they need to follow.

Testing Changes Before Deployment

All changes to be introduced into a production environment should be tested first on a
separate, staging network. Granted, you might not be able to afford to create a full replica
of your production infrastructure for this purpose. However, you might still be able to
introduce the proposed change into a scaled-down laboratory environment to help you
assess the risk of rolling it out to production. When testing, be sure to go through the
process of regression testing, which tests the new environment for all bugs. Often, by
fixing an open problem, you might reopen an issue that was fixed previously. Regression
testing will help you find these problems before they are reintroduced into the production
environment. Your effort in testing a change before deployment should be proportional to
the impact that the change is likely to have on the production environment. In most
cases, adding an entry to a system's hosts file is likely to require less testing than
upgrading the version of the firewall software.

Verifying Proper System Operation

Having a detailed plan for verifying that the infrastructure functions properly after the
change is rolled out allows you to limit the impact of problems and makes it easier to
track down their causes. The plan should incorporate a standard suite of tests that are
performed after any change and should include specific tests to verify that the intended
change has been implemented. Be sure to test access to relevant services and exercise
core aspects of applications after upgrading software, reconfiguring hosts, or tweaking
access control rules.

Rolling Back Undesired Changes

Even after all the planning and testing, your change might cause problems that you are
unable to correct right away; in that case, you will need to roll back to the previous
configuration. You save yourself and those around you a lot of anguish by preparing (and
testing) a rollback plan before implementing the change. A time-tested method of
reversing the effects of a change to a system is to restore it from the most recent backup.
Of course, be sure to verify that such a backup exists and that you are able to restore data
from it before implementing the change. A tape backup might come in handy even if you
are applying a patch that has an uninstall function because such rollback mechanisms
have been known to fail. If the scope of your change is relatively narrow (for instance, if
you are just modifying a configuration file), a rollback plan might be simply a matter of
creating a copy of the file before editing it.

When making changes to the infrastructure, you are often faced with making tough
choices, even if your change-management process incorporates the principles mentioned
earlier. In the next section, we go over several mechanisms that can help you make such
decisions.

Implementing Change-Management Controls

The process of change management, described in the previous section, focuses on making
sure that changes to the environment happen in a controlled and deterministic fashion.
The cornerstone of this process is a documented change-management procedure that
explains how things should be done, when, and by whom. There are also techniques that
can make it easier for your organization to follow this procedure. In this section, we
examine two essential ways of using tools and procedures to assist in implementing
change-management practices:

Applying patches

Discovering new services and devices

Let's start by looking at an age-long problem that you've most likely faced in your career
already: applying patches.

Applying Patches

On numerous occasions throughout this book, we've emphasized the need for regularly
patching your OS and applications to prevent attackers from exploiting known software
vulnerabilities. Unfortunately, sometimes this is easier said than done. It is not always
easy to keep track of patches that vendors release for all the products you need to
maintain. More importantly, some of the more urgent patches do not undergo regression
testing, so the vendor does not guarantee that they will work well in all permutations of
system configurations.

To make it harder to forget applying necessary patches, clearly designate individuals who
are responsible for monitoring patch and vulnerability announcement forums. It often
makes sense to assign this responsibility to system administrators who maintain the
respective products, but do not assume that they are already subscribed to the relevant
mailing lists. Consider handing out a list of applicable announcement forums. As a security
professional, you should monitor them as well to help ensure a vulnerability does not go
by unnoticed.

As a stream of vulnerability announcements flows through your mailbox, you need to
decide whether they apply to your environment and how urgent it is for you to react. You
need to weigh the risk of delaying a patch rollout, perhaps to perform more thorough
testing, against the risk of having a vulnerable network resource. For instance, if a patch

prevents an exploitable compromise of your DNS server, you might want to deploy the fix
as soon as it comes out. A patch that is, perhaps, less urgent might be one that aims to
correct a theoretical vulnerability in a print server deep within your network. If the print
server is not your most critical resource, you might decide to wait until the vendor
provides a more comprehensive upgrade or until your peers share their experiences
pertaining to this patch. In some cases, patches might not be available or might be too
risky to apply, and you will need to consider other workarounds to address critical
vulnerabilities.

Whatever decisions you make regarding applying, testing, or delaying the installation of a
patch or a workaround, be sure to document them. Such journals will help you remember
reasons for making certain decisions, and if you chose not to apply the patch, the journals
will allow you to revisit the decision at a later date. We suggest including the following
fields in each journal entry:

The date the patch or the vulnerability was announced

The list and description of systems to which the patch or the vulnerability applies

The decisions made regarding the patch or vulnerability

The names of persons who made the decision

If corrective action was deemed necessary, who is responsible for implementing it

The date on which the decision was made, or when the corrective action was taken

In large environments, it might be difficult to know versions of applications that are
installed throughout your organization, or even which services are running on remotely
accessible systems. The next section focuses on techniques for keeping track of new
systems and services that come online on your network.

Discovering New Services and Devices

You need to know which systems and services are available on your network to be able to
assess risks and correct potential vulnerabilities. To help achieve this awareness, you
might establish a policy that new network services have to be registered with and,
possibly, approved by information security personnel. However, environments change
quickly, and before too long, your network is likely to contain resources that you were not
notified about. One of the most effective ways to discover the presence of unauthorized or
inadvertent network resources on your network is to compare periodic snapshots of the
state of your network.

We already described one mechanism for discovering which services are offered by your
systems in Chapter 9, "Host Hardening." There, we mentioned the netstat na command,

which lists ports that the system listens on. Consider scheduling this command to run on
regular intervals so that you can discover when a critical system begins listening on
unexpected ports. You can then create a script that compares the output of each
successive run by using tools such as fc.exe under Windows or diff in UNIX. This

technique focuses on individual systems, but it might not be practical for monitoring the
state of workstations, servers, and devices on a mid-to-large-size network.

Network and vulnerability scanners, which we describe in greater detail in Chapter 22,
"Assessment Techniques," offer a way to remotely test for the existence of network
services. To locate newly set up systems or unauthorized port listeners, you would
compare the output of successive network scans and flag the differences. Nessus, a
popular vulnerability scanner, and Nmap, one of the most powerful network scanners,
make this a relatively painless task.

Nessus, freely available from http://www.nessus.org, does a great job of scanning
networks for accessible hosts or open ports, and it specializes at probing systems for
known vulnerabilities. One of the ways to detect changes in your environment is to

regularly scan your network with Nessus and compare the results.

If you are not interested in scanning for vulnerabilities or you prefer to use a tool other
than Nessus, you can take advantage of the scanning capabilities of Nmap. Nmap
(http://www.nmap.org) is a wonderful tool for locating hosts and open ports, and it's
invaluable for performing security assessments. You can also schedule Nmap to
periodically scan your network and compare differences in the network's state. To perform
such differential scans with Nmap, you can compare the results of your scans using a tool
such as fc.exe or diff, or you can use an add-on utility called NDiff, available for free

from http://www.vinecorp.com/ndiff.

To use NDiff, you first scan your network with Nmap and then save the output into a file
by using an m option, like this:

nmap -m snapshot.nm 192.168.1.0/24

In this example, Nmap port-scans all hosts on the 192.168.1.0/24 network and saves the
output into a file called snapshot.nm. The next time you run Nmap, you would save its
output into a different filesay, newsnapshot.nm. You would then use NDiff to compare

contents of the two files, like this:

ndiff -b snapshot.nm -o newsnapshot.nm -format minimal
new hosts:
192.168.1.100

missing hosts:

changed hosts:
192.168.1.204
80/tcp/http (unknown -> open)
443/tcp/https (unknown -> open)

In this example, NDiff detects that a new host appears on the network and that another
host begins listening for HTTP and HTTPS connections. To simplify the task of running
Nmap, storing its output, and then comparing the results of the scan, NDiff comes with a
wrapper utility called nrun.

Using differential scanning, you might detect services that should not be present on your
network and react by disabling them. On the other hand, your investigation might show
that a new service has a legitimate need, in which case you will need to understand what
it is about in order to determine how it should be configured. In Chapter 15, "Software
Architecture," we presented a software evaluation checklist with questions that you can
ask when assessing how an application fits in with the rest of the security perimeter. We
suggest asking such questions not only of your third-party providers, but also of your
colleagues. Understanding the application's technical and business requirements will help
you assess its risks and devise appropriate mitigations.

Summary

In this chapter we discussed the core principles of maintaining a security perimeter and
examined the fundamentals of system and network monitoring, incident response, and
change management. A reliable monitoring process is essential to knowing the state of
your infrastructure and allows you to rapidly detect problems and react accordingly. We
also covered considerations for centrally monitoring remote resources without exposing
them to additional vulnerabilities.

Next, we examined incident response procedures to prepare you for responding to alerts
generated by monitoring and intrusion detection systems. We emphasized the need to
define a detailed plan for handling malicious and fault-related incidents so that you can
focus on investigating and eliminating the problem when the need arises.

Recognizing that even the most thought-out infrastructure is bound to evolve along with
the organization, we described the significance of sound change-management practices.
This aspect of perimeter maintenance focused on applying patches, deploying new
applications, enforcing controls, and detecting infrastructure changes in a deterministic
manner.

The next chapters are meant to help you apply some of the practices discussed in this
chapter while incorporating design concepts from earlier parts of the book. We also
examine the process of assessing the effectiveness of the architecture and the
implementation of the security perimeter. Stay tuned!

References

1 Cisco Systems, Inc. "Configuring SNMP Support." 1998.
http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121cgcr/fun_c/fcprt3/fcd301.htm.
February 2002.

2 Sun Microsystems, Inc. "Sun Management Center 3.0: General FAQ."
http://www.sun.com/solaris/sunmanagementcenter/faq/faq-general.html. February 2002.

3 Stephen Northcutt . Computer Security Incident Handling Step by Step . SANS Institute. 1998.

Chapter 20. Network Log Analysis
One of the most challenging, yet rewarding, aspects of perimeter security is network log
file analysis. This process involves trying to identify intrusions and intrusion attempts
through vigilant monitoring and analysis of various log files and then correlating events
among those files. There are many different types of network log files to review, from
network firewalls, routers, and packet filters to host-based firewalls and intrusion
detection systems (IDSs). Although analyzing log files might sound a bit tedious to you,
the techniques presented in this chapter can help you to gain a great deal of value from
your files in a short amount of time.

This chapter discusses several important topics that demonstrate why log file analysis is
so critical to establishing and maintaining a strong perimeter defense:

Purpose of and characteristics of log files

Basics of log file analysis, particularly how to automate as much of the analysis as
possible

Examples of how to analyze router, packet filter, network firewall, host-based firewall,
and host-based IDS logs

By the end of this chapter, you should be well prepared to perform your own analysis of
network log files in your environment to accurately identify suspicious and malicious
activity and to respond to it quickly. As a first step toward that goal, let's talk about why
you should care about log files and what they can tell you if you listen.

The Importance of Network Log Files

In many environments, system administrators largely ignore network log files; the
administrators are constantly putting out fires and don't have time to devote to log file
review. Actually, it's more accurate to say that the files are ignored until a major incident
occurs. Then there's a mad scramble to find out what happened, which typically includes a
check of log files, often done by an administrator who isn't very familiar with the log file
format or the proper procedures and steps for performing good log file analysis.
Sometimes the administrator discovers that detailed logging was not enabled, so no record
of the event exists. After the crisis has ended, the log files are again ignored until the next
catastrophe occurs.

Log files have many things to tell you, if you only stop to listen to them. Log files have
several purposes of which you might not be aware, which will be reviewed in the
"Purposes of Log Files" section later in this chapter. They are incredibly helpful in meeting
a range of needs, such as intrusion detection, incident handling, event correlation, and
troubleshooting. Each log file contains many pieces of information that can be invaluable
if you know how to read them and, more importantly, if you know how to analyze the data
from a perimeter defense viewpoint to identify scans, intrusion attempts, misconfigured
equipment, and other noteworthy items. Before you can learn how to analyze the data,
you first have to understand what sort of data you will likely have.

Characteristics of Log Files

Many different types of log files exist, and they are generated by various sources. Most
operating systems, including all flavors of UNIX and most versions of Windows, are
capable of performing extensive logging of events as they occur. Also, many applications
log events of significance, such as authentication attempts, application errors, and
configuration changes. For our purposes, we are most interested in analyzing network log
files; to understand the events that occur on a network, you want to focus on log files that
record network-related events, such as successful and failed connections. Many other logs
(such as operating system log files) also contain valuable information that can be used to
correlate the network activities, although the primary focus in this chapter is the
examination of network logs. Devices such as firewalls, routers, and network IDS generate
network logs.

Note

Although operating systems and many applications have great logging
capabilities, they are often disabled by default. System administrators must take
care to ensure that logging is enabled and that the logs are sufficiently detailed.

If you have ever looked at log files from several different devices or applications, you
have surely noticed that the logs are typically in completely different formats. Later in this
chapter, starting with the "Analyzing Router Logs" section, we will review some of the
most commonly encountered log formats. Although it's important to realize that log
formats differ, it's far more important to understand that different devices and applications
might log very different information. Some logs contain little useful data, perhaps only a
timestamp and the source and destination addresses and ports, whereas others contain
just about everything you would possibly want to know about the event in question. Some
logs record virtually every characteristic of traffic, plus an interpretation of the

significance of that traffic. The two main factorsvarious log formats and different log
informationare what make network log analysis a bit intimidating at first. Let's work
through that by examining what data you might find in network log files.

Information That Log Files Usually Record

Most systems that utilize network log files record several core pieces of information about
each connection or packet that they deem to be of interest:

Timestamp, which typically includes the date, as well as the time (in seconds or
fractions of a second) when the event occurred or when the event was recorded to the
log

Basic IP characteristics, such as source address, destination address, and IP protocol
(TCP, UDP, ICMP, and so on)

TCP or UDP source and destination ports, or ICMP type and code

Additionally, most log entries contain some sort of reason why the event was logged.
However, this varies widely among log formats:

Descriptive text explanation

Rule number that matched traffic

Action that was performed, such as accepting, dropping, or rejecting a connection

Although this might not seem like much data, you can do a lot with just this information.
For example, you can analyze it to identify port scans, host scans, or other failed
connection attempts. You can also do basic traffic analysis, but with just these elements,
the amount of analysis you can do is quite limited. You need more data on events to
perform a more in-depth analysis.

Information That Log Files Sometimes Record

Many network logs do record more information than just the core items. Other types of
data that might appear include these:

Other IP characteristics, particularly the IP identification number and the time to live
(TTL)

More TCP-specific characteristics, such as flags (SYN, ACK, and the like), TCP window
values, and TCP sequence numbers

The interface that saw the event

The beginning of the payload's content, although this is much more the exception than
the rule

These additional fields can be beneficial in terms of log analysis. For example, the time to
live and TCP window values can be used to perform OS fingerprinting to determine the
likely OS of the attacker (although attackers can modify telltale values such as the TTL).
TCP flags might indicate the intent of an attacker; certain flag combinations tend to mean
that the packets are trying to evade firewalls or IDSs. Some of these extra fields can also
help determine what tool or malware is generating the attack. Many tools have a unique
signature, and these data elements can help you to find that signature so that you know
exactly what the attacker is trying to do. Unfortunately, even with this extra information,
you still might not have enough data to perform as detailed of an analysis as you would
like to do.

Information That Log Files Rarely Record

Most devices that perform network logging do not closely examine or even record the full
payloads of the traffic they see. Doing so is generally outside the capabilities of the
device, and it is incredibly resource-intensive. Most network logging is based on
examining the core characteristics of the packets and connections and making decisions
based on those characteristics alone. There's little need, from the perspective of that
device, to examine or record all the packets in a connection.

However, it's often beneficial to have more information on traffic and to be able to do
more careful evaluations of payloads. It's often useful to record full packet headers as well
to capture all the pertinent information, not just the header values stored in the log. If full
packets are recorded for connections or packets that are deemed suspicious, you could
then perform a deeper examination as needed and have all the packets' information
available. Unfortunately, many logs do not support packet recording; in these cases, you
might be able to set up a dedicated packet sniffer or use a program such as Tcpdump to
perform packet captures. However, in most environments, the volume of traffic and
required storage space will be too high to record all packets, and organizational policies
might forbid the recording of all traffic for privacy or liability reasons.

Most devices that perform network logging do not also perform protocol decoding at the
application layer. A good example of this would be a DNS request. A network log might
report that host 10.20.30.40 sent a packet to UDP port 53 on host 172.30.128.12. You see
port 53 and think "DNS," but you really have no idea whether this was a DNS request.
Even if it were a DNS request, you have no information about the request. With the
exception of a proxying firewall, devices that perform network logging usually don't do
protocol decoding or verification. You must rely on network intrusion detection and
prevention systems, as well as proxies, to perform protocol verification.

Note

One great feature of proxying firewalls is that a web proxy can log URLs. If a new
worm that exploits HTTP is spreading, other perimeter devices may log port 80
connection attempts, but the web proxy will actually log the URL that the worm
uses, which can be invaluable in determining what is occurring.

Purposes of Log Files

Now that you have looked at the types of data that log files record, let's step back for a
minute and think about the purposes that log files serve. Of course, the main purpose of a
log file is to record events of significance or interest. But what you would really like to
know is how these records can be useful to you and your organization. As you will see, log
files have several important roles to play and can assist you in such areas as incident
handling, intrusion detection, event correlation, and general troubleshooting.

Incident Handling

Probably the most obvious use of network log files is to provide data that can be used for
incident handling. For example, if a network administrator receives a report that a device
has been compromised, she might use network log files to determine which host or hosts
might have been responsible for the attack and what methods of attack might have been
used. When a web page is defaced, the system administrators are likely to consult the web
server's logs, but also the logs of other devices through which the malicious traffic might
have passed, which could provide additional information about the attack and the attacker.
Network log files are an invaluable component of incident handling.

During incident handling, you will need to preserve evidence should you want to perform
disciplinary actions against someone within an organization or pursue legal actions
against an external party. Under those circumstances, log files are extremely important
for forensic purposes. When properly preserved, network log files provide evidence of
activityevidence that might be admissible in legal proceedings. The procedures you need
to follow for evidence handling vary widely depending on where you are located, but a
general guideline is that the original, unaltered log files should be preserved, preferably
both electronically and on paper. Contact your local law enforcement agency for advice on
how to preserve log file evidence. For additional information on incident handling, see
Chapter 19, "Maintaining a Security Perimeter."

Intrusion Detection

Although log files are invaluable during the handling of many incidents, this is a purely
reactive use of log files. A related proactive use is that of intrusion detection. By
automatically and continuously monitoring log file entries, you can be notified when
someone is scanning your network or performing reconnaissance, or when an actual
incident is in progress. This will also help with incident handling; when a significant
intrusion is detected and reported to you, you already have much of the data you will need
to perform incident handling for that event.

Note

Even the simplest firewall and router logs can be used for some basic intrusion
detection. For example, blocked packets or connections can be counted by source
or destination IP address or by destination port, which is useful in identifying
scans, probes, and other reconnaissance attempts.

Event Correlation

Event correlation is useful in performing both incident handling and intrusion detection.
When we speak of event correlation, we mean that it's possible to use multiple logs from
various devices or applications together. Event correlation can be done to confirm what
has occurred. For example, you see a suspicious entry on an internal router's log that
involves an external host, and you search the logs of the Internet firewall for entries that
provide more information on the action. Another use of event correlation is to relate
events to each other. If your email server is compromised, you would search through
various network logs from routers, firewalls, and other devices to look for any evidence
relating to the compromise, such as other connection attempts made to the email server,
or other hosts on your network that have been targeted by the same attacker.

General Troubleshooting

A final use of network log files is to assist in general troubleshooting, particularly
involving connectivity issues. For example, a user complains that application XYZ can't
download data from an external server. By getting the IP address of the user's machine
and finding out what time he tried to use the application, you could quickly search your
firewall's logs to look for denied attempts to make the required connection. If your firewall
also logs all permitted connections, you could look for a valid connection to the remote
site, which would indicate that the problem most likely involves the remote server or the
application, not your perimeter defense configuration. More information on troubleshooting
is presented in Chapter 21, "Troubleshooting Defense Components."

Note

In most environments, configuring your firewall to log all permitted connections
is not possible due to the negative impact on performance and resources.
However, temporarily configuring your firewall to log all connections is often
helpful when troubleshooting a problem.

Log Analysis Basics

Now that we've discussed the basics of network log files, let's dig in to the really
interesting materialhow to analyze the log files after you have them. Log file analysis is
an incredibly important area of network security that is often overlooked. If network log
analysis is not being performed regularly and thoroughly in your environment, your
organization's perimeter defenses are significantly weakened because you and other
administrators are missing a large part of the overall security picture.

Getting Started with Log Analysis

When you're just starting to perform log analysis, you might find it difficult. Let's be
honestlooking at page after page of cryptic log entries probably isn't how you want to
spend your time. You have many other tasks to do, and most of those tasks are attached
to people who are calling you, wanting to know when you're going to be taking care of
them. Log files don't yell at you or beg for your attention, so it's easy to ignore them or
forget about them altogether. And when you first start analyzing your logs, it's bound to
take a significant amount of your time.

But after you have been reviewing your logs on a regular basis for a while and you have
automated the log analysis (as described in the "Automating Log Analysis" section later in
this chapter), you will find that it doesn't take as much of your time as you might think,
and it can actually save you time and headaches down the road. The hardest part is
getting started. Here are some tips that will help you start analyzing your logs:

Establish a set time each day to review your logs, and stick to that schedule.
Preferably, you can do your review at a time of the day when you will have minimal
interruptions. If you start making excuses for skipping your log file review, you will
most likely stop reviewing them altogether. Just hang in thereit will become easier
and faster over time.

Choose a reasonable length of time to do your daily log review and analysis session.
Of course, this is highly dependent on how many log entries you will be reviewing and
the security needs in your environment. An hour a day is probably a good starting
point; adjust accordingly as needed. Of course, if you find that the amount of time
doesn't work for you, you can always change it later.

Decide in how much depth you want to analyze your logs. There is value in doing an
overall review of all the log files, but also in doing an in-depth analysis of log
excerpts. When you're starting, it's probably good to try both techniques to get a
better "feel"for your log files.

Note

One method that might help you to "break the ice" and start analyzing your logs
is to do searches on them using keywords such as "blocked," "denied," and
"refused." With many log files, this is a quick-and-easy way to identify log
entries that might need further review.

This brings up a critical point: the concept of "feel." Much of the motivation for reviewing
your log files regularly is that you will get a feel for what your log files normally look like.

The only way to achieve this is through regular reviews. After you have a sense of the
baseline, it should be easy for you to spot most deviations from that baseline in the
future. If you know what entries are normally recorded in your logs, and one day you see
an entry that you have never seen before, you will naturally target that as something to
be investigated further. If you didn't have that feel for your logs, you probably wouldn't
even notice such an entry. That's the hidden value in performing regular analysisthe
ability to sense when something unusual has occurred. After you have that feel, you can
increasingly rely on automation to perform the basic log analysis for you, selecting only
those items that are of particular interest to you.

Fun with Log Files?

You might think that reviewing log files is not the most exciting way to spend
your time. Personally, I find log analysis to be a fascinating area of network
security, and it's actually become a hobby of mine. Honest! When I am
reviewing a potential incident, I think of log file analysis as a jigsaw puzzle,
with some pieces that don't look like they fit at all, and other pieces that seem
to be missing. Each piece has something to contribute to the picture, and
figuring out how they all fit together is really quite addictive.

When I first started doing log analysis, I found it to be rather boring and
difficult. I didn't understand most of the log formats, and I usually didn't realize
the significance of the data I was reviewing. Over time, my knowledge grew,
and trying to decipher the activity behind the log entries became a welcome
challenge. Try log file analysisyou might be surprised at how much you like it.

Automating Log Analysis

After you have been manually reviewing and analyzing your log files for a while, you will
be able to glance at many log entries and immediately understand their significance. Most
log entries will probably be of little or no interest to you. Over time, you will notice that
fewer of the entries merit your attention. This is where automated log analysis becomes
so helpful to you. By now, you know what log entries you really want to seeor, more
correctly, you know what log entries you really don't want to see. By automating parts of
the log analysis process, you can generate a report of only the unusual activities that you
would like to investigate further, which will save you a great deal of time.

Log analysis automation can be a bit tricky, depending on the format of the log files. Many
log files are in a text format, which means they are typically easy to review using
automated techniques. However, other log files are in binary or proprietary formats that
cannot be automatically reviewed in their native form. In some cases, you can export the
log file to a text file, either through the application that recorded the log file or through a
separate log conversion utility. In other cases, you might not be able to access the log file
information unless you use a viewer that the application provides; in this example, you
probably can't automate the review of that log file. Whenever possible, it is best to handle
log files that are in some sort of text file format, such as tab-delimited or comma-
separated values (CSV). This will make the rest of the automation process far easier.

Another potentially difficult aspect of log analysis automation is handling the volume of
the logs. Depending on the amount of traffic being monitored and what events are being
logged, a single log could contain millions of entries a day. Remember, you might be
reviewing dozens, hundreds, or even thousands of logs, depending on the size and
composition of your environment. In such a case, you will need to choose an automation
method that not only can process that number of entries in a timely manner, but also has
adequate storage space. Some of the possible automation methods are discussed in the
next section, "Getting the Right Data from Log Files."

As you do network log analysis, you will discover that reviewing the "bad" log entries is
often insufficient. Sometimes you will also want to look through the original log file to see
other entries from the same source IP address, for example, or to look for other activity
that occurred immediately before or after the event in question. If you save only "bad" log
entries and do not preserve the raw logs, you lose the ability to analyze such events. Raw
logs are sometimes required for evidentiary purposes, so saving them is often important.

Getting the Right Data from Log Files

As mentioned earlier, it's best to convert your binary log files to a text format such as tab-
delimited or comma-separated values. After you have your log files in a suitable format,
you want to find the pertinent log entries and generate a report. You can do this in two
ways:

Use a searching utility such as grep or sed to look through a log file for records that
match or do not match particular strings or patterns.

Import some or all of the data from the log files into a database and then search and
analyze the data.

Determining which method to use depends on several factors, including your own
preferences. Performance is a major consideration; if you have to process enormous
numbers of records, you need to choose a method that can handle it. This is dependent on
the number of log entries, the complexity of the searches and analysis you want to
perform, and the tools and databases available to you. Databases have a distinct
advantage because you can import logs into a database, store the data there, and run
reports over days, weeks, or even months of data and significant events. This can identify
suspicious activity that occurs over long periods of time, which might never be found by
processing a day's worth of data at a time. It is also invaluable when performing incident
handling because you can review previously logged events involving particular hosts or
protocols.

Many different tools can be used to assist in log file processing. grep and sed are two
useful text-searching tools from the UNIX world that have Windows equivalents.
Programming languages such as Perl can be extremely powerful in parsing log files,
selecting entries, and generating reports. If you have a small volume of logs, you might
be able to import them in a spreadsheet and analyze them through macros, sorts, and
searches. Microsoft Excel has a feature called AutoFilter that allows you to quickly sift
through numerous rows of data. For larger volumes of logs or more complex logs, a full-
fledged database might provide a robust and powerful solution that can analyze log entries
and generate reports of suspicious activities.

Note

If you are a UNIX administrator who needs to perform log analysis on Windows
systems, you might find that the task is much easier if you use a collection of
cross-platform tools such as Cygwin (http://www.cygwin.com/), which provides a
simulated UNIX environment, complete with many UNIX utilities, for Windows
machines.

Be aware that it might take considerable time and resources to create a log analysis
automation solution. You might need to write programs or scripts to perform the analysis
and to generate reports based on the results of that analysis. For every hour you spend
creating and testing a strong automation solution, you will save yourself many more hours
in analysis time, and you will be able to react much more quickly when an incident occurs.

Automating Check Point FireWall-1 Log Analysis

After spending hours each day looking through FireWall-1 logs, I realized the
need for a system to automate some of the mundane tasks of correlating and
flagging suspicious records. Unfortunately, we did not have the budget to
purchase a commercial log analysis solution, so I decided to do what I could
with a custom Perl script. The script I wrote operated as follows:

It extracted records from FireWall-1 log files.

It parsed each entry to pull out relevant fields for all blocked packets.

It counted the number of log entries for each source IP address, destination
IP address, and destination port.

It added record counts to numbers saved from previous runs.

It generated a report that specified the top 20 addresses and ports the
firewall blocked.

This relatively simple script made it easier for me to get a quick sense for the
activity present in each day's logs, and it helped me detect low and slow scans
that would not have come to my attention without maintaining a historical
record of events.

Designing Reports

This might seem to be a silly question, but what do you want to report? Of course, you
want to know what suspicious activity is occurring. But in many cases, it's ineffective to
generate a single report of all suspicious activity. Some events are going to be much more
significant than others in your environment by default, so you might want to emphasize
them in your report and summarize the less interesting events. For example, if your daily
logs typically include entries for a thousand port scans and two or three DNS exploit
attempts, you probably want to see some details on the DNS attacks but only a summary
of the port scan activity.

A key issue to consider is who will be receiving the report. If the report is just for you,
then by all means, design it however you would like to. Perhaps, however, you are
designing reports that will list suspicious activity for all of your organization's firewalls.
Some system administrators might like a report of all events that involve their hosts that
were logged by the firewall. The person who is responsible for web server security might
like a report of suspicious web-related activity. It would also be nice to be able to do
custom reports on demand, such as quickly generating a report of all events that were
logged in the past two weeks involving a particular IP address. Such a capability would be
extremely helpful when investigating an incident.

Using a Third-Party Analysis Product

Writing programs or scripts to analyze log files and generate reports might sound like a lot
of work. Many times, it is, although it does give you a highly tailored solution. If creating
your own automation system is not feasible, you might want to consider using a third-
party product that will perform some log analysis and reporting for you. Or you might want
to combine your own custom scripts with third-party products to create a solution.

Vendors such as ArcSight, e-Security, GuardedNet, Intellitactics, and NetForensics offer
products called security information management (SIM) software that can be of great

assistance to you in automating network log analysis. These products are designed to
accept logs from various sources, including many brands of firewalls, intrusion detection
systems, antivirus software, and operating systems. They can also accept generic text-
based logs, such as ones you might create for other products with your own custom
scripts. The SIM processes the log entries from all the sources to normalize the data into a
consistent format and then performs event correlation and identifies likely intrusion
attempts. SIM products offer other useful features, such as log archiving and extensive
reporting functionality. You can save yourself many hours by using a SIM product as the
heart of your network log analysis solution, but be warned that SIM products involve
major software and hardware expenses.

Timestamps

The importance of timestamps in log files cannot be emphasized strongly enough. If an
incident ever requires legal action and the timestamps in your log files are out of sync
with the actual time, you might have difficulty proving that the incident occurred at a
particular time. In many courts, you must be able to prove that your time source is
reliable. A much more frequent problem is that you will have a difficult time correlating
activities among different log files if all the log files are not synchronized to the same
time. It's easy to compensate for this if two boxes are in adjacent time zones and are
synched to be exactly an hour apart, but if you are dealing with 20 devices that are each
seconds or minutes apart from each other, it becomes nearly impossible to correlate
events effectively between any two logs, much less several of them.

The Network Time Protocol (NTP) can be used to perform time synchronization between
many different devices on a network, as well as synchronizing the clocks on a network
with a highly accurate NTP public time server. A detailed discussion of NTP is outside the
scope of this book, but more information on it is available at many sites on the Internet,
with the primary page at http://www.ntp.org/.

Hopefully, the logs you will be working with will have synchronized timestamps. However,
if you are forced to work with logs that have unsynchronized timestamps, you can make
the necessary adjustments to manually synchronize the logs. For example, you might be
able to write a script that requests the current time from each logging device at the same
time. It could then determine with a reasonable degree of accuracy (a few seconds) how
far out of sync each box is. When the log files for that day are analyzed, the timestamps
could be adjusted as necessary to bring all log entries to within a few seconds of being
correctly synchronized. Of course, if you have a device that is drifting badly out of sync on
a daily basis, you should probably be more concerned about taking care of its clock issues
than synchronizing its log timestamps!

Note

It is generally recommended that if your organization's systems cover multiple
time zones, you configure your systems to log everything using Greenwich Mean
Time (GMT) to avoid confusion.

So far in this chapter, you have learned about the basics of log files and some of the
fundamental concepts of log analysis. Now it's time to look at some real-world analysis
examples. For the rest of this chapter, you will examine classes of devices: routers,
network firewalls and packet filters, and host-based firewalls and intrusion detection
systems. We will go through several log examples by studying a particular log type's
format, reviewing a real example of that log format, and explaining how it can be
analyzed. By the time you reach the end of the chapter, you will have a great exposure to
how to analyze logs and identify suspicious and malicious activity. Let's start our journey
by looking at router logs.

Analyzing Router Logs

Compared to other log files you will look at in this chapter, router logs tend to contain only the most
basic information about network traffic. That makes sense because routers are typically processing high
volumes of traffic and only examine the most basic characteristics of packets and connections when
making routing decisions. However, this doesn't mean that router logs are not valuable; on the contrary,
they can be extremely helpful in identifying certain types of activity, such as unauthorized connection
attempts and port scans. Although the focus in this section will be on Cisco router logs, we will also
briefly look at what information other routers log, which tends to be roughly the same.

Cisco Router Logs

In Chapter 2, "Packet Filtering," we discussed Cisco routers in depth, including how their logging
capabilities can be configured. All Cisco routers use the same basic log file format. The following is an
entry from a Cisco router log:

[View full width]
Jan 28 03:15:26 [10.20.30.40] 265114: %SEC-6-IPACCESSLOGP: list 105 denied tcp 172.30.128
.12(1947) -> 10.20.1.6(80), 1 packet

The format of the log entries requires a bit of explanation. After starting with a date and timestamp, the
entry lists the router IP address and the message sequence number. The next entry, %SEC-6-
IPACCESSLOGP, requires a bit more explanation. The SEC-6 indicates that this is a security-related entry
of severity level 6; the IPACCESSLOGP refers to the specific message type. The remaining fields are the

ACL that matched this activity, the action performed, the IP protocol, the source IP address, the TCP
source port, the destination IP address, the TCP destination port, and the number of packets. (Cisco
routers use a similar format for UDP and ICMP packets.)

Note

If you're already familiar with Cisco router logs, you might look at this example and think that
the format doesn't match your Cisco router's logs. That's entirely possible; aspects of the log
format are configurable. For example, many logs contain an additional time value that indicates
the router uptime. Some logs also have a GMT offset value at the end of each entry.

As you can see, only the most basic information is logged. In this example, you know the IP addresses
and the TCP ports that were used, but that's about it. This entry tells us that an attempt to initiate a
connection to port 80 on host 10.20.1.6 was blocked. Port 80 is most commonly used for HTTP.

By itself, this router log entry doesn't give us much information, just that someone probably tried to
connect to the host for HTTP and that the router blocked the connection. However, think about what it
would mean if you saw thousands of entries like this one in your router log, each one targeting TCP port
80 on a different destination host. Then, based on these log entries alone, you would have strong reason
to believe that someone was scanning your entire network, looking for web servers.

Other Router Logs

Other brands of routers tend to log approximately the same information that Cisco routers do. Some
routers may also log a few additional fields that are helpful in performing analysis, such as the size of

each packet and the TCP flags that were set (if applicable). In most cases, though, you will not have that
additional information in router logsjust the most fundamental characteristics of the packets.

Although all your router logs will contain important information, the most significant logs to check are
probably from your border routers. If a border router denies a request from an external host, only that
router can contain a corresponding log entry; devices that are further inside your network will never see
the traffic. Therefore, that router's log is the only place you can see evidence of the denied request.
Border router logs are a rich source of information on failed scans, probes, and attacks that never reach
other areas of your network. Your network firewall logs are another great source of intrusion data.

Analyzing Network Firewall Logs

Dozens of different network firewall solutions are available, each with a unique logging format. Some
such devices log little information about trafficapproximately the same information that most routers log.
Other firewalls are capable of recording a great deal of detail about the traffic they monitor. As you will
see in the examples that follow, the variety in the amount of information logged has a large impact on
how deeply you can analyze incidents and suspicious activity. We have chosen to review the log formats
of some of the firewalls that were discussed in Chapter 3, "Stateful Firewalls": the Cisco PIX, Check Point
FireWall-1, and IPTables.

Cisco PIX Logs

The Cisco PIX firewall logs events of interest in the following format:

[View full width]
Jan 28 03:10:04 [10.20.30.50] %PIX-2-106001: Inbound TCP connection denied from 172.30.128
.12/1938 to 10.20.12.34/53 flags SYN on interface outside

Take a moment to compare the format of this entry with that of the Cisco routers. Although the two have
some similarities, they are different in certain ways as well. Whereas the Cisco router logs simply refer to
the rule number that caused the entry to be logged, the Cisco PIX provides a detailed text-based
explanation as to why this traffic was recorded. Also, note that the Cisco PIX records the TCP flags in its
log entry, but the Cisco router does not. Because you're already familiar with the Cisco router log format,
the rest of the Cisco PIX log format should be self-explanatory.

Let's practice log analysis a little more formally by examining the Cisco PIX log entry excerpt. What can
be determined about the nature of this event based solely on the log entry? Of course, you know what
date and time the event occurred. You can see which of your hosts was the target of the event and what
the IP address of the potential attacker is. You know which firewall logged the activity, which might be
helpful in determining why the traffic was blocked because you can examine that particular firewall's rule
set. In addition, the log shows that the traffic was blocked trying to enter the firewall from an external
interface. All this information helps you investigate the event and correlate it with logs on other devices.

One of the reasons that correlation is so important is that it's difficult to determine the nature of this
event based on just this log entry. You can see that the blocked connection attempt had a destination of
TCP port 53, which is typically associated with DNS traffic. Attackers often target TCP port 53 to get
information from DNS servers or to attack vulnerabilities in those servers. However, there's not enough
data here to make that assumption; a misconfiguration or another benign reason could cause this activity.
By correlating this log entry with other logsparticularly a network intrusion detection sensor that saw this
attemptyou can make a better determination as to the significance of this event.

Check Point FireWall-1 Logs

Check Point's FireWall-1 is another popular network firewall product. Check Point has a utility called
SmartView Tracker that can be used to review logs from several security products, including FireWall-1.
SmartView Tracker provides a GUI interface that displays the log entries in a table format. Some of the
fields included in FireWall-1 log entries are listed next:

The log entry number

The date

The time

The interface that saw the activity

The device that saw this activity

The type of log entry

The action that was performed (such as "block")

The destination port number or service name

The source IP address or hostname

The destination IP address or hostname

The protocol of the logged packet (such as "udp")

The rule in the firewall's rule base that is associated with the log entry

The source port number or service name

Additional information that might be applicable to the log entry

You might look at the order of these fields and think that it's rather peculiar. Most devices list the source
IP address and port together and then the destination IP address and port together; the FireWall-1 format
is quite different. However, there's a good reason for this. Think of what information you, as a log analyst,
are typically most interested in. You want to know what the target was; that is listed in the destination
address and port, which in most cases will correspond to a particular protocol, such as HTTP or DNS. From
an analyst's point of view, it makes a great deal of sense to pair the action with the destination service
because they are often related. The source port, which is often not a factor when analyzing traffic, is not
listed with the more pertinent data. Although this arrangement might be confusing at first, at least now
you understand why it might be done that way.

IPTables Logs

In Chapter 3, we discussed IPTables. As you will see, IPTables logs more comprehensively than the other
firewalls reviewed in this section:

[View full width]
Jan 28 03:09:31 mybox kernel: Packet log: IN=ppp0 OUT= MAC=xx:xx:xx:xx:xx:xx:xx:xx:xx:xx
:xx:xx:xx:xx SRC=172.30.128.12 DST=10.20.1.121 LEN=80 TOS=0x00 PREC=0x00 TTL=55 ID=13492
 PROTO=UDP SPT=1907 DPT=27374 LEN=60

Here's a quick interpretation of the fields in this log entry: date, time, IPTables hostname, Syslog level,
incoming and outgoing interfaces, MAC addresses, source IP address, destination IP address, packet
length (LEN), type of service (TOS), TOS precedence (PREC), time to live (TTL), IP identification number
(ID), IP protocol, source port, destination port, and IP payload length (LEN). You may have noticed that
the outgoing interface value is blank; this indicates that the packet was received locally.

Not only does IPTables log all the information that the Cisco PIX and Check Point FireWall-1 do, but it
also logs several other fields that are helpful in performing advanced log analysis. If you are highly
experienced with network intrusion detection, you probably already know how valuable this data can be
when identifying the nature of an attack, as well as the characteristics of the attacker.

Analyzing Host-Based Firewall and IDS Logs

So far, we have discussed performing analysis on logs from network firewalls and routers. These devices are
monitoring connections to and from many different hosts. Now let's turn our attention to host-based firewalls
and intrusion detection systems, which also record suspicious network activity, but only involve a single host.
Such systems are most often installed on workstations. They are discussed in Chapter 10, "Host Defense
Components."

Host-based firewall and IDS software often records activity that is otherwise unnoticed by network devices. For
example, a firewall that only logs denied or rejected traffic won't keep a record of a connection that it permits
to an internal host. In such a case, the internal host is the only device that might record the activity if it is
using a firewall and/or IDS that is configured to reject and log such an attempt. Also, in many environments,
few restrictions are placed on connections between hosts on the internal network; host-based network logs
might be the only way that some malicious activity between internal hosts is recorded.

ZoneAlarm

The format of ZoneAlarm logs is easy to understand. By default, ZoneAlarm records all its information in a
comma-separated value format in a text file called ZAlog.txt. (ZoneAlarm can also generate tab- and

semicolon-separated log files.) Following are sample log entries for blocked TCP, UDP, and ICMP activity,
respectively:

FWIN,2004/11/28,03:47:43 -6:00 GMT,172.30.128.23:15384,10.20.84.167:80,TCP (flags:S)
FWIN,2004/11/28,03:57:46 -6:00 GMT,172.30.128.23:3283,10.20.84.167:3283,UDP
FWIN,2004/11/28,04:06:30 -6:00 GMT,172.30.128.23:0,10.20.84.167:0,ICMP (type:8/subtype:0)

By now, this format should be pretty easy for you to decipher. The first address and port number are for the
source; the second pair is for the destination. The FWIN label indicates that the firewall blocked traffic in the
entry and that it was incoming. Lines that begin with FWOUT indicate that outgoing traffic was blocked. Finally,
lines that start with PE indicate that the ZoneAlarm user has permitted a particular application's traffic to pass
through the firewall.

Although you don't see much detailed information in each entry, remember that these entries are being
recorded on a particular host. If ZoneAlarm is being run on a user's workstation, odds are good that the
workstation offers few or no services and that there are only a few ports on which it might legitimately be
contacted. ZoneAlarm should be configured to permit those connections and to reject and record any other
incoming connection attempts, which are almost certainly caused by misconfigured or unauthorized equipment
or software, mistakes such as a typo in an address, or malicious activity.

Each ZoneAlarm log by itself can contain valuable information. These logs become much more useful when they
are gathered together from many different hosts. If most or all of your workstations are using host-based
firewalls and you can monitor all of their firewall logs, you can get a great picture of what suspicious activities
are occurring within your network. Check Point, the manufacturer of ZoneAlarm, sells a product called Integrity
(http://www.checkpoint.com/products/integrity/) that facilitates centralized logging and has other features that
are extremely helpful to analysts. There are also free utilities available for performing intrusion analysis and
report generation with ZoneAlarm log data; examples include VisualZone (http://www.visualizesoftware.com/)
and ZoneLog Analyser (http://zonelog.co.uk/).

Here's an interesting entry from a ZoneAlarm log:

FWIN,2004/12/01,22:30:51 -5:00 GMT,172.30.128.198:22,10.20.84.94:22,TCP (flags:SF)

You can see that this blocked connection was intended to target TCP port 22 on host 10.20.84.94. SSH usually

utilizes this port, so this looks like an attempt to find or use an SSH server. Can you tell whether this is a
benign or malicious activity?

There are two telltale signs in this log entry. The more obvious one is that the SYN and FIN flags are both set,
which is a classic sign of malicious activity. The less obvious one is that the source port is also set to 22. In a
normal SSH connection, you should see a high source port and destination port 22. Because the source port is
also set to 22, this is almost certainly crafted traffic that is malicious in nature. Just through this single log
entry, you can determine that an attacker is hoping to exploit SSH vulnerabilities on this host.

Norton Personal Firewall

Norton Personal Firewall records information similar to ZoneAlarm. However, like several other personal
firewalls, Norton Personal Firewall does not automatically log to a text file. Instead, it provides a GUI log
viewer that displays events and permits administrators to export logs to text files. The text files have a simple
comma-separated format: date, user, message, and details. The log excerpt shown next is easy to understand
without additional explanation. It records an attempt to connect to port 27374 on the local workstation, which
is not an available port on this host:

[View full width]
12/4/2004 4:02:26 PM,Supervisor,"Rule ""Default Block Backdoor/SubSeven Trojan horse""
 blocked (172.30.128.23,27374).", "Rule ""Default Block Backdoor/SubSeven Trojan horse""
 blocked (172.30.128.101,27374). Inbound TCP connection Local address,service is (MYSYSTEM
(172.30.128.23),27374) Remote address,service is (172.30.128.101,1380) Process name is ""N/A"""

Here's a great example of a potential incident that has been recorded in a Norton Personal Firewall log. Take a
few minutes to review these entries and to get as much information about the incident from them as you can:

[View full width]
12/4/2004 4:13:50 PM,Supervisor,Unused port blocking has blocked communications.,"Unused
 port blocking has blocked communications. Inbound TCP connection Remote address,local
 service is (172.30.128.101,http-proxy(8080))"

12/4/2004 4:13:50 PM,Supervisor,Unused port blocking has blocked communications.,"Unused
 port blocking has blocked communications. Inbound TCP connection Remote address,local
 service is (172.30.128.101,http(80))"

12/4/2004 4:13:50 PM,Supervisor,Unused port blocking has blocked communications.,"Unused
 port blocking has blocked communications. Inbound TCP connection Remote address,local
 service is (172.30.128.101,3128)"

12/4/2004 4:13:50 PM,Supervisor,Unused port blocking has blocked communications.,"Unused
 port blocking has blocked communications. Inbound TCP connection Remote address,local
 service is (172.30.128.101,socks(1080))"

Are you finished with your review? Let's take another look at the log entries to see what they're trying to tell
us. Here are the key pieces of information and their significance:

All four log entries show the same source IP address. If you saw one attempt from the source address, it
could be an accident; however, four separate attempts are much more likely to be malicious activity than
an accident.

All four connection attempts occurred within the same second. This indicates that the activity was almost
certainly automated or scripted. It also gives you more proof that this activity is purposeful, not accidental.

The destination ports8080, 80, 3128, and 1080might not all look familiar to you. Fortunately, Norton
Personal Firewall tries to assist your analysis by listing the name of the service typically found at each
common port. The three identified services are all web related, and a quick check of any good ports list
shows that the fourth port, 3128, is also often used for web-related services.

Based on these three points, it appears that this log has recorded a scan by a single host for web-related
services. If the source address is external, you might want to consider restricting incoming traffic to block such
attempts in the future, only permitting incoming traffic on the necessary ports to those hosts that are
authorized to provide web services to external hosts. It's also likely that other hosts on your network were
scanned; therefore, correlating this activity by checking your other network log files for similar events is highly
recommended.

Initially, most host-based firewalls had minimal IDS capabilities, if any. Host-based firewalls logged blocked
connections, but they didn't do any analysis of the activity that they saw, and couldn't determine the likely
intent of a connection attempt or packet. As host-based firewalls have evolved, they have incorporated basic
intrusion detection principles to attempt to identify the intent of apparently unwanted connection attempts.

The IDS capabilities of host-based firewalls can save you time when you perform an analysis. For example, by
listing the service most often associated with a certain port, host-based firewalls reduce the need to look up
port numbers. The text descriptions that explain why the event was logged also facilitate easy searching and
log automation. From an analysis standpoint, it's definitely advantageous to have intrusion detection capability
built in to host-based firewalls.

Summary

Throughout this chapter, you learned of the many valuable roles that network file log
analysis plays in a strong perimeter defense. By automating most of the log analysis and
reviewing the reports generated by the automation, you can quickly gain insight into
activity on your network and respond much more quickly to events that have just occurred
or are in progress. Network log analysis can be of great assistance in such diverse areas
as intrusion detection, incident handling, and problem troubleshooting. With an initial
investment of time to familiarize yourself with typical log entries and to establish log
analysis automation, you can make network log analysis an integral part of your perimeter
defenses.

Chapter 21. Troubleshooting Defense
Components
Bad things happen. It doesn't matter how much time and effort your team has spent
researching, designing, implementing, and maintaining your network security
architecture; something is going to break. That's why having a strong troubleshooting
methodology is important to your success as a network security practitioner.

Troubleshooting is simply a diagnostic process that is applied to a problem to fix it.
"Symptoms" are gathered to determine the cause and solution for network security
problems. These symptoms usually start out at a very general level ("Why can't I connect
to a server?") and progress to more specific symptoms ("Why can I connect to other
servers and not this one?") until the root cause of the problem is discovered and fixed.

Instead of trying to cover a selection of network security products and hoping they apply
to your environment, in this chapter we focus on general troubleshooting techniques in
the context of sample problems. Much of this chapter is spent applying a set of basic tools
to gather the necessary input for your troubleshooting progression. We apply a hands-on
approach to help you develop a methodology and toolkit that will work effectively in any
environment.

The Process of Troubleshooting

Troubleshooting is a problem-solving process that many find rewarding. In general, it
revolves around proving or disproving hypotheses. The following steps are all part of the
troubleshooting process:

1. Collect symptoms.

2. Review recent changes.

3. Form a hypothesis.

4. Test the hypothesis.

5. Analyze the results.

6. Repeat if necessary.

You probably already apply some form of this process whenever you sit down to solve a
problem. You gather information and formulate a hypothesis, whether consciously or not,
by simply thinking of a pertinent question to ask. The answer either strengthens or
weakens the proof and helps you move on to the next question.

Let's consider these steps in the context of an example in which Internet users can no
longer access their company website. You have learned of this issue via a call to the
company helpdesk from an outside user complaining that she can no longer remotely
connect to the site. It's time to gather some facts to see if we can get to the root of the
problem.

Collecting Symptoms

Collecting symptoms seems like an obvious step in the troubleshooting process, but
sometimes it's easy to jump into solving a problem before you really understand what the
problem is. You can often save a lot of time by slowing down the process and confirming
the symptoms before proceeding further. Try to re-create the problem (unless the results
are catastrophic, of course). If you can re-create the problem, you will have an easier
time later determining whether your solution actually fixes it. Also, check whether your
client or server software includes debug options that might help you collect more specific
symptoms.

After talking to the outside user, we now know that the main symptom for the website
problem is that the browser times out after a while and presents a message saying that
the server is unavailable. Other calls have also been received from outside users, so this
isn't a contained problem for one user. To verify this symptom, we try to connect to the
troubled server from the outside as well, using a dial-up Internet connection. We are also
unable to connect to the site, so this appears to be a problem that affects all outside
users. In addition, we try to access the server locally. It works fine, which suggests that
this is probably not a server problem. Because the symptoms haven't given us a definitive
answer yet, let's consider things that might have recently changed in our environment
that could shed some light on the situation.

Reviewing Recent Changes

Reviewing recent changes is included as a separate step in the troubleshooting process,
because the cause of so many problems can be traced back to a recent change to the
environment. Obviously, recent changes must be considered if they coincide with the
problem timeframe. In fact, you should consider these changes even if they don't at first
seem to relate to the problem. Often, a change uncovers problems that existed before, but
didn't manifest themselves. A popular example of this is a server change that doesn't
present itself until the first time the server is rebooted. Depending on the circumstances
and your environment, you may be able to remove the change immediately and worry
about understanding the real cause later. As far as our sample problem goes, we do some
research and determine that a firewall protecting the web server's network segment was
replaced with a new firewall about the time the problem started. We need more
information before we can fix it. To get more information, we need to formulate a
hypothesis to pursue.

Forming a Hypothesis

If you like puzzles, you might enjoy this part of troubleshootingthat is, unless you are
under severe pressure to fix the problem. This is where the troubleshooting gurus really
shine. Your mission is to combine all your observations, experience, intuition, and prayers
to come up with a fix for the problem. You do this by first hypothesizing the cause of the
problem and then working to prove it. If you can't guess a specific cause, try the reverse
approach. Form a hypothesis and then work to disprove it. This is a good way to collect
additional symptoms or other pertinent information.

Let's continue with the example in which our users can't access the website after a
firewall upgrade. An obvious hypothesis is that we somehow configured the firewall rule
set incorrectly, and it's blocking inbound HTTP access to our web server. The next step is
to test that hypothesis.

Testing the Hypothesis

Ideally, you test your hypothesis by implementing a fix for the problem, which is the most
direct way to prove or disprove it. However, you might still be working to narrow the
possible causes of the problem, in which case a fix is not yet apparent. In that event, you
might design and execute a series of tests to gather information until a specific fix
presents itself or until you're forced to try a different hypothesis.

Our firewall problem isn't in the "fix-it" stage yet because we're still investigating whether
the firewall rule set is the problem. Perhaps the easiest way to test that hypothesis is to
look at the firewall configuration and logs to see whether the traffic is being blocked. A
quick check shows that the configuration is correct, and the log shows that HTTP traffic is
being allowed through.

Analyzing the Results

After you have executed your test, the next step is to analyze the results. If your test
involved implementing a fix, such as rearranging the firewall's rule set, then all you need
to do is check whether the problem is resolved. This process will be much easier if you are
able to reproduce the problem. If the problem isn't fixed yet, you will need to analyze the
test results to determine what to do next.

We tested our hypothesis that our firewall rule set was incorrect and found that it was not
blocking HTTP traffic to the server. We might not have completely disproved the
hypothesis, but we should look at other possibilities. We will have to continue
troubleshooting the problem to get to its root cause and fix it.

Repeating If Necessary

If the problem is solved, your work is done. Otherwise, you will have to perform another
iteration of the process. If your test disproved your hypothesis, you must continue by
forming and testing another hypothesis. Otherwise, you will have to design another test
whose results you can analyze to further narrow the possible causes. This is the nature of
most problems, which aren't often solved by the first pass through the troubleshooting
process.

We have completed one iteration for our sample firewall problem without solving it. Maybe
you would have started with another hypothesis, or you already have another test in mind
for gathering more information. To learn whether you're right, however, you have to read
more of the chapter to finish the diagnosis!

Troubleshooting Rules of Thumb

Before moving on to describe troubleshooting tools, we want to present a few important
rules of thumb to keep in mind while working on a problem. Utilizing proven techniques
keeps your troubleshooting process on track and prevents it from resulting in false
positives or incorrect results. The concepts we cover in this section will help keep your
hypotheses focused on the problem and you on track.

Make Only One Change at a Time

This is perhaps the most important rule, and it can be the hardest to follow when you're in
a hurry. You can refer to as many sources of information as you like, but don't make
multiple changes at the same time. Otherwise, you will end up not knowing for sure which
change fixed the problem. Worse, you might mask the solution with another problem.

While troubleshooting our sample firewall problem, we moved the client station between
external and internal locations, and although we examined the firewall configuration, we
didn't make any changes to it. As a result, we know that the problem depends on the
client location. If we had changed the firewall rule set while moving our client's test
location, we might have incorrectly deduced that the problem was related to a change we
made in our rule set and not the location of the client.

Keep an Open Mind

We can't overstress the importance of keeping an open mind when working on a tough
problem. Most people, especially experienced troubleshooters, tend to reason through
many problem aspects at an almost unconscious level. Have you ever had trouble
explaining a conclusion to someone who is trying to understand how you arrived at it?
Sometimes those conclusions are sound, born of past experiences that aren't easily
recalled, but have been internalized in your own rules of thumb. Sometimes, though,
these conclusions are influenced by inaccurate perceptions, false assumptions, personal
motivations, and a host of other human traits. If you believe you made no mistakes
configuring the firewalla natural assumptionyou might not do a good job of examining the
configuration. If you can, work with another troubleshooter to give each other a fresh
perspective.

Get a Second Opinion

Sometimes when you can't see the solution to a problem, you need a second set of eyes.
Bouncing a situation off of a peer can be a great help when you think that you hit a dead
end while troubleshooting a problem. Just the process of methodically explaining to
someone else the steps you have gone through can be enough to help you find holes in
your own troubleshooting methodology. In any case, brainstorming can be a powerful
troubleshooting tool, and it is indispensable when a solution is difficult to find.

Stay Focused on Fixing the Problem

If you subscribe to our philosophy, a problem isn't truly fixed until you understand what
caused it. If you don't understand a problem, it's likely to reappear in the future.
Obviously, the way that you apply this philosophy should be based on the context of the
situation. It's often easier to fix a problem than explain how it happened. If the problem is
causing your users pain, fix it and finish debugging it later.

We might easily fix the firewall problem, for example, by hooking back up the original
firewall. If the outside caller was a paying customer who was complaining about the web
server being inaccessible, we would certainly choose that route. In that case, the quick fix
would justify the extra difficulty we might face in trying to finish the diagnosis offline or
with a different network configuration.

Don't Implement a Fix That Further Compromises Your Security

This is usually worth some thought. Hopefully, you wouldn't diagnose a fiber-optic
problem by staring at the end of the cable. Also, the pain associated with a fix doesn't
always arrive immediately, especially when you're fixing security problems. All too often,
in an effort to get something working, security is put on the back burner. In the long run,
this can be a greater liability than the original issue was. For example, you shouldn't fix a
firewall problem by installing a "permit everything" at the top of the rule set. When
something is broken and Service Level Agreements (SLAs) are in jeopardyor worse, your
job security is looming in the balanceit can be easy to implement a fix that compromises
your company's security. Always be sure to consider the security implications of any fix
that you apply and consider ways to mitigate any security concerns it may introduce to
your environment. For example, if you need to add a firewall rule to allow access that
wasn't previously allowed, enable logging on the rule and audit activity for that rule
regularly after it is implemented.

The Obvious Problems Are Often Overlooked

How much time have you wasted diagnosing connectivity problems, finding the source to
be the improper use of a crossover cable? Start with the simplest hypotheses first and
work your way up to the most complex.

Document, Document, Document!

Finally, one of the most important things you can do to improve your success as a
troubleshooter is to document fixes and causes of your problems in a personal
"knowledgebase." How many times are you faced with a problem and have a peculiar
feeling of déjàvu? You know that you have seen this issue before, but you just can't seem
to remember what the cause wasor more importantly, what you did to fix it. By recording
problems, their solutions, and causes in a searchable database, you may save yourself a
lot of time.

Ideally, knowledgebase entries should not only include the description of the problem and
cause, but also a step-by-step explanation of the solution, covering in great detail all the
information needed to recover from the problem successfully. Also, facts should be
included that will help identify the initial incident, such as location, involved products, the
time when it occurred, and the party who logged the knowledgebase entry. You should
make an effort to enter any facts that will help in the search for the problem when you
face it again. With that in mind, if possible make all these information fields searchable.
Although this can make for slow searches and a lot of space used by index files, it will be
easier to track down an event by the most minute of remembered details.

No matter what methods you rely on, it is important to develop a troubleshooting
methodology that works for you. Your methodology will depend on your own
responsibilities, strengths, and weaknesses. We have provided some food for thought to
help you develop or improve your personal methodology, but so far we have omitted a
core component: the tools. We will spend the next section covering popular tools that you
can utilize to help make your troubleshooting process more efficient.

The Troubleshooter's Toolbox

In this section, we present some of our favorite tools and techniques for troubleshooting security-
related and network problems.

The tools in this section are organized by the TCP/IP layers to which they apply; that way, you can
pick and choose between them depending on the kind of problem you are addressing. You will see that
some of the tools apply to multiple layers, which represents the nature of most troubleshooting
efforts. You will also learn how the tools can help you zero in on a particular layer, depending on the
problem symptoms.

UNIX vs. Windows Tools

Many of the tools we examine in this chapter are available for Windows as well as UNIX-
based operating systems. When tools aren't included in a default installation, we include
URLs where you can download them.

If you see a UNIX tool that you do not think exists under Windows, don't despair; open
source UNIX environments are available for Windows. One of the most popular ones is
Cygwin, which was developed by Red Hat and uses a DLL to provide a UNIX emulation
layer with substantial UNIX API functionality. You can download Cygwin from
http://www.cygwin.com. A user guide is provided at http://www.cygwin.com/cygwin-ug-
net/cygwin-ug-net.html. You will find many useful tools have been ported to Cygwin that
would otherwise be unavailable under Windows.

Another popular way to take advantage of the power of UNIX-based tools in non-UNIX
environments is through the use of self-booting UNIX CD-ROM or floppy disks. There are
many selections available, with quite a few featuring very useful networking and security
tools. These include the following:

Trinux (http://trinux.sourceforge.net/)

F.I.R.E. (http://fire.dmzs.com/)

PHLAK (http://www.phlak.org)

ThePacketMaster (http://www.thepacketmaster.com/)

All these tools are self-contained on a CD-ROM or floppy disk and require no installation.
Simply boot from the disk and you will be running a total Linux environment loaded with a
full array of precompiled network and security tools.

You no longer have to be a UNIX guru to take advantage of the power of UNIX-based
troubleshooting tools!

Application Layer Troubleshooting

First, let's look at some tools that can assist with troubleshooting problems at the application layer.
This layer primarily addresses issues that arise on the local machine, such as configuration file
locations and missing link libraries. Another area that can be problematic is the Domain Name System
(DNS). Applications query DNS to resolve hostnames to IP addresses; therefore, if the DNS server
isn't responding for some reason, applications that use hostnames as opposed to IP addresses cannot
function.

Often the client software used for the applications can be useful in debugging problems. Most email
clients, for example, include menu items to view all the message headers, which can be invaluable in
determining where an email came from, to whom it was addressed, and so on. You might use a client
combined with other tools to dig into the actual network traffic that is associated with the application.
A couple tool classes that are especially worth mentioning are DNS query tools and system call trace
utilities. Nslookup is a common DNS query tool, whereas common trace utilities include strace, ktrace,
and truss. A couple other useful tools in this category are strings and ldd.

Nslookup

Many application communication problems are associated with DNS. Applications query DNS through
the resolver, which normally occurs transparently to the end user of the application. DNS is always a
good place to start troubleshooting when your application can't connect to a remote host by its name.
First, make sure that IP address connectivity is successful and then verify that the hostname you are
attempting to contact maps to the IP address it is supposed to. You can do this by using a tool to
query the DNS. Perhaps the most common DNS query tool is nslookup, which is available on both
UNIX and Windows NT and higher. It can be most helpful in diagnosing application layer connectivity
problems involving your secure network architecture.

Note

Although we focus on the cross-platform tool nslookup in this section, UNIX platforms offer
another tooldig. Dig provides more information with fewer keystrokes after you get used to
its syntax, and it's a fine substitute for nslookup if it's available.

UNIX-based operating systems provide a Network Name Switch (NSS), whereby the functions used to
query the resolver can first check a local file before issuing a DNS query. The search order is
configurable on most UNIX variants through the use of the /etc/nsswitch.conf file, and the local file
is in /etc/hosts by default. You must consider this when you're doing DNS troubleshooting.

Windows does not have a configurable NSS capability. The local file is always searched before DNS.
The local file is located in %SystemRoot%\hosts on Windows 9x and in
%SystemRoot%\system32\drivers\etc\hosts on Windows NT and higher. For new installs, you will
find a hosts.sam (sample) file at that location, which you will have to rename or copy to hosts
(without the extension). Don't edit the hosts.sam file and expect it to work!

For example, suppose you're trying to use SSH to access an external server by name, and the
command simply hangs without establishing a connection. This could indicate a problem with DNS or
with your NSS configuration. You can use nslookup to bypass the NSS and query DNS directly, as
follows:

$ ssh www.extdom.org
never connects, no error messages, nothing
^C
$ nslookup www.extdom.org
Server: 192.168.1.2
Address: 192.168.1.2

Non-authoritative answer:
Name: www.extdom.org
Address: 192.168.2.100

The nslookup query puts www.extdom.org at 192.168.2.100, which in this case is correct.

If you're working from a UNIX host, check /etc/nsswitch.conf, as follows, to determine which name

resolution facility the host uses:

$ grep hosts /etc/nsswitch.conf
hosts: files nisplus nis dns

The hosts line indicates that local files are checked before other name services, including DNS. This
means that if an entry exists in /etc/hosts for www.extdom.org, it will be used in preference to DNS.
Check /etc/hosts, as follows:

$ grep www.extdom.org /etc/hosts
192.168.2.111 www.extdom.org

Because the entry doesn't match the DNS information we obtained earlier, we clearly have the wrong
address in the /etc/hosts file. The administrator might have switched the web server to a different

host, justifiably thinking that he could notify the world of the change through DNS. Although you could
modify /etc/nsswitch.conf to change the NSS search order, it's often handy to override name

resolution through local files. The best fix for this problem is probably to delete the entry in
/etc/hosts.

Tip

A quick way to determine which address an application is using, without examining the
/etc/nsswitch.conf and /etc/hosts files, is to ping the target host. Ping does not query

DNS directly like nslookup does, so it goes through the NSS to get the destination IP address
and then prints this to the screen, even if a firewall blocks its packets. If you're executing it
on Solaris, you will have to specify the -n switch to see the IP address. Also, remember that

NSS operates differently on Windows, where it checks the local file and DNS and then tries to
resolve the NetBIOS name.

System Call Trace Utilities

System call trace utilities monitor the OS calls that an application executes and print the details to the
console or a specified output file. This can be a great way to find out where an application looks for its
configuration files. Suppose that you install the binary OpenSSH distribution for Solaris from
http://www.sunfreeware.com and can't find in the documentation where it hides its sshd_config file.

Just run truss on the sshd executable:

truss -o sshd.truss sshd
grep conf sshd.truss
open("/usr/local/etc/sshd_config", O_RDONLY) = 3
open("/etc/netconfig", O_RDONLY) = 3
open("/etc/nsswitch.conf", O_RDONLY) = 3

Here, we saved the truss output (which is usually voluminous) to sshd.truss and then searched for

anything that looks like a configuration name. This example shows sshd trying to open the file at
/usr/local/etc/sshd_config. If you browse the truss output, you will see a wealth of other

information about the application.

Tip

SGI IRIX includes the par utility, which produces system call activity. For similar
functionality, HPUX admins can download the tusc program at
ftp://ftp.cup.hp.com/dist/networking/tools/.

For non-Solaris operating systems, you can get the same type of information from the strace and
ktrace tools. Strace is usually distributed with Linux, and ktrace with BSD.

Tip

Look for an open source version of strace for Windows NT and higher at
http://www.bindview.com/support/Razor/Utilities/. Take note of its shortcomings, however.
To install strace, copy the strace.exe and strace.sys files from the zip archive to
%SystemRoot%.

Other Useful Utilities

Other useful utilities for debugging problems at the application layer include the strings and ldd
utilities for UNIX. Strings outputs everything from a binary file that looks like a printable string, which
enables you to browse or search for interesting stuff. For example, the following command executed
on a Linux machine shows the Sendmail version to be 8.11.0. (We use the sed utility to filter out lines
before the version.c string and after the next line beginning with @.) tricks like this one can let you

quickly gain access to information that you might have otherwise had to spend a considerably longer
time researching.

strings /usr/sbin/sendmail | sed -e '/version.c/,/^@/!d'
@(#)$Id: version.c,v 8.43.4.11 2000/07/19 20:40:59 gshapiro Exp $
8.11.0
@(#)$Id: debug.c,v 8.2 1999/07/26 04:04:09 gshapiro Exp $

Note

BinText is a Windows-based tool that does pretty much the same thing as the UNIX strings
utility. It's free and can be downloaded from http://www.foundstone.com.

The ldd command prints shared library dependencies, which can come in handy when you're installing

or copying executables. The following output shows all library dependencies are met for the TCP
Wrappers daemon on an IRIX 6.5 machine:

$ ldd /usr/freeware/bin/tcpd
 libwrap.so.7 => /usr/freeware/lib32/libwrap.so.7
 libc.so.1 => /usr/lib32/libc.so.1

Troubleshooting Check Point FireWall-1 with FW Monitor

Like many firewalls, Check Point FireWall-1 only logs the initiating packet of any given network

transaction. Because of this, there may be times when you want to see what FireWall-1 is doing with
packets other then those that initiate a connection, or when you need to track down packets that are
not showing up in the logs for some other reason. FireWall-1 has an integrated function to show all
packets as they enter and leave any of its interfaces called FW Monitor. FW Monitor is run from the
FireWall-1 enforcement point's command prompt. Simply type in fw monitor, followed by e
expression , where expression represents a capture filter that will cause only the specific traffic you

are interested in seeing to be logged. It is advisable to use a capture filter on heavily used production
firewalls to prevent the monitor process from overwhelming the firewall. Output of this command is
very similar to Tcpdump, but with each line preceded by the interface the packet came in on and then
a single lettereither i, I, o, or O. The i means that the packet is inbound before being processed by
the FireWall-1 kernel, whereas I means the packet is inbound after passing through the FireWall-1
kernel. The o means the packet is outbound before the FireWall-1 kernel, and O means it is outbound

after leaving the FireWall-1 kernel.1 These additional pieces of information can be invaluable when
troubleshooting dropped packets on your FireWall-1. For more information on FW Monitor, and
specifics on how to build its capture filters, check out the article "How to use fw monitor," available at
http://www.checkpoint.com/techsupport/downloads/html/ethereal/fw_monitor_rev1_01.pdf.

Case Study: Troubleshooting Check Point FireWall-1 SMTP Security

Server

I once worked for a company that implemented a Check Point FireWall-1 as its main
perimeter security device. Sometimes, taking advantage of the full potential of such a
powerful piece of equipment can have a real learning curve! Check Point FireWall-1
includes an SMTP Security Server that enables firewall administrators to filter incoming
mail or pass it off to a virus checker. The SMTP Security Server acts as a proxy, and it is
invoked by defining a resource and rule to associate TCP port 25 (SMTP) traffic with the
host that handles email. It offers a powerful mechanism for screening email messages and
attachments before they enter your network.

At the time, I was not completely familiar with FireWall-1, and I simply defined a rule that
allowed SMTP connections to our publicly accessible mail server. Later, I decided to define
a resource and do some filtering on inbound mail. This worked fine. Then I decided to hide
the publicly accessible server by changing the associated rule to accept SMTP connections
to the firewall's external interface. Unfortunately, the firewall started blocking all inbound
SMTP when we implemented the change. The reason was immediately apparent. I forgot
to consider the DNS MX record for the domain. Here's how you can query an MX record
with nslookup:

$ nslookup
> set type=mx
> zilchco.com
Server: ns.s3cur3.com
Address: 192.168.111.1

zilchco.com ..., mail exchanger = mail-dmz.zilchco.com
> exit

Here, nslookup operates in interactive mode, allowing the user to set the query type for
MX records. We see that the domain MX record points to mail-dmz.zilcho.com, which is
the original email server. This means that everyone on the Internet will continue to send
email for zilcho.com to the old server, which the firewall will now block. The solution is to
add an A record for the external firewall interface and point the domain MX record to it. I
chose to name it mail-gw, as shown in the following example:

$ nslookup

> set type=mx
> zilchco.com
Server: ns.s3cur3.com
Address: 192.168.111.1

zilchco.com ..., mail exchanger = mail-gw.zilchco.com
> exit

Transport Layer Troubleshooting

The transport layer encompasses many of the problems with which you're likely to deal. The transport
layer directly addresses connectivity issues associated with network services. In this section, we will
describe the following tools:

Telnet

Netcat

netstat

lsof

Fport and Active Ports

hping

Tcpdump

Our goal is to show you how to effectively use these tools to troubleshoot problems at the transport
layer. As a result, most of the tools in this category test transport layer connectivity. A few of the
tools display connection information for the host on which they are run. We have selected these tools
because their value will likely lead you to use them over and over again.

Telnet

Telnet and its underlying protocol were developed so that local users could start a shell session on a
remote host. Telnet uses TCP port 23 by default, but it's incredibly handy simply because it takes an
optional command-line argument to specify the remote TCP port you want to connect to. In addition,
the Telnet client is available on almost every platform, including many routers, making it an excellent
troubleshooting tool to test TCP connectivity and service availability.

Note

Telnet is a TCP application and can only be used to test TCP connectivity and availability on
hosts. If you need to troubleshoot services running on UDP, you will need to rely on another
tool, such as Netcat or hping (covered later in this section).

The behavior of Telnet clients typically varies by OS. Whereas most Telnet versions that come with
UNIX-type operating systems print an escape character message after the connection is established,
followed by any header information that the server cares to return, Windows Telnet versions display a
blank screen followed by the application-returned header information. Though the escape character
(Ctrl+]) is not displayed after connection with the Windows version of client, it still works to
terminate communications sessions. In either case, this provides a quick way to check whether the
remote service is accessible. For example, suppose you're having trouble connecting with SSH to a

remote server. To test whether the service is available, you can Telnet to port 22 on the server:

telnet mail-dmz.zilchco.com 22
Trying 192.168.1.20...
Connected to mail-dmz.zilchco.com (192.168.1.20).
Escape character is '^]'.
SSH-2.0-OpenSSH_2.9
^]
telnet> quit

After the Escape character is '^]' message appears, you know that the connection is established,

which is useful for services that don't return greetings.

Note

All examples of Telnet in this chapter will use a UNIX version that displays an escape
character message after a connection is established. It is important that you understand the
differences in expected output when troubleshooting with various distributions of Telnet
clients.

In this case, a banner announces some details about the secure shell server. To break the connection,
type ̂] (Ctrl+]) to get a telnet> prompt, from which you can end the session gracefully by typing
quit. Now let's see how Telnet behaves when the remote service isn't available:

$ telnet mail-dmz.zilchco.com 21
Trying 192.168.1.20...
telnet: Unable to connect to remote host: Connection refused

FTP (port 21) is obviously not running on the server. Now for one more example; we have been going
into all this detail for the grand finale, for which we pose the following puzzle:

telnet mail-dmz.zilchco.com 143
Trying 192.168.1.20...
Connected to mail-dmz.zilchco.com (192.168.1.20).
Escape character is '^]'.
Connection closed by foreign host.

What is the meaning of this output? We established a connection to the IMAP service on port 143, but
we never got a greeting before the connection terminated. This is almost always indicative of a
service that is protected by TCP Wrappers. The tcpd daemon accepts the connection and then validates
the client IP address against the /etc/hosts.allow and /etc/hosts.deny files to determine whether

it's allowed to connect. If it's not, the tcpd daemon terminates the TCP session.

As you have seen in this section, Telnet makes an excellent troubleshooting tool. Realize that this
functionality can be applied in two different ways:

To verify service availability on a local or remote host

To verify connectivity across a firewall or another access control device to an available service

It is important to realize that both components need to be tested for a solid troubleshooting
methodology when testing connectivity across a firewall. For example, if you wanted to see if SQL was

running on a host on the other side of a firewall from the host you were testing from, not only would
connectivity need to be opened on the firewall, but SQL would need to be running on the remote host.
Both of these points should be considered when troubleshooting a network connection. If a developer
contacted you and complained that one of his web servers could not connect to its SQL back-end
server across the firewall, your Telnet troubleshooting should be two-fold. First, you could attempt to
access the SQL port (TCP 1433) of the back-end SQL server from a host that resides on the same
segment. If this test doesn't work, you could conclude (because there are no access control devices
between the two hosts) that the problem is on the back-end SQL server itself and your troubleshooting
should continue there. If the Telnet test works, this proves that SQL is running properly and is
available on the server. You could then attempt the same access from the web server experiencing the
issue on the other side of the firewall. If the connectivity fails, you could infer that the traffic is being
prevented in some way by the firewall. Taking advantage of both these techniques is an invaluable aid
when troubleshooting Layer 3 connectivity.

Firewalls and Telnet Connection Testing

It is important to apply your knowledge of the way TCP/IP functions when you're using
Telnet to troubleshoot Layer 3 connectivity across access control devices such as firewalls.
If you attempt to connect with Telnet to a host on a given port and are rapidly returned a
"connection refused" message, it is very likely that the service is not running on the host.
However, if the "connection refused" response takes a while to be returned, it is very
likely that the connectivity is being blocked by a firewall or the like. The reasons for these
behaviors are easily explained if you have an understanding of standard TCP/IP
communications. When a server receives a request for connection to a port that it is not
"listening" on, it will immediately send back a reset packet to the originating host. This is
the cause for the quick "connection refused" response. When a firewall is intercepting the
traffic, its default behavior is to silently drop the packet and not send back any response.
The originating host will try to re-send the packet several more times (as many as
specified by its TCP implementation) until finally giving up. This is why the "connection
refused" message takes so long to occur when the traffic is being dropped at a firewall.

Netcat

We doubt you will ever see a TCP/IP network troubleshooting discussion that doesn't include Netcat.
The Netcat program, usually named nc, has several capabilities, but its core feature is probably the
most usefulthe ability to open a socket and then redirect standard input and standard output though it.
Standard input is sent through the socket to the remote service. Anything that the socket receives is
redirected to standard output. This simple capability is unbelievably useful, as we will show you in a
moment. For now, you can become familiar with Netcat's other options by executing the command nc
-h. You will see a source port option (-p), a listener option (-l), and a UDP option (-u).

You might also try connecting to a TCP service by executing nc -v remotehostip port . This allows

Netcat to be used for service availability and connectivity testing, as was shown with Telnet earlier in
this section. Note that you break a Netcat connection with Ctrl+C rather than Ctrl+]. Also, take notice
of Netcat's support for UDP, making it a more complete troubleshooting solution. However, Netcat
does not come with every operating system distribution like Telnet does. Also, Netcat employs
additional capabilities that we will go over later in this section.

Note

Although Netcat started out as a UNIX tool, it has been ported to Windows. Netcat is included
with most Linux and BSD distributions, but it might not be installed by default. You can
download Netcat from http://www.securityfocus.com/tools/139.

Let's consider a situation in which an administrator is unable to query an external DNS server while
troubleshooting another problem. You decide to investigate. You know that the organization uses a
router to restrict Internet traffic, and you hypothesize that it has been configured to accept only DNS
queries that originate from port 53. How do you find out? You choose a test case based on Netcat.

Note

DNS servers are sometimes configured to forward queries from source port 53, so router
filters can be constructed to allow query responses without opening inbound UDP to all
nonprivileged ports. Instead, only traffic destined for the DNS server IP address on UDP port
53 from the source port UDP 53 would be allowed. Otherwise, you would need to allow all
UDP traffic with a port greater than 1023 to your DNS server. Of course, this wouldn't be
necessary if the router supported reflexive ACLs, as described in Chapter 2, "Packet
Filtering."

Most DNS queries are encapsulated in UDP datagrams. UDP, being a stateless transport protocol, does
little validation of received datagrams and simply passes them on to the application. This means that
the application must decide whether to respond to datagrams that don't make sense. DNS silently
drops most such datagrams. We have to send a valid DNS query to receive a response and prove that
source port 53 filtering is in place. Nslookup can't use source port 53, so we have to find another way.
First, capture a query using Netcat and save it in a file:

Note

If you're running UNIX, as in the following example, you have to be logged in as root to bind
port 53.

()
nc -u -l -p 53 >dnsq &
nslookup -timeout=5 www.yahoo.com localhost
^C
kill %1

The background Netcat command listens on UDP port 53 (we assume this isn't a DNS server, which
would already have port 53 bound) and redirects anything that is received to a file named dnsq. Then,

Nslookup directs a query to localhost, so it's intercepted by Netcat and written to the file named dnsq.
Press Ctrl+C before the specified 5-second timeout to terminate Nslookup before it issues a second
query. Then kill the background Netcat, which causes it to print the punt! message. If you have a hex
editor, the contents of file dnsq should look something like this:

00000000 00 43 01 00 00 01 00 00 00 00 00 00 03 77 77 77 .C...........www
00000010 05 79 61 68 6F 6F 03 63 6F 6D 00 00 01 00 01 .yahoo.com.....

Finally, execute Netcat again to send the captured query using source port 53 to the remote DNS
server and save any response to another file:

#nc -u -p 53 -w 10 dns_server 53 <dnsq >dnsr

The -w option specifies a timeout of 10 seconds; therefore, you don't have to terminate Netcat
manually. If a response is received, the dnsr file will have a nonzero size and you will know that your

hypothesis is correct: The router allows outbound DNS queries if the source port is 53.

Netstat

If you aren't already familiar with it, you will find the netstat utility invaluable in debugging several
types of connectivity problems. It is distributed with all UNIX and Windows variants, but unfortunately
its command-line options vary greatly. For additional information on netstat and its switches on your
platform, look at the UNIX man page or netstat /? from the command line in Windows.

Use netstat to display information about transport layer services that are running on your machine
and about active TCP sessions. This way, we can corroborate or disprove the information we gathered
with Telnet regarding connectivity or service availability. We will also demonstrate other uses for
netstat in subsequent sections. To display active connections and listening ports, use the -a switch
and the -n switch to prevent hostname resolution and display IP addresses. With UNIX, you might
also want to use the -f inet switch to restrict the display to TCP/IP sockets. As an example, here's

the output from a hardened OpenBSD web server:

$ netstat -anf inet
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 192.168.111.99.22 192.168.111.88.33104 ESTABLISHED
tcp 0 0 192.168.111.99.22 *.* LISTEN
tcp 0 0 192.168.111.99.80 *.* LISTEN
tcp 0 0 192.168.111.99.443 *.* LISTEN

We see the TCP and UDP port numbers displayed as the final "dot field" (for example, .22) in the

Local Address column. Only three TCP services are running on the machine, as identified by the
LISTEN state: SSH on TCP port 22, HTTP on TCP port 80, and HTTPS on TCP port 443. The SSH session

has been established from 192.168.111.88.

The output from the command netstat a n looks a little different on a Windows XP system:

Active Connections

 Proto Local Address Foreign Address State
 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING
 TCP 10.0.0.24:139 0.0.0.0:0 LISTENING
 TCP 10.0.0.24:2670 10.0.0.3:139 ESTABLISHED
 TCP 127.0.0.1:1025 0.0.0.0:0 LISTENING
 TCP 127.0.0.1:1027 0.0.0.0:0 LISTENING
 TCP 127.0.0.1:1032 0.0.0.0:0 LISTENING
 UDP 0.0.0.0:445 *:*
 UDP 0.0.0.0:500 *:*
 UDP 0.0.0.0:1026 *:*
 UDP 0.0.0.0:1204 *:*
 UDP 0.0.0.0:4500 *:*
 UDP 10.0.0.24:123 *:*
 UDP 10.0.0.24:137 *:*
 UDP 10.0.0.24:138 *:*
 UDP 10.0.0.24:1900 *:*
 UDP 127.0.0.1:123 *:*
 UDP 127.0.0.1:1900 *:*
 UDP 127.0.0.1:1966 *:*

Here the ports are listed after the colon following the local addresses. Otherwise, the display is pretty
similar.

The Linux netstat command-line options are significantly different from those of most other UNIX
variants. For example, you use --inet instead of -f inet. Windows doesn't include an inet option

because that's the only address family its netstat can display.

As you can see, netstat is a powerful troubleshooting tool. It can be used in conjunction with a tool
such as Telnet to confirm or disprove troubleshooting hypotheses. For example, let's say that, as in
the last section, you attempt a Telnet connection across a firewall from a web server in the DMZ to a
SQL server on your inside network and it fails. This would insinuate either that the service is not
running on the server or that the firewall is blocking the connection. After logging in to the SQL server
and running the netstat a -n command, you receive the following output:

Proto Local Address Foreign Address State
TCP 0.0.0.0:1433 0.0.0.0:0 LISTENING

This shows that the server is listening on TCP port 1433 (Microsoft SQL Server protocol) and is waiting
for a connection. More then likely, the traffic is being blocked on its way in by the firewall. Firewall
logs could be used to corroborate that hypothesis. However, what if you had received the following
netstat a n output instead?

Proto Local Address Foreign Address State
TCP 0.0.0.0:1433 0.0.0.0:0 LISTENING
TCP 10.0.0.1:1433 172.16.1.3:1490 ESTABLISHED

This tells us that not only are we running the SQL service, but we are receiving SQL connection traffic
from the host at address 172.16.1.3. If this was the "troubled" web host that could not connect, either
some access control mechanism is blocking the return traffic or there is a routing issue from the SQL
server to the web host that we need to investigate. If the listed host is another host that could
connect successfully to the SQL server, the firewall may still be blocking traffic from our "troubled"
web host. Learning how to combine the information gathered from multiple sources such as these is
vital in the development of strong troubleshooting skills.

Lsof

The UNIX lsof utility can display everything covered by netstat, and much more. Unfortunately, lsof
isn't part of most distributions.

If you can't find a trusted lsof binary distribution for your platform, you can get the source at
ftp://vic.cc.purdue.edu/pub/tools/UNIX/lsof/. Lsof is included in our toolbox primarily because of its
capability to list the process ID (PID) and command name associated with a socket. This is useful if
you're investigating a possible break-in on your machine or verifying that a service is running on it.
(The Linux version of netstat can provide the same information using its -p option, and Windows XP
Service Pack 2 can provide the same with the b option.) For example, here's the output of lsof running

on a Linux machine:

lsof -i -n -V -P
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
portmap 1209 root 3u IPv4 18068 UDP *:111
portmap 1209 root 4u IPv4 18069 TCP *:111 (LISTEN)
rpc.statd 1264 root 4u IPv4 18120 UDP *:1016
rpc.statd 1264 root 5u IPv4 18143 UDP *:32768
rpc.statd 1264 root 6u IPv4 18146 TCP *:32768 (LISTEN)
ntpd 1401 root 4u IPv4 18595 UDP *:123

ntpd 1401 root 5u IPv4 18596 UDP 127.0.0.1:123
ntpd 1401 root 6u IPv4 18597 UDP 129.174.142.77:123
X 2290 root 1u IPv4 23042 TCP *:6000 (LISTEN)
sshd 7005 root 3u IPv4 143123 TCP *:22 (LISTEN)

The lsof utility, by name, lists all the open files on a system. (As you might have guessed, lsof stands
for list open files .) With the i command-line switch appended, lsof lists only open files of the type IP
(version 4 or 6), which basically give us a list of files that are running IP processes. The n option
removes the listing of hostnames, and the V option guarantees a verbose output. P is used to force

lsof to display port numbers, rather than the popular service name for the port in question. The result
of the command is a list of running programs that have a TCP or UDP port open. Listings with
(LISTEN) following them are actually accepting traffic on the port in question. Anyone who has ever

tried to figure out whether a backdoor service is installed on his machine can recognize the value in
this! Of course, lsof won't magically find a backdoor if the attacker has taken advanced steps to hide
it, such as replacing the lsof utility with a Trojan version or installing a cloaking kernel module.

Fport and Active Ports

Foundstone's Fport, available at http://www.foundstone.com, is a tool for Windows NT and higher that
reports open TCP and UDP ports and maps them to the owning process, similarly to lsof. Listing 21.1
shows the output from running Fport on a Windows 2000 machine (edited slightly to shorten the
length of a couple lines).

Listing 21.1. Running Fport on Windows 2000

C:\>fport
FPort v1.33 - TCP/IP Process to Port Mapper
Copyright 2000 by Foundstone, Inc.
http://www.foundstone.com

Pid Process Port Proto Path
392 svchost -> 135 TCP C:\WINNT\system32\svchost.exe
8 System -> 139 TCP
8 System -> 445 TCP
588 MSTask -> 1025 TCP C:\WINNT\system32\MSTask.exe
8 System -> 1031 TCP
8 System -> 1033 TCP
920 mozilla -> 1090 TCP ...\Mozilla\mozilla.exe
920 mozilla -> 1091 TCP ...\Mozilla\mozilla.exe
420 spoolsv -> 1283 TCP C:\WINNT\system32\spoolsv.exe
392 svchost -> 135 UDP C:\WINNT\system32\svchost.exe
8 System -> 137 UDP
8 System -> 138 UDP
8 System -> 445 UDP
220 lsass -> 500 UDP C:\WINNT\system32\lsass.exe
208 services -> 1027 UDP C:\WINNT\system32\services.exe
872 MsFgSys -> 38037 UDP C:\WINNT\System32\MsgSys.EXE

You can see a number of NetBIOS and other services running on the machine. You might consider
eliminating some of them if you're hardening the system. You can also use Fport when you're
investigating a possible break-in or verifying that a service is running.

The Active Ports freeware program offers similar functionality on Windows NT and higher platforms
and is available from SmartLine's website at http://www.protect-me.com/freeware.htm. Using a user-
friendly GUI, Active Ports displays the program name that is running, its PID, the local and remote IP
and port using the process, whether it is listening, the protocol it is running on, and the path where

the file can be located (see Figure 21.1).

Figure 21.1. The Active Ports tool from Smartline offers similar functionality to
lsof and Fport for Windows through an easy-to-read GUI interface.

[View full size image]

By clicking the Query Names button, you can translate IP addresses to their associated DNS names.
Another very useful feature of Active Ports is its ability to terminate any of the listed processes.
Simply select any of the listed processes with a single mouse click and click the Terminate Process
button. If it is possible, the process will be shut down. This does not guarantee the process will not
restart the next time you reboot the system, but it does allow for an easy way to shut down currently
running processes when you're troubleshooting.

Hping

The UNIX program hping has several capabilities, some of which we will touch on later in this chapter.
With hping, you can generate almost any type of packet you can imagine, allowing you to choose the
protocol, source and destination addresses, ports, flags, and what options are set in packets that you
want to send to a target host.

Note

For similar functionality for Windows systems, download PacketCrafter from
http://www.komodia.com/tools.htm. Though not quite as feature rich as hping, it does offer
many of the same packet-constructing capabilities in a Windows freeware package, with an
easy-to-use GUI interface.

You can generate a packet with the SYN flag set and send it to a target host to determine whether a
TCP port is open on that system, as shown in Listing 21.2.

Listing 21.2. Checking Firewall TCP Rules with Hping SYN Packets

hping --count 1 --syn --destport 80 www.extdom.org
eth0 default routing interface selected (according to /proc)
HPING www.extdom.org (eth0 192.168.2.100): S set, 40 headers + 0 data bytes
46 bytes from 192.168.2.100: flags=SA seq=0 ttl=53 id=24080 win=16384 rtt=17.0 ms

--- www.extdom.org hping statistic ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 24.8/24.8/24.8 ms

hping --count 1 --syn --destport 443 www.extdom.org
eth0 default routing interface selected (according to /proc)
HPING www.extdom.org (eth0 192.168.2.100): S set, 40 headers + 0 data bytes
46 bytes from 192.168.2.100: flags=RA seq=0 ttl=53 id=42810 win=0 rtt=20.2 ms

--- www.extdom.org hping statistic ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 20.2/20.2/20.2 ms

We sent a SYN packet to port 80. We can see that HTTP is open because the server returns a
SYN+ACK (flags=SA). However, a similar packet that was sent to port 443 returns an RST+ACK
(flags=RA) packet, which means that HTTPS is not open.

Note

Although it doesn't show it, hping sends an RST packet when it receives a SYN+ACK
response. That way, we can't accidentally cause a SYN flood denial of service!

Hping's control over individual flags makes it particularly useful for testing firewall filtering
capabilities and configuration. Consider the following output, where we send two SYN packets to a
randomly chosen destination port:

hping count 2 --syn --destport 3243 www.extom.org
eth0 default routing interface selected (according to /proc)
HPING www.extom.org (eth0 192.168.2.100): S set, 40 headers + 0 data bytes
--- www.extom.org hping statistic ---
2 packets transmitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

We don't receive responses to the SYN packets, so we know the firewall silently drops disallowed
traffic. We can verify that by looking at the firewall logs. Now look at the results in Listing 21.3, where
we send ACK packets instead of SYN packets.

Listing 21.3. Checking Firewall TCP Rules with Hping ACK Packets

hping count 2 --ack --destport 3243 www.extom.org
eth0 default routing interface selected (according to /proc)
HPING www.extom.org (eth0 192.168.2.100): A set, 40 headers + 0 data bytes
46 bytes from 192.168.2.100: flags=R seq=0 ttl=53 id=8060 win=0 rtt=17.1 ms
46 bytes from 192.168.2.100: flags=R seq=0 ttl=53 id=2472 win=0 rtt=17.3 ms

--- www.extom.org hping statistic ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 17.1/17.1/17.1 ms

The firewall allows ACK packets to come through! This firewall most likely does not support stateful
filtering and is configured to allow outbound TCP connections; otherwise, this simulated response
packet would have been silently dropped like the SYN flagged packet was. Allowing unsolicited ACK

packets can be exploited as a reconnaissance method or as a means to successfully mount a denial of
service (DoS) attack.

Tcpdump

Tcpdump is one of the most commonly used sniffer programs; it has many uses, including diagnosing
transport layer issues. We have used Tcpdump throughout this book to look at network traffic. This
freeware program came out of the BSD environment and has been ported to other platforms, including
Linux, Solaris, and Windows. It is a critical component for debugging almost any network problem,
and many experienced troubleshooters begin with it unless they're obviously not dealing with a
network problem.

Try a Graphical Alternative to Tcpdump

Although Tcpdump is a command-line tool, other programs that are more graphical use the
same programming interfaces and file formats, so you can get the best of both worlds.
One of our favorite graphical sniffers is Ethereal, which is available for many UNIX
variants and Windows at http://www.ethereal.com. One of the benefits of using a tool
such as Ethereal is that it depicts both the raw data and a context-sensitive translation of
header fields, such as flags, port numbers, and so on. In other words, this tool is closer to
a protocol analyzer, so it's more user friendly. On the other hand, it's hard to wrap
Ethereal in a shell script or run it on a machine that doesn't run a GUI like Windows or X,
which is where Tcpdump comes in.

You will probably run Tcpdump often as you realize the power it gives you. The ability to see whether
traffic is even being transmitted is often enough to solve a problem or at least isolate it. For example,
suppose a client at a small company is complaining that he is unable to connect to websites on the
Internet. You watch him attempt a connection and, sure enough, his Internet Explorer just hangs
whenever he types in a URL. Many factorsDNS issues, a routing problem, or problems with the
websitecould cause this behavior. You could spend a lot of time working through this list, or you can
fire up a laptop and run Tcpdump.

Problems with Network Traces in Switched Environments

In this chapter we discuss using Tcpdump to troubleshoot network security problems.
However, because today almost all network environments are switched, simply hooking up
a laptop to an available switch port will seldom yield the results you will need to examine
problem traffic flow. In a switched environment, a packet trace tool such as Tcpdump
would only be able to see traffic sourced from or destined to the host it is running on.
There are several ways to deploy a network trace tool to overcome this issue.

First, you can deploy the tool on one of the problem systems. This can also yield
additional insight into communication issues that you may not be able to glean from a
network view. However, as mentioned later in this chapter, deploying a network trace
program on a production server also has its own risks.

Another way the problem of switched networks can be overcome is by using monitor ports
(also referred to as SPAN ports) on intermediary switches. Monitor ports allow the
redirection of traffic from a single port or list of ports, or from an entire VLAN to a single
monitor port, where a host running a network trace program can be connected. This allows
visibility to the traffic to and from as many hosts as you would like on that switch. If your
hosts exist on more than one switch, for a complete picture of your traffic flow, you might

require a monitor port to be configured and a host running a network trace program on
each switch. Depending on the complexity of your environment, similarly connected hosts
may need to be at multiple intermediary points in the communication flow as well.

Yet another way to examine communications between two hosts in a switched
environment is using an ARP cache poisoning tool such as Dsniff or Ettercap. For more
information on how such tools can be used to examine traffic in a switched environment,
take a look at the "Broadcast Domains" section of Chapter 13, "Separating Resources."

A final way to bypass the issues with switched traffic is by placing a hub at one of the
troubled endpoint hosts. Many consultants who have to go onsite to troubleshoot a
problem employ a solution like this. This will require a brief interruption to the network
service for the troubled host, unless it offers a teamed NIC configuration (in which case
this solution can be placed inline on the standby NIC while traffic continues on the active
NIC, and then you can disconnect the active NIC and let it fail over to the standby). To
use this solution, unplug the network cable currently going to the troubled host and plug
the cable into a small hub. Be careful! If the hub does not have auto-configuring crossover
ports or if it does not have a manual crossover port to plug into, you will need to connect
a coupler and a crossover cable to the existing network cable before plugging into the hub.
Next, take an additional standard network cable to connect the troubled host to the hub.
Finally, plug your laptop running a network trace program into the hub. This way, you will
be able to see all traffic destined to or sourced from the troubled host. This makes a
strong case for any traveling network/security consultant to carry a laptop with a network
trace program, a small hub, extra crossover and standard network patch cables, and
couplers in his bag of tricks.

In this case, you might see something like the following when the user tries to access
http://www.yahoo.com (the ellipses indicate where we truncated the long lines):

tcpdump -i eth0 -n host 192.168.11.88 and tcp port 80
tcpdump: listening on eth0
17:59:26.390890 192.168.11.88.33130 > 64.58.77.195.80: S ...
17:59:29.385734 192.168.11.88.33130 > 64.58.77.195.80: S ...
17:59:35.385368 192.168.11.88.33130 > 64.58.77.195.80: S ...

Now we know that the user's machine is transmitting the SYN packets successfully (which means that
it already has successfully queried DNS for the remote IP address), but it isn't receiving responses.
We now hypothesize that something is filtering the responses, so we pursue that by connecting the
laptop outside the border router. Now Tcpdump prints something like the following:

tcpdump -i eth0 -n tcp port 80
tcpdump: listening on eth0
18:28:10.964249 external_if .53153 > 64.58.77.195.80: S ...
18:28:10.985383 64.58.77.195.80 > external_if .53153: S ... ack ...
18:28:10.991414 external_if. 53162 > 64.56.177.94.80: S ...
18:28:11.159151 64.56.177.94.80 > external_if .53162: S ... ack ...

The router is performing Network Address Translation (NAT), so external_if represents the router's

external IP address. The remote site is responding, but the SYN+ACK responses aren't making it
through the router; otherwise, we would have seen some in the previous output. This is indicative of a
filtering problem on the router. You might hypothesize that someone modified the ACLs incorrectly,
and you could test your theory by looking at the router configuration. Imagine how long we might
have spent isolating this problem without Tcpdump!

Revisiting the Sample Firewall Problem with Transport Layer Techniques

We have verified that something is blocking the HTTP traffic over our dial-up laptop connection to the
web server because we installed a new firewall. We wonder whether the traffic is even making it to
the firewall. We run Tcpdump on the web server and see no HTTP traffic. We run Tcpdump on another
machine that is connected to an external network outside of our firewall and see the remote Internet
user's SYN packets addressed to the web server coming into the network; however, we don't see
response packets coming back from the web server. Now we wonder if the firewall is blocking HTTP
traffic, despite what we found in our earlier examination of its configuration and logs. From the
external machine, we Telnet to port 80 on the web server and discover that it works fine. Therefore,
the firewall is not blocking HTTP from the external machine. However, the firewall doesn't seem to
receive HTTP packets from the Internet at all; we would see log messages if they were blocked, and
we would see response packets from the server if they weren't blocked.

Network Layer Troubleshooting

Security device problems at the network layer usually fall into one of the following categories:

Routing

Firewall

NAT

Virtual Private Network (VPN)

We will show you some tools to help troubleshoot problems in each of these areas.

NAT Has a History of Breaking Some Protocols

We discussed that NAT breaks some VPN implementations in Chapter 16, "VPN
Integration." VPN is not the only application that NAT has broken in the past. This was
usually because the associated protocols embedded transport or network layer information
in their payloads. Perhaps the most notable of these was H.323, which is used in
videoconferencing applications, such as Microsoft NetMeeting. NAT devices change IP and
Transport layer header information, but in the past they have known nothing about what
ports are stored in the application payload for a remote peer to work with. To make a long
story short, such protocols simply would not work through NAT devices unless they had
proxy support. However, some more recent NAT implementations have been incorporating
content checking that will change the imbedded IP address values in H.323 and other
protocols that would have been previously broken by NAT. So keep in mind when you're
troubleshooting a NAT-related issue that there have been issues with certain applications
and NAT in the past. Also, confirm compatibility between the implemented version of NAT
and the problem protocol.

You have already seen some of the tools we present at this layer, but here we show how to use them
for network layer problems. Some display information on the host, and some test network
connectivity. Many have multiple uses and were introduced earlier.

Ifconfig and Ipconfig

Both ifconfig and ipconfig utilities display host information that helps you verify that the IP address,
subnet mask, and broadcast address are configured correctly. There's nothing magic here, but it's
probably one of the things you'll check most often.

The UNIX ifconfig utility configures network interfaces and displays network interface details. Use the
-a option to display all interfaces when you don't know the name of the interface you're trying to look

at. The -v option might show additional information, such as the speed and duplex of the interface, as

in the following display from an SGI IRIX box:

ifconfig -av
ef0: flags=415c43<UP,BROADCAST,RUNNING,FILTMULTI,MULTICAST,
¬CKSUM,DRVRLOCK,LINK0,IPALIAS>
inet 192.168.114.50 netmask 0xffffff00 broadcast 192.168.114.255
speed 100.00 Mbit/s full-duplex
lo0: flags=1849<UP,LOOPBACK,RUNNING,MULTICAST,CKSUM>
inet 127.0.0.1 netmask 0xff000000

The ipconfig utility for Windows NT and higher primarily displays IP configuration information,
although you can also use it to release and renew DHCP configurations. Use the -all option to print
the IP address, subnet mask, and broadcast address of each interface. The ipconfig all command

also displays the IP addresses of the DNS servers and, if applicable, the DHCP and WINS servers that
are configured on the host. Windows 9x users also have access to ipconfig's functionality via the
winipcfg GUI program. Listing 21.4 shows the type of information you get from ipconfig.

Listing 21.4. Sample Ipconfig Output

C:\> ipconfig -all

Windows IP Configuration

 Host Name : TELLUS.intdom.org
 DNS Servers : 192.168.111.2
 Node Type : Broadcast
 NetBIOS Scope ID. :
 IP Routing Enabled. : No
 WINS Proxy Enabled. : No
 NetBIOS Resolution Uses DNS : Yes

0 Ethernet adapter :

 Description : Novell 2000 Adapter.
 Physical Address. : 18-18-A8-72-58-00
 DHCP Enabled. : Yes
 IP Address. : 192.168.111.130
 Subnet Mask : 255.255.255.0
 Default Gateway : 192.168.111.1
 DHCP Server : 192.168.111.1
 Primary WINS Server :
 Secondary WINS Server . . . :
 Lease Obtained. : 12 19 01 4:09:39 PM
 Lease Expires : 12 20 01 4:09:39 AM

From a security device troubleshooting perspective, you will most often focus on a few items in this
output. The DNS server IP address in the Configuration section can help you diagnose some
application layer problems. The IP address and default gateway addresses, in the Ethernet Adapter
section, are useful for routing or other connectivity problems. The DHCP server and lease information
might also be useful for troubleshooting connectivity problems. The other lines might be of interest for
troubleshooting Windows domain or workgroup issues, such as file sharing or network neighborhood
problems.

Netstat

As we mentioned in the section "Transport Layer Troubleshooting," the netstat utility exists in all

UNIX and Windows distributions. Its -r option can be used for network layer troubleshooting to

display the host routing table.

Note

You can also get this information on a Windows system via the route print command or on
a UNIX system using the route command.

Most of the time we're looking for the default gateway, which is displayed with a destination IP and
subnet mask of 0.0.0.0. The following Linux output shows two networks, 10.0.0.0 and 129.174.142.0,
accessible through the vmnet1 and eth0 interfaces, respectively. Both are class Csized, with a subnet
mask of 255.255.255.0. The default gateway is 129.174.142.1. Almost all TCP/IP devices include a
loopback interface, named lo in this case, serving network 127.0.0.0:

$ netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags Iface
10.0.0.0 0.0.0.0 255.255.255.0 U vmnet1
129.174.142.0 0.0.0.0 255.255.255.0 U eth0
127.0.0.0 0.0.0.0 255.0.0.0 U lo
0.0.0.0 129.174.142.1 0.0.0.0 UG eth0

When troubleshooting network layer issues, you will usually focus on the default gateway line in
netstat output. Many routing problems are caused by missing or incorrect gateway entries in the
routing table. Every TCP/IP device, unless you're working on a standalone LAN or a core Internet
router, should have at least a default gateway entry.

The routing tables can become large when you're running a routing protocol, such as the Routing
Information Protocol (RIP), on your network. However, routing updates are automatic in such
environments, which could eliminate the need to troubleshoot routing information with netstat.

Ping

The venerable ping utility, which is included in all UNIX and Windows distributions, employs the
Internet Control Message Protocol (ICMP) to test whether a remote host is reachable. It sends an
ICMP echo request packet and listens for the ICMP echo reply from the remote host. This is a great
test of end-to-end connectivity at the network layer; however, unfortunately today most firewalls
block ICMP. The protocol has been used one too many times in ICMP flood and other attacks. If you
want to test end-to-end connectivity, you might have to move up a layer and use the hping or Telnet
utility, described in the section "Transport Layer Troubleshooting."

Traceroute

Traceroute is another classic utility that is available on all UNIX and Windows machines, although the
command is abbreviated as tracert in Windows. It manipulates the IP header time-to-live (TTL) field
to coerce the gateways between your machine and the destination into sending back ICMP messages.
Each gateway decrements the TTL and, if it's zero, returns an ICMP time-exceeded message to the
sender. By starting with a TTL of 1 and incrementing it, traceroute detects the IP address of each
router along the way by examining the source addresses of the time-exceeded messages. Traceroute
also inserts a timestamp in each packet so that it can compute the roundtrip time, in milliseconds,
when it gets a response. This is possible because the ICMP response messages include the original
packet in their payloads. These capabilities make traceroute an excellent tool to help determine where
traffic fails as it traverses the Internet.

Traceroute is also useful in diagnosing performance problems. If you see the route change frequently,
you might hypothesize that you have a route-flapping problem somewhere. Unfortunately, proving
that might be impossible because the loci of such problems are usually on the Internet, outside of
your jurisdiction.

By default, UNIX traceroute sends a UDP datagram to a high-numbered port on the destination. The
port is almost always closed on the destination. Therefore, an ICMP port-unreachable message is sent
back when a packet finally makes it all the way, which tells traceroute when to stop.

Unfortunately, this won't work when your firewall blocks the outbound UDP packets or when the high
port is actually open on the destination (in which case it will probably be discarded, with no
response). Traceroute also breaks when the target organization blocks inbound UDP (for UNIX
traceroute) or inbound ICMP (for Windows trace-route). Windows uses ICMP echo request packets
instead of UDP. Many UNIX distributions now support the -I option to use ICMP instead of UDP.

Of course, traceroute also won't work if your firewall blocks outbound UDP or ICMP echo request
messages (as the case may be) or inbound ICMP time-exceeded messages. One way to overcome
these issues is by using hping. The hping command includes --ttl and --TRaceroute options to

specify a starting TTL value, which is incremented like the actual traceroute command. Applying these
options to an HTTP SYN packet, for example, will get the outbound packets through your firewall.
However, if your firewall blocks inbound ICMP, you will never see the time-exceeded messages sent
back by external gateways.

The output in Listing 21.5 shows a typical traceroute. You can see that three packets are sent for each
TTL value. No packets were lost in this example (we don't see any * values in place of the roundtrip

times), and all response times appear to be reasonable, so we don't see performance problems on this
route.

Listing 21.5. Sample Traceroute Output

traceroute -n www.yahoo.com
traceroute: Warning: www.yahoo.com has multiple addresses; using 64.58.76.224
traceroute to www.yahoo.akadns.net (64.58.76.224), 30 hops max, 38 byte packets
 1 63.212.11.177 0.675 ms 0.474 ms 0.489 ms
 2 63.212.11.161 1.848 ms 1.640 ms 1.636 ms
 3 172.20.0.1 26.460 ms 17.865 ms 40.310 ms
 4 63.212.0.81 24.412 ms 24.835 ms 24.488 ms
 5 198.32.187.119 33.586 ms 26.997 ms 26.715 ms
 6 216.109.66.4 33.570 ms 26.690 ms 27.066 ms
 7 209.185.9.1 33.576 ms 26.932 ms 26.811 ms
 8 216.33.96.161 20.107 ms 20.097 ms 20.181 ms
 9 216.33.98.18 24.637 ms 26.843 ms 26.901 ms
10 216.35.210.122 35.771 ms 28.881 ms 27.052 ms
11 64.58.76.224 33.452 ms 26.696 ms 27.020 ms

Tcpdump

We have to include Tcpdump at this layer, at least to help debug VPN problems. The latest versions
print a lot of useful information about the Internet Key Exchange (IKE) service (UDP port 500), which
establishes and maintains IPSec authentication and encryption keys. Tcpdump also prints some
information about the IPSec Encapsulation Security Payload (ESP) and Authentication Header (AH)
protocolsIP protocols 50 and 51, respectively (these are protocol numbers, not port numbers).

If you have users who are unable to establish an IPSec tunnel with a device that you are
administering, you could successfully troubleshoot possible issues by tracing the traffic arriving at the
device in question with Tcpdump. You can verify that IKE exchanges are occurring correctly and that
the proper ESP traffic is getting to the device in question. This is especially helpful because IPSec
lacks good logging facilities of its own. As you might have noticed by now, Tcpdump is one of our
favorite tools. It can put you on a fast track to solving almost any network problem, and many

experienced troubleshooters will go straight to it rather than trying to understand all the problem
symptoms, eyeball configuration files, and so on.

Hardships of Troubleshooting Performance

Performance issues represent one of the hardest classes of problems on which to get a
handle. One time, I was at a client's office when she happened to complain that logging in
on her Windows 2000 desktop took forever. She attributed this to a lack of available
bandwidth on the network because everyone had the same problem. She was unconvinced
when I pointed out that it would be hard for the 30 or so users on her Windows domain to
exhaust the bandwidth of the corporation's 100Mbps switched network. I pulled out my
laptop, connected both machines to the network through a hub I always carry, and ran a
Tcpdump while she logged in. The Tcpdump output immediately pointed to a DNS problem.
Her machine was issuing many queries for a nonexistent DNS domain. It turned out the
local admin, still unfamiliar with Windows 2000, had configured her machine identity
properties with membership to a nonexistent domain, apparently without realizing the
DNS relationship. A quick test with my laptop acting as the DNS server for her machine
convinced her that network bandwidth constraint was not the problem.

We have presented a few tools for network layer troubleshooting and have provided a few examples of
their use. NAT and VPN problems probably represent the bulk of the problems you're likely to deal
with in this layer. Next, we will move down to the bottom of the TCP/IP reference model: the link
layer.

Link Layer Troubleshooting

This layer can present you with some of your toughest problems. These problems will be a lot easier
to solve if you master a couple key topics:

The Address Resolution Protocol (ARP)

The differences between nonswitched and switched networks

ARP is the link layer protocol that TCP/IP devices use to match another device's Media Access Control
(MAC) address with its IP address. MAC addresses, not IP addresses, are used to communicate with
other devices on the same network segment. When a device determines that a given IP address
resides on the same segment that it does (by examining the address and its own subnet mask), the
device uses ARP to discover the associated MAC address. Basically, the device sends a link-level
broadcast asking who has the IP address. Every device on the segment examines the request, and the
one that uses the enclosed IP address responds. The original device stores the source MAC address of
the response in its ARP table; that way, subsequent transmissions don't require the broadcast process.
ARP table entries eventually expire, which necessitates periodic rebroadcasts. This ARP table
expiration is necessary to facilitate the moving of IP addresses between devices (for example, DHCP)
without the manual reconfiguration of all the other devices on the network segment.

In a nonswitched network, a network segment usually maps directly to the physical network medium.
In a switched network, a network segment's boundaries become a little vague because the switches
might be configured to break the physical network into logical segments at the link layer. In general,
the set of devices that can see each others' ARP broadcasts delineates a network segment.

You can find out more about these topics and their security ramifications in Chapter 13 and on the
Internet at http://www.sans.org/resources/idfaq/switched_network.php. With an understanding of
these subjects under your belt, all you need are a couple tools to diagnose almost any problem at the
link layer.

You will find link layer tools are similar to those used at the other network layers. Most of them

display host information. Once again, you will find Tcpdump useful for displaying what's happening on
the network, this time at Layer 2.

Ifconfig and Ipconfig

We already covered these tools in the "Network Layer Troubleshooting" section, but you might not
have noticed that they can also display the MAC address associated with the link layer. Look back at
the ipconfig -all output and you will see the MAC address displayed as the Physical address. On

UNIX machines, the method for determining the address varies greatly. On Linux and FreeBSD
machines, ifconfig shows the address by default, as seen in the following Linux output, as the HWaddr:

ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:10:5A:26:FD:41
...

Try one of the following methods to display the MAC address for your system:2

Solaris: arp `hostname`

OpenBSD: netstat -ai

IRIX: netstat -ai

ARP

The arp utility, naturally, displays information that pertains to the ARP protocol and ARP table. It
exists in all UNIX and Windows distributions, and it is most often executed with the -a option to

display the ARP table, as follows:

arp -a
? (123.123.123.123) at 00:02:E3:09:D1:08 [ether] on eth0
? (192.168.126.88) at 00:D0:09:DE:FE:81 [ether] PERM on eth0
? (192.168.126.130) at 00:D0:09:DE:FE:81 [ether] on eth0
? (192.168.126.127) at 00:10:4B:F6:F5:CE [ether] PERM on eth0
? (192.168.126.1) at 00:A0:CC:7B:9C:21 [ether] PERM on eth0

You can glean a lot of information from this table, in which ARP stores its IP/MAC pairs. It shows static
entries (tagged with PERM) that were added manually with the arps option. These can help mitigate

vulnerability to some devastating link layer attacks. The ARP protocol discovered the other entries and
added them dynamically. You can also see that two logical networks are accessed via the eth0
interface and that this is probably a Linux box, given the interface name. In case the other methods
we showed you to determine your MAC address failed, you can always use SSH to connect to another
machine on the same LAN to see your own MAC address.

Note

Windows NT and 9x versions have trouble maintaining static ARP entries (see
http://www.securityfocus.com/bid/1406). For a quick introduction to ARP and link layer
attacks, such as ARP spoofing, refer to Chapter 13.

If your system can't connect to a host outside your local network segment, try pinging your default
gateway's IP address (not its hostname) and then looking at your ARP table. If you don't see your

gateway's MAC address, you probably have a link layer problem. Otherwise, the problem is at a higher
layer. You can also apply this same logic on your gateway device. Check the ARP table on it to see
what entry it contains for your source system. An incorrect, sticky, or static ARP entry could be the
source of your problem. If no ARP entry is found in the table, you are most likely facing a physical
layer issue (network card or cabling).

When troubleshooting connectivity issues between devices on the same network segment, ping the
device you cannot connect to and check your ARP table to see if you receive an entry for the IP
address you are trying to ping. If you do not, you have a link or physical layer issue, such as a stale
ARP table entry on another host, a bad network card, bad cabling, or the like. If you do receive an ARP
entry, you are most likely fighting a Layer 3 or above filtering issue, such as port filtering, a host-
based firewall, or a restrictive IPSec policy on the target system.

Tcpdump

It's no surprise that we use Tcpdump at this layer, too! Tcpdump can help debug some insidious
problems. For example, consider a workstation that can't access the Internet, although other
workstations on the same hub have no trouble. We can ping the other workstations, but we can't ping
the gateway router. If we run Tcpdump and ping the router again, we see the following:

tcpdump -n host 192.168.1.130
12:17:56.782702 192.168.1.130 > 192.168.1.1: icmp: echo request
12:17:56.783309 192.168.1.1 > 192.168.1.130: icmp: echo reply
12:17:57.805290 192.168.1.130 > 192.168.1.1: icmp: echo request
12:17:57.805823 192.168.1.1 > 192.168.1.130: icmp: echo reply

The router (192.168.1.1) is actually replying to our pings! We try running Tcpdump again, this time
with the -e switch to print the MAC addresses:

[View full width]
tcpdump -en host 192.168.1.130
tcpdump: listening on eth0
10:27:03.650625 0:d0:09:de:fe:81 0:a0:cc:7b:9c:21 0800 98: 192.168.1.130 > 192.168.1.1:
 icmp: echo request (DF)
10:27:03.651260 0:a0:cc:7b:9c:21 0:10:5a:26:fd:41 0800 98: 192.168.1.1 > 192.168.1.130:
 icmp: echo reply (DF)

Note the source MAC address on the echo request our machine sent and the destination MAC address
on the reply the router sent. They don't match. We check the router configuration and find an old
static ARP entry in its cache. Deleting the entry fixes the problem.

Revisiting the Sample Firewall Problem with Link Layer Techniques

If you read the previous Tcpdump example, you're probably close to solving the sample firewall
problem we have highlighted throughout this chapter. We have successfully accessed the web server
from a workstation that is connected just outside the firewall, so the firewall rules are most likely
correct. However, we still cannot access the web server from the Internet. A border router separates
us from the Internet. Also, recall that the firewall was replaced with a new machine just before the
problems started. We execute tcpdump en to look at the MAC addresses, and we discover that the

router is sending HTTP traffic to the wrong MAC address for the firewall. We check the router
configuration, discover a static ARP entry for the old firewall machine, and change the entry to fix the
problem.

Summary

We can't overstress the importance of fostering good troubleshooting habits by developing
and practicing your own methodology, as we described at the beginning of the chapter.
Follow the logical steps in the process of troubleshooting closelycollect symptoms, review
recent changes, form a hypothesis, test the hypothesis, analyze the results, and repeat if
necessary.

Also, don't forget to apply the rules of thumb when following these steps. Don't make
multiple changes at one time as the actual solution for a problem can become unclear.
Always keep an open mind when working on issues, let your troubleshooting process rule
things out for you. When you get stuck, ask for a second opinion. Talking the problem out
with someone else can help you find mistakes in your troubleshooting. Try to stay focused
on the issue at hand. Don't implement a quick fix that may be more hazardous in the long
run then the original problem. Remember not to overlook the obvious when considering
the cause of your issue. Finally, try to keep strong documentation of your problems and
their solutions so you don't have to "re-create the wheel" if you run into a similar issue in
the future.

With those skills in place, however, your success will depend on knowing which tools to
apply for a given problem. That's why we focused so heavily, in the remainder of the
chapter, on describing some of our favorite tools and providing examples of their use. Use
the knowledge you have gained of these tools, information on the layers that they apply to
and the way they can be utilized to troubleshoot any networking security issue to your
advantage when working through scenarios in your own environment. The combination of
solid troubleshooting skills and the right tools for the job result in success at finding the
right answers for any security problem scenario.

References

1 Bernd Ochsmann and Udo Schneider . "How to use fw monitor."
http://www.checkpoint.com/techsupport/downloads/html/ethereal/fw_monitor_rev1_01.pdf.
July 10, 2003.

2 University of Washington Department of Computer Science and Engineering. "Determining
Your Ethernet Address." http://www.cs.washington.edu/lab/sw/_wireless/yourmac.html.
January 2002.

Chapter 22. Assessment Techniques
Throughout this book, we have discussed various methods of incorporating security into
the network. You have learned how to apply recommended security concepts to perimeter
components such as routers, firewalls, VPNs, and host systems. This chapter changes your
focus from a defensive approach to an offensive one, as we examine how to assess your
environment for possible security holes.

A terrific network security design is worthless if it is not faithfully implemented.
Unfortunately, many organizations do not test their networks to verify how well they have
achieved their security goals. This chapter is designed to show you how to plan an
assessment to determine whether your security perimeter is operating according to your
expectations. Many of the techniques we will discuss are similar to techniques in common
use by network attackers. This includes information-gathering techniques that attackers
use to fingerprint and enumerate your network, vulnerability-discovery efforts to
determine potential holes in your network, and exploitation techniques that may
demonstrate insecurities in your security perimeter. Going through the process of
assessing the effectiveness of your security infrastructure helps improve the resiliency of
your security perimeter and allows you to locate weaknesses before attackers can exploit
them.

Roadmap for Assessing the Security of Your Network

Your network may expose vulnerabilities to attackers in many ways. A key area is
information exposure. Many details about your organization that an attacker can gather
can be used to assist in an attack. This includes technical data, such as what public
services you offer, as well as nontechnical items, such as who your business partners are.
The next area of importance is connectivity. Can attackers send and receive information to
the systems within your network? This is dominated by the impact your firewalls (and
filtering routers) have on connectivity into your network, but it can also be affected by the
controls you have in place to allow workstations and notebook computers to connect to
your internal network. The last major area that needs to be examined is whether the
services your network relies on contain exploitable vulnerabilities.

To prepare you for performing your assessment, we present a roadmap for exploring each
of these areas to ensure that you locate your exploitable vulnerabilities. Attackers often
follow the same techniques when attempting to penetrate your defenses, which is why
performing regular security assessments is a critical step in fortifying your network. An
assessment consists of the following core phases:

1. Planning Determine the scope of your assessment. Decide how you will conduct it.
Develop written rules of engagement to control the assessment and, most important,
gain proper written approval to perform it. Assemble your toolkit to perform the
assessment.

2. Reconnaissance Obtain technical and nontechnical information on the organization
and known public hosts, such as mail, web, and DNS servers. This information may be
used to focus cyber-attacks as well as reveal information useful for social engineering.

3. Network service discovery Determine which hosts and network devices can be
accessed from the outside. For each of these systems, determine what services are
running on them.

4. Vulnerability discovery Probe externally accessible systems and remote services to
determine whether they expose known vulnerabilities to the outside. Analyze initial
results to eliminate false positives.

5. Verification of perimeter devices Evaluate firewall and router configurations to
ensure that they are well configured. Verify that firewalls do not pass traffic that
should be blocked. Verify that anti-discovery and anti-DoS controls are in place and
work as expected. Test intrusion detection/prevention sensors to ensure that they
detect, log, and alert on suspicious activity.

6. Remote access Verify security controls of known remote access systems, including
remote access servers, wireless access points, and VPNs. Search for unauthorized
(rogue) modems and wireless access points.

7. Exploitation (optional) Attempt to use exploitation techniques against the
discovered vulnerabilities. Based on the goals of the test, this may be an iterative
activity. Successful exploitation may lead to additional access on the network, which
may open the opportunity up for further exploitation.

8. Results analysis and documentation Analyze discovered vulnerabilities to
determine their overall effect on the level of risk to the network's security. This is
normally based on the vulnerabilities' impact to the affected system, the criticality of
the system, the likelihood that the vulnerabilities will be exploited, and the effort
required to remediate the vulnerabilities. Produce an assessment report that provides a
list of prioritized vulnerabilities by level of risk and provides recommended steps to
resolve the individual and root causes for the vulnerabilities.

For the remainder of this chapter, we will provide detailed guidance on the tools and
techniques necessary to perform each of these steps. Assessments should always start
with careful planning, so that is where we will begin.

Planning

Have you heard the old saying, "If you fail to plan, you plan to fail"? This saying rings true
when you perform a security assessment. You must choose the appropriate time to
execute the assessment, evaluate possible risks, determine costs, and obtain
management's approval. That sounds like a lot of preparation to determine the strength of
your defenses, but remember, hindsight is 20-20.

The first issue that needs to be addressed at the beginning of an assessment is
determining your scope. This should include developing a list of the target computer
systems and network devices that you will include in the assessment and what techniques
are you allowed to use against them during the assessment. Listing valid targets may be
as simple as stating that all computer systems that are part of your organization are in
scope, but be careful. Are there any other organizations that have equipment attached to
your network? Do you have agreements in place that allow you to audit their computer
systems? You will need to determine that you have the right to include these systems in
your assessment prior to firing packets at them! There may be other systems that are part
of your network that you are not authorized to test. All these systems should be identified
and placed in a do-not-test list.

The other issue to address for scope is to determine which test techniques will be used
during the assessment. Some assessment activities are safer than others. You should be
clear which techniques you will be using and what controls you will employ to reduce the
organizational risk for the more dangerous techniques. Table 22.1 shows a list of common
assessment techniques and the level of risk generally associated with each.

Table 22.1. Different Assessment Techniques and
the Different Levels of Risk

Assessment Technique Risk Level

Initial reconnaissance Very Low

NETWORK SERVICE DISCOVERY

Host discovery Low

Port discovery Low

Service detection Low

VULNERABILITY DISCOVERY

Automated vulnerability
scanning (e.g., Nessus)

Medium

Wardialing Low

Wardriving Very Low

Online password brute force Medium

Exploitation of detected
vulnerabilities

Medium to High

As part of this step, you will also need to plan the logistics of the assessment, including
determining what the valid test hours of operation are, the start and end dates for the
assessment, and the administrative and management points of contact for in-scope

systems. Keep in mind that performing a vulnerability assessment carries with it the
inherent risk of disrupting service through crashing target systems or generating
excessive network traffic. Therefore, administrators should be available during your
assessment to deal with any issues that might arise. Because of this, access to the
appropriate administrators will be an important consideration as you decide what your
hours of operation will be.

Tip

When deciding on a time to perform the assessment, be sure to account for
differences in time zones across the organization.

Finally, all the planning decisions need to be documented in a written rules-of-
engagement document that must be signed by management before the assessment
commences. Written approval has saved the careers of many people when critical systems
went down as a result of simple scanning. In general, communication is one of the most
important aspects of planning the assessment. You need to verify that all parties involved
in supporting the targeted systems, as well as management, have been informed (as
appropriate) of your activities. Keep communication and risk awareness in your thoughts
as you plan and perform the assessment.

Testing Without Written Authorization Can Have Serious

Consequences

For a concrete example of what can happen to you if you do not gain written
approval for your assessments, look up the story of Randall Schwartz
(http://www.lightlink.com/spacenka/fors). Randall found himself convicted of
multiple felonies for basically conducting a much needed security assessment
but without gaining proper approval. Remember, in the law's eyes, the
difference between a hacker and a security professional is permission!

Once you have your scope determined and have gained approval to proceed, you will need
to make sure you've got the test resources assembled to complete all the tests you have
agreed to perform. Often this will require creating more than one test system, each
running a different operating system and configured with test tools appropriate for that
operating system. At a minimum, you will probably want to have both Windows and UNIX
systems available to utilize the plethora of OS-dependent utilities each contains. Later in
the chapter we will be discussing specific utilities you may want to use.

Tip

If you do not have extra computers lying around to run multiple operating
systems, check out VMware (http://www.vmware.com/). VMware software
enables you to run an OS within another OS. For example, if you use Windows
2000 Professional, you could use VMware Workstation on it, which would enable
you to run Red Hat Linux at the same time on the same machine. Note that you
might have to increase your system's RAM or disk space for proper performance.

Assuming you've determined your scope, gained written approval, and assembled your
test systems, you can now move on to the reconnaissance step of your assessment.

Reconnaissance

The heart of the reconnaissance stage is to gather publicly available information about the
organization without actually probing targeted systems directly. This often includes
general business information as well as the organization's IP address ranges and the
names and IP addresses of its public services, such as DNS, web, and mail. We also want
to gather nontechnical information that might be used in a social-engineering attack.

A key starting place is determining what IP address ranges are associated with your
organization. You can get this information by querying the ARIN database at
http://www.arin.net. Query instructions are available on its website, but a basic query
you'll want to include is ">YOURORG *" (for example, ">George Mason University*"). This
will return a list of matching resource records from the ARIN database and show the net
blocks associated with each. An example of this is shown in Figure 22.1. You will want to
compare this information with the IP ranges you gathered during the planning stage to see
if any address ranges got left out. If you discover new address ranges that you feel should
be included, you will need to modify your rules-of-engagement document to include the
new addresses.

Figure 22.1. ARIN can be used to locate the IP address ranges
associated with a particular organization.

[View full size image]

You can also find out useful information by querying the various whois databases for any
domain names you have registered. A good site to use for this is Allwhois.com. This site
provides a single interface for searching many different registration databases. Whois
queries can reveal several useful facts about an Internet site. Whois will give you two
main types of information. First, it reveals the DNS names and IP addresses of the name
servers. You can use this information in the next step when we attempt to collect DNS
information. In addition, whois will often show contact information, including names,
addresses, and phone numbers for people within the organization who are responsible in
some way for the Internet site. This information can be very useful for social engineering.
The following is an example of the type of result you may receive from a whois search:

Domain Name: GMU.EDU

Registrant:
 George Mason University
 4400 University Drive
 Fairfax, VA 22030
 UNITED STATES

Contacts:

 Administrative Contact:
 Tracy Holt
 George Mason University
 ITU Thompson Hall
 4400 University Drive
 Fairfax, VA 22030
 UNITED STATES
 (703) 993-3356
 holt@gmu.edu

 Technical Contact:
 Same as above

Name Servers:
 PORTAL-0-8.GMU.EDU 129.174.0.8
 THALASSA.GMU.EDU 129.174.1.3
 UVAARPA.VIRGINIA.EDU 128.143.2.7

Domain record activated: 14-Oct-1987
Domain record last updated: 05-Mar-2002

Tip

For an informative description of social-engineering techniques, take a look at
the "Social Engineering Fundamentals" article by Sarah Granger at
http://www.securityfocus.com/infocus/1527.

Once you've finished your ARIN and whois searches, it is time to start gathering DNS
information. Nslookup is a tool included with most operating systems that can be used to
determine DNS-related information. Some DNS servers may also allow you to obtain a
listing of all registered names and addresses via a technique referred to as a zone
transfer . A zone transfer is a complete transfer of all domain information that the DNS
server contains. Zone transfers are included in the DNS standard to allow DNS servers
within a domain to stay synchronized. Previously, it was common for DNS servers to allow
anyone to initiate a zone transfer. Now, most sites have configured their DNS servers to
reject anonymous DNS zone transfer requests. It is still worth verifying that your site does
not allow zone transfers from every DNS server you maintain.

Various websites and utilities are available to make many aspects of the initial
reconnaissance phase almost effortless. One such site is http://www.all-
nettools.com/toolbox, which provides web-based access to tools, such as whois and
nslookup. You can also use utilities such as NetScanTools Pro that run on your workstation
and incorporate miscellaneous investigative tools into a single interface
(http://www.nwpsw.com/). Figure 22.2 shows the GUI interface of NetScanTools Pro
performing a DNS lookup.

Figure 22.2. NetScanTools can be used to obtain detailed DNS
information about the organization.

[View full size image]

DNS discovery can also be performed using the nslookup command; however, it is much

easier to point and click than to issue hundreds of commands via the command line. This
example shows how the same investigative steps would look when using nslookup from

the command line. The bold text indicates commands, and the rest indicates displayed
output.

>nslookup
Default Server: dns.xyz.com
Address: 192.168.200.250

> set type=any
> 12.142.174.129.in-addr.arpa.
Server: dns.xyz.com
Address: 192.168.200.250

Non-authoritative answer:
12.142.174.129.in-addr.arpa name = megalon.ise.gmu.edu

142.174.129.in-addr.arpa nameserver = ite.gmu.edu
142.174.129.in-addr.arpa nameserver = portal.gmu.edu
ite.gmu.edu internet address = 129.174.40.84

In addition to standard DNS queries, you'll want to perform reverse lookups. Instead of
resolving names to IP addresses, reverse lookups resolve IP addresses to names. Many
DNS names are descriptive and can provide valuable information about the purpose of the
host, as well as its location, because many organizations use geographic information in
their hostnames. For example, what do you think londonfw.example.com could be? Many
tools are available that can be used to exhaustively perform a reverse lookup of every IP
address in a given range, including NetScanTools Pro.

Another great source of information you should include in your initial reconnaissance is
your organization's web presence. Organization's often unknowingly publish private
information to the Internet, such as usernames and corporate contact information. A tool
such as BlackWidow (http://www.softbytelabs.com) can be used to crawl through your
websites gathering information, and it provides you with the ability to quickly search
through the resultant data. Figure 22.3 shows a sample session of BlackWidow. A couple
freeware alternatives are wget (http://www.gnu.org/software/wget/wget.html), a

command-line tool included with many Linux distributions, and HTTrack
(http://www.httrack.com), an open source tool with GUI that works on both Linux and
Windows.

Figure 22.3. BlackWidow can be used to download an entire website.

[View full size image]

Regardless of which tool you use, you will want to search for sensitive information in the
pages you gather. Many types of information may be exposed on a website. For instance,
backup copies of the programs that implement the website may be accessible, or you may
have accidentally placed sensitive corporate documents within the site. Table 22.2 shows
some good search terms you may want to include in your analysis.

Table 22.2. Sample Search Terms for Finding
Sensitive Information from Your Websites

Search Terms Purpose

.asp, .php, .cgi, .cfm Find web programs

.asp~, .php~, .cgi~, .cfm~,

.bak
Find backups of web programs

password, pass, pwd, shadow,
secret

Find passwords

username, user, usr Find user accounts

.mdb, .db Find databases

You may also want to use terms based on data specific to your organization. For example,
if you work for a pharmaceutical company, you may want to search on terms related to
any proprietary drug research the company is conducting. More generically, you should
search for IT and security-related items, such as network diagrams and firewall policies.
You'd be surprised how often this technique reveals breaches in data confidentiality.

In addition to searching your websites, you may want to see what web search engines

have archived from your sites. Web search engines regularly crawl Internet-accessible
websites, including yours. Once they do this, anyone can query the search engine to
gather information about you. A whole subcategory of hacking has grown up around
search engines. It is often referred to as Google hacking because of the popularity of using
Google to perform this type of attack.

Two Google search extensions you will find useful (if you're using Google during your
assessments) are inurl and link. Inurl allows you to limit Google's search to pages

related to your site. For example, to search only on SANS Instituterelated websites, you
could specify inurl:sans.org as one of your search terms.

Link can be used to see all the web pages that link to a particular page. Normally, some

type of relationship exists between organizations that link to each other's sites. Some of
these relationships concern business operations. For instance, a company that sells your
products may provide a link on its site to yours. Also, it's not uncommon to discover that
employees (or ex-employees) have set up personal websites that contain sensitive
information about your organization. Because these sites often contain links back to your
main web page, Google's link feature allows you to find them easily.

Tip

The site http://johnny.ihackstuff.com/ contains a large database of Google
search terms you can use to discover sensitive information that has leaked out of
your websites. This includes searches to find particular web software, locate
login portals, and even reveal passwords. You can take the examples provided on
the site and combine them with the inurl search syntax to determine whether

your site is revealing information it shouldn't.

You have now completed the reconnaissance phase of the assessment. At this point, you
should have some general knowledge about your organization, its IP address range, and
addresses of at least a few publicly accessible servers (such as DNS, web, and mail).
Given that these systems are available in some capacity directly from the Internet, they
are the most likely systems to be attacked; therefore, you should pay special attention to
them. After the initial reconnaissance phase is done, you need to continue by gathering
more in-depth information about the targeted network.

Network Service Discovery

In this step of the assessment, you use host and port scanners to actively examine the
network ranges you discovered during the reconnaissance step. This will reveal the existence
of servers and services running on those servers. Some of the information you discover
during this step you will already have uncovered during the initial reconnaissance. However,
it is likely that you will uncover a large population of systems that you were previously
unaware of. All the information you collect in this step will feed into the next, where you will
probe discovered systems to determine their potential vulnerabilities.

System Enumeration

The two main aspects of network service discovery are system enumeration and service
discovery. System enumeration combines discovery and analysis techniques to locate
systems that can be used as access points into the network. Once you have located these
systems, you then move on to service discovery, where you attempt to determine what
network services are available on the discovered computer systems. We'll first start by
showing you how to perform system enumeration.

Network Scanners

The standard method to discover devices on a network is to perform an ICMP scan, which
simply issues ICMP echo request messages in hopes of receiving ICMP echo replies (for
example, ping). You have a huge number of tools to choose from to perform your scan.
SuperScan, available from http://www.foundstone.com/, is a free Windows utility that, in
addition to supporting other techniques, can perform ICMP scans. Some of the many ICMP
scanners for UNIX systems include fping (http://www.fping.com/) and pinger
(http://packetstorm.widexs.nl/groups/rhino9/).

Figure 22.4 illustrates hosts and devices that are discovered when performing an ICMP scan
using SuperScan. Keep in mind that results of an ICMP scan are not always exhaustive
because routers and firewalls often block ICMP traffic, effectively hiding internal systems
from ICMP scans. This is why we employ several network-scanning techniquesto determine
the presence of network devices and hosts that might be invisible to a particular scanner.

Figure 22.4. SuperScan can perform ICMP scans to detect systems that
are available on the targeted network.

[View full size image]

Tip

When you're performing the assessment, a good rule of thumb is to start small by
scanning one subnet at a time. Performing scans in smaller increments allows for
the assessment of a large network to become a more manageable task.
Additionally, controlling the rate and breadth of network scans aids in the
prevention of network saturation and possible failure.

Even if ICMP traffic is blocked at the border of your network, you can still locate remotely
accessible hosts by performing scans using TCP or UDP packets. In this case, you would use
a network scanner, such as SuperScan or Nmap, to probe all IP addresses in the targeted
address range on commonly open ports. Figure 22.5 shows the results of a network scan that
SuperScan performed. Instead of issuing ICMP packets, we configured the program to locate
all hosts that answer to connections on TCP ports 25 (SMTP), 80 (HTTP), and 21 (FTP). In
this case, only two hosts were located, both apparently running web server software.

Figure 22.5. SuperScan can locate remotely accessible systems by
attempting to connect to commonly used ports.

[View full size image]

Traceroute

In addition to scanning, you may also want to use traceroute to discover the path your
packets are taking to reach the hosts your scans revealed. The following are some ways to
use traceroute (or tracert under Windows) to learn about the targeted network:

Traceroute results will often stop when the trace reaches a firewall. This can be very
useful to you as you map out the structure of your network.

A traceroute to a targeted host reports the networks and systems that the traffic passes
through. This information might be useful in determining which paths connect the
targeted network to the Internet, and, potentially, what internal devices route packets to
publicly accessible systems.

Sometimes a traceroute returns unexpected IP addresses. For example, you might see
an address such as 10.3.1.70, which is most likely an internal network address being
"leaked" through a misconfigured or malfunctioning device that performs Network
Address Translation (NAT).

At this point of the external assessment, you have gone through several stages of learning
about the targeted network. You started off with planning, performed initial reconnaissance,
and enumerated systems that were accessible from the Internet. You are now ready to focus
on the configuration details of the individual hosts you have uncovered so far.

Service Discovery

Now that you have mapped the targeted network, you are ready to probe individual systems
in an attempt to determine which operating system they are running, locate ports that can be
accessed remotely, determine the service software running on these ports, and access the
services to determine additional host details. This prepares you for the next step, in which
you probe discovered systems and services for exploitable vulnerabilities.

Port scanners can probe individual systems and network ranges to locate open ports
associated with commonly used services, potential vulnerabilities, or specific exploits. For
example, an attacker can run Nmap to find devices that have TCP port 27374 open, which
might indicate that they are infected by the SubSeven Trojan.

Nmap

Nmap (http://www.nmap.org/) is one of the most popular and powerful tools for identifying
open ports in a system. Nmap can perform different types of scans that help you determine
which traffic is allowed to pass through your access control devices. You can use Nmap to
perform scans with TCP, UDP, and ICMP packets in an effort to acquire system information.
Each Nmap option attempts to connect with the target system in a different way. Nmap is
one of the most popular network scanners because of its flexible scanning options and its
availability on multiple OS platforms.

The following is an example of a SYN scan directed at a remotely accessible server. It shows
the Nmap program performing a SYN scan, as specified by the -sS parameter. The O option

specifies that Nmap should attempt to guess what type of OS the target system is running.

nmap -sS -O 192.168.254.6

Starting nmap 3.75 (http://www.insecure.org/nmap/) at 2004-12-18 09:56 EST
Interesting ports on 192.168.254.6:
(The 1661 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
MAC Address: 00:0D:60:F8:FA:62 (IBM)
Device type: general purpose
Running: Microsoft Windows 2003/.NET|NT/2K/XP
OS details: Microsoft Windows Server 2003 or XP SP2

Tip

Using Nmap to perform only a SYN scan does not exhaustively determine
accessibility of remote systems and services; additional scans, such as FIN, XMAS,
and UDP, should be executed as well. This is because different firewalls tend to
block different types of discovery activities. By trying more than one scanning
method, you can determine how effective your firewall is at blocking these packets.

In this example, Nmap not only determined which ports were open on the host, but also was
able to guess its operating system, which might help later when assessing the system for
vulnerabilities. Knowing open ports on the remote host enables you to determine versions of
the services that are listening on those ports. Often, all you have to do is connect to the
ports using a tool as commonplace as the Telnet client. The Telnet client can connect to
more than the Telnet service. By providing a port number after the host, you can make the
Telnet client connect to any TCP port. For instance, telnet 192.168.5.12 21, will make the

Telnet client connect to the FTP port on the computer system located at 192.168.5.12.

Telnet and Banner Retrieval

Knowing which versions of applications are in use on the targeted system can help you
locate vulnerabilities that might be exploitable over the network. After you know which TCP
ports are open on the targeted hosts, you can try connecting to those ports that look
particularly interesting. Some of the services that often announce their version when you
simply connect to them using the Telnet client are Telnet (TCP port 23), FTP (TCP port 21),
and SSH (TCP port 22). For example, you can often obtain the version of the SSH server
running on the target by connecting to its TCP port 22, as follows:

telnet 192.168.5.12 22
SSH-1.99-OpenSSH_2.9

Some services, such as SMTP (TCP port 25) and HTTP (TCP port 80), require you to issue a
request after you connect with Telnet before revealing their version. For example, you can
determine the version of the remote web server by connecting to port 80 on the server using
the telnet command, typing HEAD / HTTP/1.0, and pressing Enter twice:

telnet 192.168.5.12 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Sat, 02 Mar 2002 00:09:55 GMT
Server: Apache/1.3.19 (Unix) Resin/1.2.2 PHP/4.1.2 mod_ssl/2.8.1 OpenSSL/0.9.6
Last-Modified: Thu, 08 Nov 2004 00:08:32 GMT
ETag: "9cf48-244-3aa6cd80"
Accept-Ranges: bytes
Content-Length: 580
Connection: close
Content-Type: text/html

As you can see, this web server seems to be running Apache version 1.3.19 on a UNIX
platform, with several modules that might contain vulnerabilities. Port and vulnerability
scanners might be able to automatically obtain versions of certain applications. Nmap has
had this ability since version 3.4. You activate it using the sV flag, which stands for version

scan. Here is an example that shows that Nmap is able to determine versions of the SSH
server and web server on the targeted system:

nmap -sV 192.168.254.2

Starting nmap 3.75 (http://www.insecure.org/nmap) at 2004-12-18 10:20 Eastern
Standard Time
Interesting ports on 192.168.254.2:
(The 1659 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 3.5p1 (protocol 1.99)
80/tcp open http Apache httpd 2.0.40 ((Red Hat Linux))
111/tcp open rpcbind 2 (rpc #100000)
6000/tcp open X11 (access denied)
MAC Address: 00:0C:29:C2:6F:8F (VMware)

Nmap run completed -- 1 IP address (1 host up) scanned in 10.785 seconds

You may notice at this point that you are starting to collect a large amount of information
about your network. You will need to organize your data collection for it to be any good to
you later. One method you may want to use is to build a system matrix that reflects what
you know about the targeted systems. Table 22.3 presents an example of one such matrix.

Table 22.3. A System Matrix Helps Keep Track of
Detailed Information Discovered During the Assessment

System IP Address
Available
Services

Operating
System Version

br2-
dc1.abtltd.com

x.x.x.1 25 Cisco 3600 IOS 12.0(5)

smtp.xyz.com x.x.x.10 22, 25, 53,
110

SunOS 2.6 ESMTP-
Sendmail
8.11.1

ftp.xyz.com x.x.x.15 21, 22, 5631 UNIX (type
undetermined)

WU-FTP
2.6.0(1)

www.xyz.com x.x.x.28 80, 443 Linux Apache
1.3.22,
OpenSSL
0.9.6a

ns1.xyz.com x.x.x.53 25, 53 SunOS 5.8 BIND 8.2.3

As the amount of information you know about your network grows, the more targeted the
next step in the process will be. Network and port scanners bring you closer to the target by
locating and analyzing open service ports. A different class of scanners is needed to test
these open service ports to detect vulnerabilities. Scanners that are able to obtain detailed
information about remotely accessible applications and determine whether they are
vulnerable to known exploits are called vulnerability scanners . Vulnerability scanners are
used to locate exploitable weaknesses in applications and operating systems, as we discuss
in the following section.

Vulnerability Discovery

Vulnerability discovery is the assessment step where you start to determine what your
findings will be. Sometimes, just the information that your port scanning and banner
grabbing gives you is enough to strongly suggest certain vulnerabilities. For instance, if
your scanning revealed to you that one of your Windows servers is running Apache 2.0.38,
it is likely that the server is susceptible to a directory traversal attack
(http://www.securityfocus.com/bid/5434). This can be tricky, though. In the case of this
vulnerability, the administrator could have fixed the problem by upgrading the Apache
software or by making a change to the Apache configuration file. The first approach would
be easily detected because the software upgrade would also cause the banner to change.
The second approach, although just as effective at fixing the vulnerability, would not
change the banner, leaving us with a false impression of vulnerability. This is the problem
that vulnerability scanners are meant to solve. These tools work at the application layer,
combining various testing techniques to determine whether a vulnerability exists.
Although not perfect, they are a large step beyond what we can accomplish through port
scanning alone.

Vulnerability scanners often possess network- and port-scanning capabilities similar to the
scanners we have discussed so far, but they can also probe audited systems for
vulnerabilities. Unlike port scanners, which typically operate at the transport layer and
lower, vulnerability scanners have the ability to locate vulnerabilities at the application
layer. By using both port and vulnerability scanners, you can achieve a comprehensive
awareness of the state of your network's defenses. We begin by looking at Nessus, an
open source vulnerability scanner, which we will then compare to several commercially
available alternatives.

Note

Even if you cannot locate any known vulnerabilities in your network, it may still
be vulnerable to attack. Unknown vulnerabilities are ones that exist in services
you are using but have not been discovered (or revealed) to the computer
security community. Because you have no way to know they exist, you will not
know to look for them. A proactive approach to this problem is discussed in
Chapter 23, "Design Under Fire." However, don't be too concerned. If the
computer security community does not know of the vulnerability, the majority of
network attackers will not know of it either. It's always better to fix what you can
fix first before worrying about harder problems.

Nessus

Nessus (http://www.nessus.org/), a high-quality open source vulnerability scanner, offers
the ability to scan for accessible service ports, and it can perform security checks to
determine whether known exploits can be applied to discovered systems. Most
vulnerability scanners rely on a database of scripted tests they perform to attempt to
discover vulnerabilities on scanned computer systems. Nessus refers to these scripts as
plug-ins . The set of plug-ins available for Nessus is large (currently over 5,800). Plug-ins
exist to attempt many classic vulnerability types (for example, remote access) and to
assess many types of devices (for example, Cisco, Windows, UNIX). You can also write
your own plug-ins either using your favorite scripting language or using the Nessus attack
scripting language (NASL), Nessus's internal scripting language.

Tip

All of Nessus's included plug-ins are written in NASL and are available for your
review. You can learn a lot about how Nessus operates by examining these
scripts. This can be especially useful to learn the limitations of the scripts. If you
have a particular finding that continually shows up in your environment, but you
have verified that it is unimportant (for example, a false positive), you can look
at the script that is reporting the vulnerability to see if it can be improved for
your site to produce better results!

While you are performing the vulnerability discovery phase of the assessment, you might
decide to audit your systems in stages, according to the function they perform. For
example, consider first focusing on your high-profile devices, such as your firewalls. You
would then configure Nessus to test for only commonly exploited firewall vulnerabilities.
You might then focus special attention on your web servers because of their high visibility
and accessibility. Whatever the case, you simply have to select the Nessus plug-in family
you require and specify which systems to scan. Nessus plug-ins are grouped into
categories, such as backdoors, small services, Microsoft Windows, and CGI abuses.

Tip

Limiting the tests that a vulnerability scanner uses will dramatically speed up the
time it takes the scanner to run. This can be very important if you plan to scan
frequently or if you have a large network to examine. A good practice is to
occasionally run comprehensive scans while running targeted scans much more
frequently. Depending on your environment, daily scans may not be too frequent.
To make this work, you will need to spend time deciding what tests to include in
your frequent scan. A good place to start building your list is the SANS Top 20
Vulnerabilities (www.sans.org/top20/).

After performing a vulnerability scan, Nessus compiles a summary report, illustrated in
Figure 22.6, which helps to focus your attention on security weaknesses that require your
immediate attention. In this example, Nessus was able to enumerate various user
accounts while assessing a Windows file server.

Figure 22.6. A Nessus assessment report summarizes findings of the
vulnerability scanin this case, of a Windows system.

[View full size image]

Note

Although Nessus is an open source tool, Tenable, the company maintaining
Nessus, has recently decided to start selling the plug-ins it produces. Plug-ins
created by the open source community will remain free, and Tenable does
currently allow free (though delayed) access to its private plug-ins for
noncommercial use.

ISS Internet Scanner

ISS Internet Scanner (http://www.iss.net/) is another popular vulnerability assessment
tool, which rivals the thoroughness of Nessus and has the advantages and the
disadvantages of being a commercial product. ISS Internet Scanner performs many of the
same functions as Nessus, including port scanning, service verification, and software
fingerprinting.

ISS Internet Scanner offers tailored sessions depending on the OS, the role of the system,
and the level of thoroughness you desire. For example, if your plan is to assess a UNIX
system that is running Apache, you might select the UNIX web session with the desired
level of thoroughness. The higher the level, the more vulnerability checks will be
performed. ISS Internet Scanner also produces high-quality, flexible reports that can be
tailored to executives, management, or technicians.

Figure 22.7 shows a vulnerability detail screen from ISS Internet Scanner. As you review
the vulnerability report, you have a comprehensible description of the vulnerability as well
as a path to remedy the problem. In this illustration, you can see that a high-risk
vulnerability in the Microsoft SQL server service has been found. The description of the
"MDAC OpenRowSet buffer overflow vulnerability" shows what impact the vulnerability
would have on the systemin this case, allowing an attacker to gain complete control over
the SQL server and possibly issue operating system commands. This information will be
very useful to you later as you try to prioritize the vulnerabilities in your report. ISS also
provides remediation information. In this example, you are directed to Microsoft Security
Bulletin MS02-040 to understand how to resolve the vulnerability.

Figure 22.7. ISS provides detailed information about each discovered

vulnerability.

[View full size image]

ISS Internet Scanner provides an extensive vulnerability database. In addition, it offers
an easy-to-use update feature, guaranteeing that the most current data is available. When
a new vulnerability is discovered or when new malicious code becomes publicly available,
ISS's X-Force team quickly updates its vulnerability database to allow customers to scan
for these items. It is important to note that all the vulnerability-scanning product vendors
(including Nessus) claim to provide rapid updates to their database, and, in fact, this is
true. It is also true that each tool has some vulnerabilities that it uniquely scans for. For
this reason, it is not a bad idea to include more than one vulnerability scanner in your
toolbox.

Retina

Retina is a commercial scanner produced by eEye Security (http://www.eeye.com/) that
competes with ISS Internet Scanner. Retina provides a clean Windows-based interface, as
illustrated in Figure 22.8. Retina offers a single interface that incorporates a vulnerability
scanner, an Internet browser, a system miner module (which simulates hacking stimulus),
and a tracer utility (which offers traceroute-like functionality). Retina offers a quality
solution because of its user friendliness, technical robustness, ability to automatically
correct some vulnerabilities, as well as detailed explanations for resolving discovered
issues.

Figure 22.8. In this example, Retina discovers several critical
vulnerabilities, including specific problems with the web server

running on the system.

[View full size image]

Some scanners are better at probing specific operating systems or applications than
others. LANguard, for example, is a powerful scanner for probing systems regardless of
their OS, but it is particularly effective for obtaining detailed information about Windows
hosts.

LANguard

GFI LANguard Network Security Scanner (http://www.gfi.com/lannetscan) provides robust
functionality for scanning networks and individual hosts. This tool performs especially well
when assessing Windows-based systems. Among other techniques, LANguard can utilize
Windows null session connections to execute information-gathering and enumerating
processes. LANguard also comes in handy when assessing any device that accepts Simple
Network Management Protocol (SNMP) connections. If you are able to guess the target's
SNMP community string, which is just like a password, you might be able to access
extensive amounts of information regarding this device. In Figure 22.9, LANguard
discovers enough information to plan an attack against this Windows XP system.

Figure 22.9. In this example, LANguard enumerates sensitive
information from a Windows XP system.

[View full size image]

All four vulnerability scanners we've discussed offer many similar options and
functionality. Let's summarize how they relate to each other:

Nessus is a wonderful open source tool. It has continued to be refined over the years
and now competes head-to-head with commercial vulnerability scanners, though its
reporting system is not yet as flexible as some of the other choices available. Nessus
is also a good choice as a complementary vulnerability scanner.

ISS Internet Scanner offers mid-size to large corporations a robust vulnerability
scanning tool, complete with easy software updates and excellent reporting that can
be catered for specific audiences. Many sites already have site licenses for ISS
Internet Scanner, especially organizations that already license other ISS software
such as the RealSecure IDS.

Retina is great for scanning mid-size to large corporations. Retina and ISS Internet
Scanner are both excellent at locating and providing detailed guidance for
vulnerabilities. Retina, however, offers an interface that is somewhat easier to
navigate and configure.

GFI LANguard Network Security Scanner is an excellent comprehensive vulnerability
scanner but is particularly good at examining Windows-based systems.

You have now completed several steps in your external assessment, starting with planning
and continuing to enumerate systems, services, and vulnerabilities. By using a variety of
network and vulnerability scanners, you can gain an understanding of the possible
weaknesses in your security perimeter. You can learn which service ports can be accessed
and exploited from the outside world, and you can discover configuration errors that might
result in the network's defenses operating differently from what you originally expected.

You have used these network and vulnerability scanners to gather information about your
organization, and your system matrix should be fully populated with an assortment of
information about your external devices. The next step of the assessment is to further
research what vulnerabilities are likely to affect your systems that are publicly accessible.

Vulnerability Research

One of the problems with automated vulnerability assessment tools is they often report
vulnerabilities that do not actually exist. These bogus findings are called false positives .
You will need to perform some additional research to determine which vulnerabilities are
real and which are fake.

As a security analyst, you can research vulnerabilities in effort to determine whether they
are real as well as the level of risk associated with them. You will also need to determine
the best ways of mitigating each of them. An excellent source of information on
vulnerabilities and their resolutions are your software vendors' websites, along with
vulnerability announcement mailing lists, such as Bugtraq. You can conduct additional
research by checking security-oriented websites such as the following:

http://www.securityfocus.com/

http://www.cve.mitre.org/

http://www.ntbugtraq.com/

http://packetstorm.widexs.nl/

http://www.cotse.com/

http://www.infosyssec.com/

http://searchsecurity.techtarget.com/

http://www.secunia.com/

These sites provide much more detail about particular vulnerabilities than is typically
provided by a vulnerability-scanning tool. By carefully analyzing the information from the
vulnerability announcement, combined with examination of the system the vulnerability
was reported on, you may be able to eliminate the vulnerability from consideration. This
can be somewhat laborious, but well worth the effort if it allows your administrators to
concentrate on what's important instead of wasting time responding to false information.

At this point in the assessment, you have determined what public services you are
allowing out to the Internet and whether these services have potentially exploitable
vulnerabilities. You still have work to do, though. Your perimeter devices may be allowing
more packets to flow through them than required. In addition, other backdoor access to
your network may be possible using either modems, wireless devices, or VPN connections.
In the next couple steps, you will examine these additional access methods to ensure they
are as secure as possible.

Verification of Perimeter Components

In the "Accomodating Change" section of Chapter 19, "Maintaining a Security Perimeter,"
we described the need to thoroughly test hosts, devices, and applications before deploying
them on a production network. Components of the security perimeter should undergo such
testing as well, both in the lab environment before deployment and as part of your
vulnerability assessments. This part of the assessment focuses on ensuring that access
restrictions implemented by your security devices are properly implemented, even if they
do not allow access to a vulnerable service on your network. To test whether access
controls are properly implemented, you need to be intimately familiar with your security
policy so that you can locate deviations from it.

In this section, we concentrate on verifying controls that are implemented by a border
firewall to demonstrate what's involved in testing the configuration of a perimeter
component; however, the same techniques should be used to verify proper application of
the security policy on any other device that restricts the way traffic moves across your
network.

As a security analyst who is about to audit the security policy implemented by your
firewall, you need to make sure a plan is laid out to systematically validate mechanisms
that control components of your infrastructure. You will need to verify that rule sets and
ACLs have the intended effect. For each rule in your firewall, whether it allows or blocks
traffic, you need to verify that network traffic travels as expected.

Preparing for the Firewall Validation

Your border firewall is primarily responsible for controlling the flow of traffic between the
internal network and the Internet. The firewall's assessment should verify that network
traffic complies with the intent of the firewall rules. For example, if the firewall rulebase is
configured to allow SMTP traffic from the Internet to a mail server that is located in a
screened network, you will attempt to connect to the mail server from the Internet to
guarantee that traffic passes through the firewall as defined in the rulebase. You must
further validate that only SMTP traffic from the Internet is allowed to pass and that all
other traffic is rejected by the firewall and logged accordingly. In the event that you are
able to connect to the mail server from an unapproved network, you must inspect the
firewall configuration to determine the cause of the deviation from your security policy.

Figure 22.10 provides an example of a common network configuration, which we will use
to demonstrate how to perform an assessment of the firewall. To test how traffic from the
Internet traverses the firewall, we have set up an assessment station outside of the
organization's network. We have also configured listener systems to see what packets are
able to pass through the firewall. The assessment station is equipped with network and
the vulnerability scanners we discussed in the "Network Service Discovery" and
"Vulnerability Discovery" sections of this chapter. Listener systems are configured to
monitor network traffic in promiscuous mode on internal subnets. The listening systems
are configured with packet-sniffing software, such as Tcpdump
(http://www.tcpdump.org/). Another graphical alternative is Ethereal
(http://www.ethereal.com/), which is available for free and can be used on UNIX and
Windows systems.

Figure 22.10. Assessment and listener stations are placed at key
points of the network to conduct an internal assessment of the border

firewall.

Tip

Although normally used as an IDS, Snort (http://www.snort.org/) can also be
very useful for vulnerability assessment. It can be configured on a "listener"
station to watch the network for specific patterns and types of traffic to
determine whether your defense lines are filtering against such traffic.

Your listener systems monitor packets that pass the firewall and help determine whether
access controls succeeded or failed. With logging enabled on the firewall, you can view the
log file to determine which packets were accepted or dropped during the audit, but these
logs rarely provide as much detail as a listening station that is equipped with a sniffer. To
fully audit the border firewall, you must move the assessment station from the Internet to
another network segment to validate access controls for each firewall interface.

Verifying Access Controls

To verify that the firewall properly enforces access controls, you can utilize a scanner,
such as Nmap or SuperScan, to perform the following tests:

Verify that the firewall service ports that should be explicitly blocked are indeed
blocked and that approved traffic is allowed to pass.

Verify controls over broadcasts and other types of discovery traffic.

Verify that authorized firewall management stations are the only devices allowed to
establish an interactive session with the firewall.

Verify that only authorized traffic can cross boundaries of internal subnets.

Your audit of the firewall's configuration begins by attempting to access systems and
services that are behind the firewall.

Traffic Restrictions

During the external assessment, you used network scanners, such as Nmap, to determine
what devices can be accessed from the Internet. We use the same process, depicted in
Figure 22.11, to ensure that unauthorized traffic is blocked by the firewall and that
approved traffic is allowed to pass. The arrows represent the inbound discovery requests
from the assessment station directed toward the devices located in the screened network.

Figure 22.11. The assessment station issues discovery packets in an
attempt to reach servers located behind the firewall.

To use Nmap for determining whether the firewall blocks ICMP echo request traffic, you
can use the sP parameter to perform an ICMP scan, like this:

nmap sP -PE 192.168.1.1-254

If your security policy prohibits inbound ICMP traffic, the firewall should block this scan as
the assessment station attempts to incrementally scan the 192.168.1.0/24 network. To
ensure that the firewall blocked ICMP packets, you can check firewall logs, as well as
sniffer logs, on the listener system.

Next, you can attempt to verify that your firewall drops all packets that are not destined
for approved network devices. Nmap can perform such scans using the following syntax:

UDP: # nmap -sU p 1-65534 IP_ADDR_OF_MONITOR
SYN: # nmap -sS p 1-65534 IP_ADDR_OF_MONITOR

These two scans will attempt to connect to the monitoring system using every possible
TCP and UDP port. You will want to try this with several different monitoring systems
located on different interfaces of the firewall. Keep in mind that even if Nmap does not
report a success, it is still possible that some of the probe packets made it through the
firewall. Your monitoring stations should capture these probes, even if the replies from the
probes are blocked by the firewall.

You should also try other Nmap scan types to see if your firewall is effective at blocking

all discovery efforts. Here are some of the alternative Nmap scans you should include in
this step:

ACK scans (-sA) These often pass through simple firewalls when SYN scans would be

blocked.

FIN scans (-sF) These scans check to see if the flag used to close a TCP session will

pass through the firewall.

NULL scan (-sN) Sends packets with no flags set. These should not normally appear

on a network.

Frag option (-f) Combines with other scan types to create scans that use many tiny

fragment packets. Many firewalls cannot properly handle fragments and may allow
them through when they shouldn't.

After you have completed all your scan attempts, you will need to view your monitoring
station's packet captures to see what got through. Figure 22.12 shows an example of what
this may look like. If you detect traffic making it through your firewall that should have
been denied, you will need to research your particular firewall to see how to eliminate the
holes. Hopefully, this will be as simple as changing the firewall's configuration. If not, you
may need to consult with the firewall vendor.

Figure 22.12. An example of some packets that got through the
firewall, captured using Ethereal.

[View full size image]

Firewall Management

You should also ensure that the firewall itself is well protected. An important part of this is
control of the management interfaces used to configure and maintain the firewall. You
want to verify that an attacker will not be able to connect directly to the firewall.
Generally, the firewall should be configured to only allow connections from your
administrative hosts. These administrative hosts should reside on a trusted internal
management network. To verify that this is the case, attempt to connect to the firewall
using its management console from the assessment station that is located on various
network segments. You should also verify that the authentication credentials that your
administrators use are strong and the credentials themselves are only passed across

encrypted communications channels.

You have analyzed the firewall rulebase and performed an audit to verify that traffic is
allowed or denied according to controls that are defined in the security policy. Performing
such an internal assessment is critical to locating misconfigurations or vulnerabilities of
which an attacker might take advantage. As part of the assessment, you have clearly
defined which traffic flows through the firewall. You may also want to apply these tests on
other firewalls and routers within your network. Next we will look for other access
methods that may expose your network to attack.

Remote Access

If attackers can't come in through the front door, they'll certainly go looking for the back.
You will need to ensure that your authorized remote access systems (your backdoors) are
well protected. In addition, you'll need to ensure that there are no backdoors you do not
know about. In this step, we'll cover wardialing (searching for modems) and wardriving
(searching for wireless access points). We'll also talk about VPN and reverse proxy
testing.

Wardialing

Wardialing used to be the most popular way for attackers to break into corporate
networks. This was before the Internet provided an easier method. Although its popularity
has diminished, it is still a widely used technique for breaking past perimeter security
controls.

Wardialing is primarily about finding modems within the phone number ranges assigned to
your organization. The method is fairly easy. A computer is configured to dial each number
and listen for any responding modem or fax tones. When it detects a modem or fax, it
records the number and may also attempt to communicate with the responding device to
determine what type of system it is. Smarter wardial programs are able to detect many
remote access programs and can optionally attempt to log in to any authentication
prompts provided by the answering modem.

One popular open source tool you can use for wardialing is THC-Scan from The Hackers
Choice (http://www.thc.org). Although not exactly a new tool (the current version was
released December 1998), it is still a useful wardialer. It supports the basics of wardialing
and can detect modems, faxes, and PBXs, voice mail boxes, and voice (that is, a real
person picking up the line).

Another more recent product that you may want to look into is ModemScan, available at
http://www.wardial.net. ModemScan runs under Windows and has a user-friendly GUI.
Many people find it easier to configure than THC-Scan, though both perform similar
functions.

Commercial scanners are also worth examining. The current market leader is
PhoneSweep, by SandStorm Enterprises (www.sandstorm.net/products/phonesweep).
PhoneSweep supports many advanced features, including the ability to dial out on up to
eight modems at one time simultaneously. PhoneSweep also has patented technology to
support the identification of devices it detects.

Just as with any other part of your assessment, careful planning pays many dividends
when performing your wardial. First, you need to determine which telephone lines belong
to your organization. Even more important, you need to identify which numbers within this
range are off limits. It is especially critical that you remove any emergency service
numbers that may exist at your site. You would not want to block access to police, fire,
and rescue numbers during your wardial exercise! All this targeting information needs to
be included in your rules-of-engagement document.

You will also want to determine the times you will be wardialing. Getting a complete
record of the modems in use in your environment may require conducting multiple wardial
exercises during different hours of the day. For instance, users may only turn on their
modems after hours to allow themselves access to their workstations from home. You may
also want to avoid wardialing during certain periods to prevent business disruption. As
with the target information, you will want to record test hours in the rules-of-engagement
document.

Next, you will need to assemble your equipment. You will need a computer, modems,
telephone lines, and software. It is better if the computer is not connected to your
network. This is to prevent the remote possibility of someone dialing in to one of the
attachment modems and gaining access to your network. The modems you select should
be "real" modems, not Winmodems or any other type of DSP-based modem. Winmodems
work by emulating a real modem and may not work as well for wardialing purposes. The
telephone lines you use should be plain-old telephone service (POTS) lines. You should
also disable any special phone services such as caller ID and call waiting. These can
confuse the wardial software. Last, you will need to install and test the software you have
selected to use.

Testing is an important part of wardialing. Wardials take a long time to finish. You would
not want to conduct several days of wardialing only to find out that your wardialer was
malfunctioning. Your test should include steps to verify that every type of connection you
expect to encounter is properly identified by the wardialer. Here are some of the devices
you may want to identify during your wardial exercise:

Modems

Faxes

People

Voice mail

ISDN lines

Busy lines

You will also need to decide how many rings to allow per number. Many modems will
answer after only three rings, but this is configurable. If the modem is set to answer after
five rings, and you only wait for four, you will not detect the modem. However, setting the
ring count high will drastically slow down your scan. A typical setting is six rings, but you
will need to carefully make this decision before proceeding.

Tip

Because many wardialers will default to five rings, you can add security to your
site by increasing the ring count for your authorized modems to eight. Although
this will make connecting to these modems slower, it may be a small price to pay
to avoid detection by modem-based attackers.

Finally, you will perform the wardial. After the wardialer has finished, it should report back
to you the telephone numbers with responding devices. Depending on the sophistication of
your tool, you may also get other information, including identity and authentication
details. For each reported number, you will need to verify whether the number is part of
an authorized modem bank or is rogue. All rogue modems should be eliminated from your
organization. For the remaining modems, you will want to verify that they effectively limit
access to authorized users. This means enforcing the use of good usernames and
passwordsor better yet, using a strong authentication system such as RSA's SecureID
tokens.

Wardriving

801.11-based wireless LANS are very popular and very inexpensive to implement. In fact,
they have become so inexpensive that users have probably started attaching wireless
access points they have purchased to your internal network. Most of these have no

security turned on, but as we discussed in Chapter 14, "Wireless Network Security," even
if they did, attackers may still be able to use them to break into your network. Finding and
eliminating these rogue access points is a very important part of securing your perimeter.
In addition, you will want to verify that your authorized wireless LANS are properly
secured.

Wardriving is the process of moving a wireless LAN receiving station around an area
attempting to detect wireless LAN emissions. This can be done walking, driving, or even
flying!

Most wardriving is performed using a laptop (or PDA) computer configured with software
that sniffs wireless connections. It is also desirable to have a GPS or other type of location
device to record exactly where you are when you detect the wireless LAN signals. The
information you record in this case is the latitude, longitude, LAN identifier, and signal
strength. If you move around and collect enough data, you can create a signal strength
footprint that can be overlaid on top of a map. This makes it much easier to physically
locate the access point.

Tip

Using an external antenna on the wireless access card you use for wardriving will
dramatically increase the amount of access points you will detect. The internal
antennas on most cards are toys compared to a good quality external antenna.

Many products exist to perform wardriving. A popular Windows-based program is
Netstumbler (http://www.netstumbler.com). It has a well-designed graphical user
interface and is reasonably easy to install. Many wardrivers, though, tend not to use it
because it has difficulty detecting wireless access points that are not broadcasting their
SSIDs.

Kismet is currently the most popular wardriving package. Kismet is available for Linux,
and a port for Windows will probably eventually show up. What makes Kismet good for
wardriving is that it will capture any wireless conversation that occurs and use this to
detect access points, even if the access point is not broadcasting its SSID. In addition,
Kismet can output packet captures in Tcpdump format. This makes it easy to analyze
packet captures in open source packet-decoding software such as Ethereal. Last, Kismet
(and Netstumbler) also supports a GPS interface to grab location data with every packet
received. Figure 22.13 shows Kismet running at a recent SANS conference.

Figure 22.13. Kismet is excellent at detecting wireless access points.

[View full size image]

The process of performing the wardrive is fairly simple once you have your equipment set
up and tested. Simply move your equipment around your facility, recording any signals
you receive. If you detect an access point, you should collect enough information to
identify itand hopefully locate it. Later, you will compare the list of access points you
found to the list of authorized access points for your site. Any rogue access points should
be shut down immediately. This can be significantly complicated if you've got
organizations near yours that have wireless LANs set up. In these cases, you may be able
to use the location data from your GPS to determine whether the LAN is yours or not.

There are a couple of items to keep in mind if you plan to use a GPS to find access points.
First, the GPS signal is line-of-site. If you cannot see the sky, you are probably not
receiving any GPS signal. This means no location data inside. In these cases, you will
have to manually record your location as you walk through a building. Next, make sure
you are using an omni-directional antenna for GPS-based wardrives. Using a directional
antenna will skew the signal strength results, depending on the direction the antenna is
pointed. Use of directional antennas is still a good idea, though, to detect faint signals that
may be coming out of some of your facilities.

If you are having difficulty tracking down an access point, you may be able to locate it
based on the SSID. For instance, if you are near a Starbucks, an access point with an
SSID of T-MOBILE is unlikely to be connected to your network! Instead, highly caffeinated
customers are probably using it to surf the Internet.

At the end of your wardrive, you should have a good idea of what access points exist in
your area. You can use this as a baseline for future scans, which you should conduct
regularly. You will also want to verify the security controls for the access points you allow
to remain on your network. As with modem-based access, strong authentication is a must.
In addition, though, you should make sure that good encryption is used to protect all your
wireless LAN conversations.

Note

The RC4-based encryption built in to 802.11 products is not considered strong.

VPNs and Reverse Proxies

The last form of remote access we will look at involves VPNs and remote proxies. Because
the problems you will encounter are similar between VPNs and remote proxies, for the rest
of this section, we will generically refer to both as VPNs. VPNs provide a popular way to
allow remote employees to gain access to internal network resources. When well
implemented, they can be very secure. However, it is important we verify that several key
facets of the VPN are correct. Here are several areas we will need to examine:

Encryption algorithm and key strength

Method and strength of authentication

Access controls

Client-side restrictions

Encryption

Encryption has proven to be a reliable way of protecting network conversations. However,
it is only as good as the algorithm and keys it is built upon. When assessing your VPNs
you need to verify that a trusted algorithm is in use and that you cannot connect using
weaker algorithms. Many VPN devices will support strong encryption but will agree to use
weaker algorithms if requested. Man-in-the-middle attackers may make use of this feature
by interrupting the session negotiations that make use of the better algorithms. Some
VPNs will then fall back to the weaker systems. To make sure that your VPN does not do
this, you should attempt to connect to your VPN using all the algorithms supported by your
device and record which ones work. Any successful connections for algorithms or key sizes
that are weaker than your policy allows indicates that your VPN may be vulnerable to this
type of attack.

Authentication

The next item to examine is authentication. Any type of remote access should be carefully
authenticated to prevent attackers from bypassing your perimeter controls. If you are
using username/password-type authentication, you will want to make sure that your
account policies are effective and that no weak passwords are assigned to your user
accounts. Account policies, such as the number of attempts allowed before the account is
locked out, can be tested by attempting to get the policy to trigger and noting the effect. If
the account should lock out after three attempts, you should verify that this does happen
by attempting four incorrect log-in attempts to the same account. Verifying password
strength is more difficult.

A variety of password-cracking packages are available for your use. They can be separated
into two main categories: online tools and offline tools. Online tools attempt to guess
passwords by actually attempting logins. Any protocol that provides a login prompt can be
assessed using an online tool. A good example of an online tool is Hydra
(http://www.thc.org/releases.php). Hydra can attempt to log in to a target system using
many protocols. It supports HTTP Auth, Telnet, FTP, IMAP, POP3, MySQL, and many
others. In addition, Hydra is fully parallelized (it can send many simultaneous requests
per second). Hydra is also the password cracker that Nessus uses to perform its password
cracks.

Offline tools do not attempt to log in. Instead, they work using a copy of your encrypted
(actually hashed) passwords. An offline tool works by taking a password guess, encrypting
it using the same algorithm as the login process of the system being assessed, and then
comparing the resulting value with the stored value. If the values match exactly, that
means the guess equaled the password (in other words, the password has been cracked).
Offline tools work many times faster than online tools, but you do need to be able to get a
copy of the password file from the systems you will be assessing for them to work. You
have many offline tools to choose from. On UNIX, many sites choose to use Crack, written
by Alec Muffett (http://www.crypticide.com/users/alecm). Crack is primarily used for

cracking passwords created using the crypt algorithm. This is the algorithm that most
UNIX systems use to create their passwords. However, Crack can be compiled to support
many other password algorithms. Crack is a dictionary-based tool that supports
sophisticated word permutation. This means that you can feed Crack a list of words, and
Crack will take each and perform interesting substitutions and modifications to crack the
passwords when users have made small changes to a word to create their passwords. For
instance, if the word is apple , Crack might try @pple, @pp1e, @pp13, apple1, and so on.
This makes it much more likely that Crack will guess a user's password.

Another password cracker you should look into is John the Ripper
(http://www.openwall.com/john). John comes preconfigured to crack several password
algorithms, including UNIX crypt and Windows LANMAN hashes. It also supports
permutation, as well as provides interesting brute force modes where it attempts many
combinations of letters, numbers, and symbols to guess the password. With the increasing
processing power available to us, brute force methods have become increasingly useful in
discovering weak passwords.

The last password-cracking tool we will mention is L0phtCrack
(http://www.atstake.com/products/lc). L0phtCrack is a commercial tool that was originally
created to attack Windows LANMAN hashes but has recently added UNIX support. It has
also added precomputed password tables, which can drastically speed up the process of
breaking most English alphanumeric passwords. This is based on the research of Philippe
Oechslin and is also implemented in an open source project called RainbowCrack
(http://www.antsight.com/zsl/rainbowcrack/). L0phtCrack is an excellent password
cracker that is user friendly and supports many useful features. However, it is significantly
more expensive than free! If your budget supports it, though, it comes highly
recommended.

If you can gain a copy of the password hashes for the system you are testing, use an
offline tool. You will get better results faster. If you cannot, use an online tool. Either way,
make sure to address this area because it is one of the most common ways that attackers
gain access to networks.

In addition to worrying about the strength of the passwords, you need to look at how
secure the transfer of the usernames and passwords is. If you allow the use of
unencrypted protocols such as Telnet, any eavesdropper in your user environment will be
able to capture a user's password. He then has free reign to log in to your network. You
can reduce this risk by requiring the use of protocols that encrypt their authentication
sessions. For example, if you are using a reverse proxy, you should verify that
authentication only occurs after an SSL session has been established. This is only a partial
solution, though. What if your users are using a web café to log in to your network? If a
keystroke logger is installed on the computer your users choose to use, no amount of
encryption will keep the password out of the hands of the attacker. A better, though more
expensive solution is requiring strong authentication for all remote access.

Access Controls

A common configuration (some would say misconfiguration) of VPNs is to establish a
protected connection between two organizations but enforce no restrictions on the traffic
that can flow across the VPN. This, in effect, allows both organizations to bypass each
other's perimeter security controls. If this actually is what was intended, you do not have
any specific tests to perform in this area. However, if you have limited the connections
that can be made through the VPN to the set needed by your remote users or remote
business partners, while blocking access to more sensitive areas of your network, you will
need to verify that these restrictions are being enforced. The methods you will use are
identical to the tests you performed during the firewall verification. This time, though, you
will be running the tests from a test system that has established a VPN connection into
your network. You will want to attempt to scan systems and protocols that you are allowed
and not allowed to reach to ensure that the filters are working correctly. You will also
want to attempt scans before and after authentication to make sure the VPN device is
properly blocking communications prior to VPN establishment.

Client-Side Restrictions

The last item you should examine for your VPNs is the effectiveness of controls on the
client. If a user has established a VPN connection to your network, it is possible that an
attacker who can compromise the user's computer can route his packets through the
user's computer into your network. Some VPN products disable any routing functions while
the VPN is established. If your product supports this, you should verify that it is working
by attempting to enable the routing function of the user's workstation and sending packets
to the workstation destined to your internal network. This will normally require that you
establish a static route on your test workstation that sends all traffic destined to your
internal IP addresses to the user workstation being examined.

Using antivirus and personal firewall products is also a very good idea for remote users'
computers. If you require the use of these types of products, you will want to verify that
they are installed, up to date, enabled, and effective. Just as with your public systems,
vulnerability scanners can be run against your users' remote systems to check for
exposures.

Testing for client-side restrictions is only realistic, though, if you enforce some kind of
configuration control on the systems you allow to connect in to your network. If you allow
users to connect using their personal systems, or while they are on the road with
borrowed or rented equipment, you will have to rely on other controls to protect the
access.

Exploitation

As the final active part of your assessment, you may want to consider exploiting some of
the vulnerabilities you have uncovered during the exercise. Assessments that include
exploitation are normally referred to as penetration tests .

The big advantage to including exploits in your assessment is that they demonstrate, in a
powerful way, the existence and impact of the vulnerabilities you have discovered. There
are no false positives from a successful exploitation. If the exploit worked, you know there
was a vulnerability. In addition, there is something much more compelling about having
your proprietary data handed to you by a tester than reading a report that states that a
vulnerability could potentially expose your organization to information exposures. Simply
put, penetration tests can bring home the seriousness of vulnerabilities, in a way that
other methods cannot.

The downside to penetration testing is that it is considerably more dangerous than
vulnerability scans. It is not uncommon to have an exploit attempt crash its target. This
can mean downtimeor worse, lost data. These tests can also take long amounts of time to
perform properly, raising the cost of the assessment.

Careful planning precedes any penetration test. Systems that will be targeted should be
recently backed up, and the administrators who manage the systems need to be readily
accessible to resolve any problems that come up during the exercise. You should also plan
to conduct the test during periods of low utilization. Taking down the order-entry system
the week before Christmas would not make anyone happy with you!

You will also need to assemble your toolkit of exploitation software. Many sources of
exploits are available on the Internet, some of them more reliable (and safe) than others.
Good sites to start with are http://www.securityfocus.com/bid and
http://packetstorm.widexs.nl. Keep in mind that it is common for Trojan code and other
types of malicious software to masquerade as testing software. Be careful where you
acquire your exploits. If source code is available, it should be examined, line by line, to
ensure the tool only does what you expect it to. In addition, you should test each exploit
in a lab setting prior to using it.

If you do not want to go through the trouble of assembling your own exploitation library,
you can look into commercial products. One of these is Canvas
(http://www.immunitysec.com/products-canvas.shtml). Canvas currently supports a
library of over 50 exploits and is relatively inexpensive compared to other tools in this
category. Another tool you may want to examine is Core Impact
(http://www.coresecurity.com/products/coreimpact/index.php). Core Impact maintains a
large library of exploitation methods. It also supports a robust logging system. Every
action taken with Core Impact is logged, making it easy to document exactly what you did
within the test. An open source alternative to both of these products is Metasploit
(http://www.metasploit.com). Although Metasploit is not nearly as comprehensive as any
of the commercial products, it's hard to beat the price.

The steps necessary to actually perform a penetration test can be complicated. Penetration
testing by its nature is iterative. You will launch exploits that may increase your
knowledge of a system or increase your access to a system. In both cases, this may lead
to more exploits, which lead to more access and knowledge, and so on. Eventually, you
will reach a point where no further exploits are possible or you completely control the
systems you are testing. To focus this process, you may want to establish goal states for
the test. For instance, you may want to specify that your goal is to reach administrative-
level access on your payroll system. In this way, you can definitely determine when the
test should end.

At the end of a penetration test, you will examine how far you got into the network and

what information and access you were able to gain. In addition, you should go back and
see what your server and intrusion detection logs recorded. Were your test efforts
noticed? Did administrators take appropriate steps to respond to your intrusion attempts?
This information is equally important to your documentation of the vulnerabilities you
successfully exploited.

The quality of your documentation is at least as important as the work you have
performed. You will need to keep careful records of what you did, when you did it, and
what you observed. This is true of penetration tests as well as the overall assessment. In
the next section, we will describe how to develop and organize the results of your efforts.

Results Analysis and Documentation

In the last step of your assessment, you will create a final report. You will have collected
a large amount of information during your test, and now is the time to analyze it to
determine the overall level of security for your network and what changes are necessary
to make it completely secure.

Developing your findings can be the hardest part of producing your report. You will need to
look at the results of every test you performed to see what they can tell you about the
security of your network. Any tests that indicate weakness need to be examined to
determine what the true impact of the weakness is to your organization. You will want to
use three elements to determine this impact:

Severity of the vulnerability

Criticality of the affected system(s)

Level of threat (how common the exploitation of the vulnerability is)

Once you've developed your individual findings, you will then want to examine the whole
set to see if you can locate any common elements to them. You are looking for the root
causes of problems, not the individual facts. For instance, if you discovered systems with
vulnerabilities that your organization had previously eliminated, it is possible that your
process for provisioning new systems on your network is at fault. If you allow systems be
installed from the original installation CDs without a process to upgrade the systems to
the latest patches before connecting them to your network, you may reintroduce
vulnerabilities you have previously fixed. This type of information can be invaluable to
identify the important things that need to change to keep your network secure.

When you are ready to write your report, you will want to examine what formats will best
convey the information you have developed. There are many report formats you can use,
but most will include the following elements:

Executive summary This section provides a quick overview of what was done, what
the major findings were, and what impact these findings may have to the
organization.

Introduction This section includes a description of the tests performed and the scope
of the effort.

Findings prioritized by risk This section will often provide specific remediation
advice for each finding.

Best practices This section documents areas of the network that were particularly
strong.

Keep in mind that even though it comes first in the report, the executive summary should
be written after the rest of the report is finished. Doing it any other way may cause you to
unintentionally skew your results to keep them consistent with the executive summary
you created prior to analyzing all the data.

Summary

In this chapter, we examined techniques for assessing the effectiveness of your security
perimeter. You are now armed with the tools and techniques used to perform a security
assessment of your environment. You can use this knowledge to find security holes in
your defense perimeter and to locate vulnerable or misconfigured systems that are
accessible from the Internet. You should also be prepared to test your remote access
devices to keep these back channels from allowing attackers past your perimeter. We also
talked about the value and danger of exploiting your discovered vulnerabilities, and finally
we provided guidance on how to assemble your final report.

If you take nothing else away from this chapter, remember that security assessment
requires permission! The difference between a hacker and a security professional, between
illegal and legal, is authorization. Make sure you have written approval from the proper
authorities before starting any type of security assessment. In addition, make sure this
authorization spells out exactly what your scope is so that it is clear to everyone involved
what you are and are not allowed to do. This will keep you and your organization safe as
you verify the effectiveness of your security perimeter.

Chapter 23. Design Under Fire
This chapter deals with design under fire, which means the practice of looking at our
network security designs the same way an attacker would. Analyzing how attackers can
compromise our networks helps us find the networks' weaknesses so that we can improve
their security. Analysis is a natural follow-up to the testing procedures discussed in
Chapter 22, "Assessment Techniques." To implement design under fire, we discuss a
process called adversarial review , which offers one way to protect our networks, even from
vulnerabilities we are unaware of.

Performing an adversarial review might seem redundant because you already included
security in your design from the start. However, the testing that occurs in the design stage
attempts to determine whether a design functions according to its requirements. Such
testing is an essential part of system design, but it tells you little about how secure the
design is. It is entirely possible for a network to perform all of its functions exactly right,
yet be completely insecure. An entirely different mental process is required to understand
how someone else might intentionally break your design, but it is exactly the type of
thought process necessary to eliminate the subtle security problems introduced into our
networks.

To prepare you to perform an adversarial review, we begin this chapter with a discussion
of how an attacker thinks about attacking a network. Then, we ask you to watch over our
shoulders while we subject the designs in this chapter to the type of attention they would
receive every day if they were implemented and placed on the Internet.

The Hacker Approach to Attacking Networks

Attackers choose the path of least resistance when attacking a network. They start with
efforts to discover the architecture of the network and then attempt to exploit any
weaknesses they find. Most attackers possess a limited set of attack methods (exploits),
which they can use only when particular technologies and configurations (preconditions)
exist on their target's network. The discovery process enables them to find out whether
the network possesses any of the required prerequisites, so the first line of defense for a
network is to prevent as much discovery activity as possible. You can reduce an attacker's
ability to learn whether your network is vulnerable by limiting the unnecessary
information your network releases using techniques such as filtering ICMP messages,
changing application headers, and employing split DNS configurations.

The attacker who gets by your anti-discovery defenses begins to map out the
vulnerabilities on your network and match them up against the available exploit
techniques. If the attacker finds a match, he can launch the exploit in an attempt to
subvert some part of your network. An attacker who does manage to gain some access can
use it to leverage more access into the network. The attacker repeats this
discovery/exploit process until he runs out of techniques or achieves his attack goals. One
of your goals when designing the security for your network should be to frustrate
attackers long enough that they go away in search of an easier target. Failing that,
slowing them down gives you a chance to detect them.

The designs that we review in this chapter are already good at frustrating attackers. It is
our job to see if we can add some additional frustration into their lives by thinking about
how they might subvert our networks and using this knowledge to design additional
security controls.

Adversarial Review

During an adversarial review, we look for ways an attacker might make use of the devices
and the configurations of those devices that you have used to create your network. This
process is especially important for those devices you have used to implement your
security infrastructure. Remember that the overall security of your network relies on the
individual components that make up the network. Security settings on one device can
have a dramatic effect on the security of another device. To gain a complete view of the
security of the entire network, you must take a careful look at each of the devices that
implement your security infrastructure and then analyze how the interaction between
devices affects security. Adversarial review provides a useful method for exploring the
impact of these interactions.

We are not actually attacking the network during an adversarial review. Instead, we are
conducting an analytical thought process that allows us to develop scenarios that someone
else might use to attack the network. By creating these scenarios and identifying
measures that could be used to prevent them, we can locate flaws in the architecture of
the perimeter or potentially weak links that do not follow defense-in-depth principles.

To conduct an adversarial review, you must perform the following activities:

Decide what you are trying to prevent. For example, the goal of your adversarial
review might be to find a way to deface a website, access an internal database, or
perform a denial of service (DoS) attack.

1.

Decide where to start the attack. The attack conceived during the adversarial review is
frequently launched from the Internet, but it is also useful to start from an internal
network segment to see how to defend against the insider threat.

2.

From the viewpoint of the attacker, determine the access that remains after all the
security device configurations have been taken into account. For example, if your goal
is to access a system located behind a firewall, and the firewall only allows TCP port
80 traffic through to this system, your review will have to find a way to either attack
the server using TCP port 80 or locate a vulnerability in the firewall to circumvent this
restriction. To complete this step, you must review configurations and research
vulnerabilities for each device you can communicate with. If you discover
vulnerabilities, you must make a judgment about how feasible an attack based on
these vulnerabilities is.

3.

Determine the impact of taking advantages of any misconfigurations or exploiting any
vulnerabilities. Any increases in access gained can then be used to attack additional
systems on the network. For example, if you locate a vulnerability that would allow
you to take control of an internal server, you can now consider that server under your
control and proceed with the review using the system to reach other systems on your
network.

4.

Repeat steps 3 and 4 as necessary until you have reached the maximum amount of
access to the network that you can.

5.

Identify additional security controls that would have prevented any of the attacks from
succeeding.

6.

One of the most time-consuming parts of the review is step 3. To determine the amount of
access an attacker has, you must conduct a detailed analysis of each security device on
your network. You will be looking for three key pieces of information:

What access does the device have to provide to allow normal network usage? For

example, a border firewall normally needs to allow TCP port 80 traffic to the public
web server.

What extraneous access is the device providing? Too frequently, the configuration of
security devices is overly permissive, allowing access that is not required but is useful
to the attacker. For example, a firewall might allow TCP port 80 traffic to the entire
De-Militarized Zone (DMZ), not just to the public web server. If a device on the DMZ
is running a vulnerable service on port 80, an attacker can exploit it even though
access to the device may be unnecessary to the operation of the network.

Does the device have any vulnerabilities that would allow you to circumvent the
security controls? You can use many sources of information on the Internet to
research vulnerabilities, including Carnegie Mellon's Computer Emergency Response
Team (CERT) at http://www.cert.org and the vulnerability database maintained by
SecurityFocus at http://www.securityfocus.com/bid. If you find a vulnerability
announcement for your device, you need to carefully review the information to see
whether it applies to your environment and, if it does, what you should do to mitigate
the problem.

In step 4, you use the access you have discovered to "attack" your network. Thinking like
the attacker, you attempt to see whether the access that remains after you have
considered each device is sufficient to do significant damage.

Even if you did not find exploitable access in step 3, it is occasionally useful to act as if
you had and proceed with the review anyway. New vulnerabilities are discovered in
software every day. As an example, consider Microsoft's Internet Explorer web browser. If
you were using it in the spring of 2004, you would have had no way of knowing it exposed
your network to attack due to an exploitable vulnerability in its drag-and-drop feature
(http://www.securityfocus.com/bid/10973). You would have had to wait until the August
2004 for the vulnerability to be made public. This vulnerability had actually been in the
software since version 5, which was released in 1999. This means that sites that installed
this version or its successors (up to version 6) might have been vulnerable to this attack
for over five years. Simulating vulnerabilities during your review allows you to experiment
with the impact that an undiscovered vulnerability would have on your network.

Step 5 is an iterative process that requires you to look at where the attacker starts to
determine how far he can penetrate the network. If you were analyzing your exposure to
an external attack, you would likely start the attack with your public systems. These
systems normally come under attack first because they are the most exposed to the
Internet. If you have (or simulate that you have) a vulnerability in one of these systems,
your next step is to think what attackers could do if they were able to exploit the
vulnerability successfully.

Gaining control of one of these systems would allow you to start launching more attacks
using the public system as the source. If the access you have discovered during the
review allows this public system to attack other computers on your network, and these
other systems also have exploitable vulnerabilities, you would be able to control these
other systems, moving further into your network. You continue this thought process until
you run out of systems that an attacker could access or until you have circumvented the
security controls that you care about. At this point, you can look to see how far you, as
the attacker, got in the network and what security controls you could implement that
would have stopped the attack at each step in the process. Assuming their
implementation, you can re-run the analysis to see whether you can figure out any other
ways to attack your network. When you have run out of ideas, you are done.

Step 6 ends the adversarial review with the identification of the additional security
controls necessary to protect your network. Especially for reviews in which you have
included simulated vulnerabilities, the review helps you identify the controls necessary to
implement defense in depth. This is the real power of the adversarial review: the
identification of the layers of defense needed to help protect you against the unknown.

GIAC GCFW Student Practical Designs

We will draw our examples for this chapter from practical assignments that GIAC students
produced as part of the requirements for their GIAC Certified Firewall Analyst (GCFW)
certification. The students were asked to create a secure network for a fictitious entity
named GIAC Enterprises (GIACE), which is in the business of selling fortune cookie
sayings. This is the same source we used for Case Study 4 in Chapter 18, "Sample
Designs." In Chapter 18, we explored the major security features for one of the GCFW
student's practicals. In this chapter, we will take a different approach when reviewing
their designs.

The GCFW students have produced a wide variety of designs for us to choose from. We
have chosen to discuss two of them that were awarded honors by the GCFW Advisory
Board. During each review, our goal will be to determine if a reasonable scenario exists
that would allow an attacker to gain access to the fortune sayings database. As a
secondary goal, we will attempt to gain control of as many GIACE systems as possible.
Also, both reviews will assume a starting viewpoint of an Internet attacker. A listing of
completed practical assignments can be found at http://www.giac.org/GCFW.php.

Practical Design 1

The first design we look at is the security architecture created by Angela Orebaugh.
Angela's design is shown in Figure 23.1 and can be downloaded at
http://www.giac.org/practical/Angela_Orebaugh_GCFW.zip. It has several interesting
features, including the following elements:

Extensive use of redundancy to produce a high availability network

Two levels of firewalls from two different vendors to provide defense in depth

Ingress and egress filtering at the network border

A screened subnet network to separate publicly accessible servers from internal
systems

A separate management network segment to monitor and administer the network

The use of VPNs to allow suppliers and partners to gain access to the GIACE network

IDS systems to monitor the DMZ and internal network segments

Figure 23.1. Angela Orebaugh's GIACE secure network architecture
makes extensive use of redundancy.

[View full size image]

As previously mentioned, our goal is to determine if a reasonable scenario exists that
would allow an attacker to gain access to the fortune sayings database. Our review will
assume that the attack originates from the Internet. Because steps 1 and 2 of the
adversarial review process have already been determined, our adversarial review of
Angela's design will begin with step 3: determining the access that remains. By examining
the security settings of each security device that stands between the Internet and the
fortune database, we will determine whether an external attacker can access the fortune
database. Looking at Figure 23.1, you can see that this will require us to examine the
screening filtering routers at the border of the network, the external firewalls, the internal
firewalls, and the database server. After we have finished discussing a device's
configuration, we will perform step 4 for that device: determining the impact. After all the
devices have been discussed, we will then show how step 5repeat as necessarycan be
used to combine the discovered vulnerabilities to reach our review goal.

Determining the Access That Remains: Screening Filtering Routers

Our discussion begins at the interface between the GIACE network and the Internet. At the
border of the network are two Cisco 7200 series routers running IOS 12.x. They connect
the GIACE network to the Internet and are configured to use Cisco's proprietary Hot
Standby Routing Protocol (HSRP) to enable one of the routers to take over should the
other fail. The routers also provide the first opportunity to protect the GIACE network from
external attackers by implementing ingress and egress filters. Because the exact filter
settings are essential to the implementation of the security architecture, we spend some
time going over them.

The Ingress Filter

An ingress filter on the border router of a network can be an effective first step toward
securing it. Properly implemented, an ingress filter can block potentially damaging packets
before they enter the network. Here is a summarization of the ingress rules for this

design, which are applied to the serial interface that is connected on the border routers to
the WAN link to the Internet:

Deny and log packets that have invalid source IP addresses.

Deny and log incoming packets that are destined to the ports normally associated with
FTP, Telnet, Secure Shell (SSH), SunRPC, Network File Service, and Windows Common
Internet File Service.

Allow HTTP and HTTPS packets that are addressed to the web server.

Allow SMTP packets that are addressed to the mail server.

Allow IPSec and IKE packets that are addressed to the external firewall.

Allow "established" TCP packets (with the ACK or RST bits set) that have a destination
port greater than 1024. This rule is intended to allow in TCP packets that are part of
ongoing TCP conversations initiated from internal hosts.

Deny and log any other inbound traffic.

The Egress Filter

The egress filter can prevent the site from being used to attack other sites should an
attacker manage to gain control of internal systems. The egress filter prevents spoofed
packets from leaving the network and is applied on the Ethernet interface that connects
the border routers to the interior network:

Permit traffic to leave if its source address is valid (that is, from 134.126.0.0/16). This
is the address that is assigned to the company's internal network.

Deny and log any other outbound traffic.

As mentioned in Chapter 2, "Packet Filtering," it is a shame that more sites do not
implement egress filters. If they did, the opportunity for an attacker to launch attacks on
other networks, including distributed denial of service (DoS) attacks, would be sharply
limited.

Other Filters

In addition to the ingress and egress filters, the router also has been configured using the
following settings to prevent other activities that can cause security problems:

No Source Routing

No IP Directed Broadcasts

No IP Unreachable Messages

No Cisco Discovery Protocol (CDP) Messages

The first setting, No Source Routing, prevents the router from accepting packets with
source routing enabled. If you allow source-routed packets, an attacker can more easily
circumvent your ingress filters by spoofing packets with addresses that are allowed by the
router. Normally, replies to spoofed packets will not make it back to the attacker.
However, with source-routed packets, the attacker can define the return path for the
reply. This allows the attacker to set up full TCP connections that appear to originate from
a trusted external host. Preventing source-routed packets is a setting that should be used
on all border routers.

The second setting, No IP Directed Broadcasts, prevents IP-directed broadcasts. This

setting is important for preventing the network from being used in a Smurf attack. Without
this setting in place, it is possible that the GIACE network could be used to launch a DoS
attack on another network. To prevent this, the routers have been configured to drop
packets destined to broadcast addresses.

The third setting, No IP Unreachable Messages, helps prevent network discovery activities
by telling the router not to generate ICMP unreachable messages. A router generates ICMP
unreachable messages on two occasions: when it receives a packet that is destined for
itself on a port that it is not listening to, and when it receives a packet that it does not
know how to deliver.

Shutting off ICMP unreachable messages makes it harder for an attacker to determine
what services are running on the router. It also prevents inverse network scans. If a
router generates an ICMP unreachable message when it receives a packet destined for a
host that does not exist on a network that the router is directly connected to, an attacker
can map the network for live hosts by sending a packet to each address on the network
and then watch to see which addresses result in an ICMP unreachable message. A probe
that does not return an ICMP packet indicates a live host at that address.

The last setting, No Cisco Discovery Protocol (CDP) Messages, prevents the generation of
CDP messages. Cisco routers use CDP to discover information about other neighboring
Cisco routers. This information is also useful to attackers, so it has been disabled in this
design.

Protecting the Routers

Any device that enforces the security policy of a network is a tempting target, and this
definitely includes the border routers. Cisco routers have a few popular ways that
attackers can attempt to gain access. These include logging in to the router using Telnet,
downloading or modifying the router's configuration using SNMP, and accessing the router
through its HTTP administrative interface. The following steps were taken to prevent these
types of accesses:

Allow login access only from the monitoring server.

Replace the Telnet protocol with SSH.

Enable SNMP read access, but restrict it to the monitoring server.

Enable SNMP read/write access, but restrict it to the monitoring server.

Disable the HTTP administrative interface.

Disable other unnecessary services.

Now that we have described the security settings of the routers, let's see if we can figure
out a way they might be compromised.

Determining the Impact: Routers

We start step 4 of our adversarial review of the screening filtering routers by looking at
the access that remains after all of the routers' filter settings are considered. The major
items we note are the settings that allow outside users access to the web, mail, DNS, and
VPN servers. This information will be useful to us later when we look at the security of
those devices. Meanwhile, some additional items are worth noting about the routers.

The security settings of the border routers are relatively good, and little access remains
after the filters and other configuration settings are considered. However, a few areas
remain that we should take note of during the review:

The ingress filter allows anonymous established packets.

The egress filter allows any internal packet to exit the network as long as its source
address is valid.

SNMP version 1 is enabled.

Administrative access to the router is only weakly authenticated.

To start with, the ingress filter is allowing established packets through. This allows an
attacker to use ACK scanning to discover services on computers behind the routers. In this
design, depending on how the external firewalls are configured, this might not be a
problem. However, if a firewall was not between the routers and the GIACE network,
better filtering settings would be needed at the router. Cisco supports two additional
filtering technologies that can help. The first is reflexive access lists (covered in Chapter
2). These allow the router to filter incoming packets based on whether a matching
outgoing packet was seen previously. Although this is effective for many types of TCP
connections, certain protocols cannot be supported using reflexive lists. For these other
protocols, Cisco supports context-based access control (CBAC) filters. CBAC filters can be
CPU intensive, so be careful when using them that you do not adversely affect the router's
primary purposeto route packets. More details about CBAC can be found in Chapter 6, "The
Role of a Router."

The next area to look at is the egress filter. It allows any internally generated packet to
leave the network as long as its source address is valid. This is overly permissive. A
number of ICMP packet types should probably be blocked at the egress filter to prevent
certain types of discovery activities. For example, ICMP TTL exceeded messages should be
dropped to prevent the attacker from using traceroute to discover the structure of the
network. In addition, most types of ICMP destination unreachable messages should be
dropped to prevent attackers from learning what hosts and services are running on the
network.

Note

One type of ICMP destination unreachable message that should not be filtered is
code 4 (fragmentation needed and don't fragment are set). RFC 1191compliant
systems use this destination unreachable message to set the optimum maximum
transmission unit (MTU). See Chapter 6, "The Role of a Router," and Chapter 17,
"Tuning the Design for Performance," for more details.

In addition to filtering ICMP messages, it is worthwhile to block other types of outbound
traffic that are unnecessary to the operation of the network. If an attacker were to gain
control of an internal system, this would make it harder for him to use the system to
attack other systems outside the network. It can also complicate the attacker's ability to
download additional exploit tools. In the case of a live attacker, this is probably just an
inconvenience. However, if the attacker actually sends a piece of malicious code, such as
a worm or virus, egress filtering can prevent the attack from working.

Beyond these issues with the filters, certain problems might allow an attacker to gain
control of the actual router. The first of these is the use of SNMP. An attacker who knows
the read-only SNMP community name and has access to the SNMP service on the router
can learn substantial information about the configuration of the router. An attacker who
knows the read-write SNMP community name can change the configuration of the router,
including the access control lists (ACLs). To prevent this from happening, the routers have
been configured to accept SNMP requests only from the management console. In addition,
community names have been chosen that might be hard to guess. Accepting connections
that originate from the only monitoring server's address is effective at blocking requests
from outside the network. If the attack originates from inside the network, though, the
attacker might be able to successively impersonate the monitoring server, allowing him to

access the SNMP service if he knows a valid SNMP community name.

Discovery of the community names might be relatively easy. First, the read-only
community name was set to "giacpublic." It is realistic to expect that a determined
attacker might guess this community name. Second, SNMP version 1 does not encrypt its
packets. An attacker who manages to take control of a system that is on the network path
between the management server and the router might be able to sniff the community
names (including the read-write community name) as they are transmitted to the router.
This would allow the attacker to completely compromise the border routers. It is important
to mention that the community name weakness has been eliminated in version 3 of the
SNMP protocol. Cisco routers fully support this version of SNMP; unfortunately, many
SNMP management tools have not been updated to support this enhanced version of the
protocol.

The second way that an attacker might be able to gain control of the routers is by logging
in to them. Similar to the technique used to protect SNMP, the routers accept login only
from the monitoring server, and again, similar to SNMP, an internal attack might be able
to bypass this restriction. Additional security has been added by changing the login
protocol from Telnet to SSH. Because SSH encrypts the network conversation, an attacker
won't be able to sniff a valid password from the network when a login to the routers
occurs. However, an attacker could still guess the password. No strong authentication
system (such as SecurID) is being used. A simple (weak) username/password combination
is all that is needed to access the router. Brute force techniques can be used to guess this
password, although the monitoring server would log this activity.

It is also possible that vulnerabilities in the SSH version 1 protocol might be used to gain
access to the routers (http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-
0144). In particular, SSH version 1 has a vulnerability that might allow an attacker to
recover a session key and allow the session to be decrypted. This could reveal the
username and password of the administrator, allowing the attacker to log in to the router.

Tip

The SSH protocol supports public key authentication. However, not all SSH
servers implement this feature. This includes the implementation on Cisco
routers.

Mention of SSH vulnerabilities is not meant to imply that you should not use SSH to
protect your Cisco logins. It is still a useful technique to protect the routers. To make it
more effective, consider implementing stronger authentication methods than are used in
this design.

Determining the Access That Remains: The External Firewalls

The next layer of defense is a pair of stateful packet filter firewalls being used to
implement the external firewall and to terminate the VPNs that allow the business
partners and the suppliers to connect to the internal network. The products being used are
two NetScreen-100 security appliances. Like the border routers, these appliances are
running a high availability protocol to allow one to take over should the other fail.

Note

The NetScreen-100 is no longer produced. Service for this device ends on
January 14, 2006. After this date, no additional support, including patches, is

available. It is important that you consider end-of-service issues when selecting
security products because once the product reaches its end of service, you will
no longer be able to keep the device secure. This problem is not specific to
NetScreen. Most manufacturers will eventually stop support for their older
products.

The NetScreen-100 comes with three network interfaces: untrusted, trusted, and DMZ. In
this design, the untrusted interface is connected to the border routers, the trusted
interface is connected to the internal network, and the DMZ interface is connected to the
screened service network. It uses four different rulebases to control which packets to
allow, based on the interface at which the packet arrives. These rulebases are incoming,
outgoing, "to DMZ", and "from DMZ". For example, packets that come from the untrusted
network and are destined to the internal network are filtered based on the incoming
rulebase. Packets that enter the untrusted network and are destined for the DMZ are
handled by the "to DMZ" rulebase, and so on. The following sections present the
configurations for each rulebase.

Incoming

Table 23.1 shows the rulebase that controls packets heading from the untrusted interface
to the trusted interface.

Table 23.1. Incoming Rulebase for the External
Firewalls

Source Destination Service Action

Border Routers Log Server Syslog Allow

Border Routers NTP Server NTP Allow

Outside Any External
Firewall

IPSec Allow

Partner and
Supplier VPN

Database IPSec Allow

Outside Any Inside Any Any Deny

Outgoing

The rulebase in Table 23.2 controls the traffic entering from the trusted interface and
destined for the untrusted interface.

Table 23.2. Outgoing Rulebase for the External
Firewalls

Source Destination Service Action

Monitoring
Server

External
Firewall

SSH Allow

Inside Any External
Firewall

Any Deny

Backup Server Border Routers Backup Allow

Monitoring
Server

Border Routers Ping, SNMP,
SSH

Allow

Internal
Network

Outside Any Any Allow

Inside Any Outside Any Any Deny

To DMZ

The rulebase in Table 23.3 controls the traffic heading for the DMZ network regardless of
which interface the traffic entered from (untrusted or trusted).

Table 23.3. Rulebase for Packets Heading Toward
the DMZ

Source Destination Service Action

Outside Any Web Server HTTP, HTTPS Allow

Outside Any,
Internal
Network

External Mail
Server

Mail Allow

Internal
Network

Web Server HTTP, HTTPS Allow

Internal
Network

External Mail
Server

IMAP Allow

Monitoring
Server

DMZ Any Ping, SNMP Allow

Backup Server DMZ Any Backup Allow

Inside Any DMZ Any Any Deny

Outside Any DMZ Any Any Deny

From DMZ

The last rulebase, shown in Table 23.4, defines what traffic is allowed to leave the DMZ
network.

Table 23.4. Rulebase for Packets Leaving the DMZ

Source Destination Service Action

Web Server Database TCP Any Allow

External DNS Outside Any DNS Allow

External Mail
Server

Outside Any Mail Allow

DMZ Any Log Server Syslog Allow

DMZ Any NTP Server NTP Allow

DMZ Any Monitoring
Server

SNMP Allow

DMZ Any Inside Any Any Deny

DMZ Any Outside Any Any Deny

Determining the Impact: The External Firewalls

The cumulative effect of these rulebases is to dramatically limit what type of traffic can
flow between the three network zones. It is our job as adversarial reviewers to look for
any access that remains after all the rules on the firewalls are put into place and for any
vulnerabilities that might exist in the firewalls that an attacker could make use of. A
careful review of these settings reveals the following issues:

Network traffic to the web and mail servers is not tested for invalid requests.

The web server is allowed unrestricted access to the database server.

The NetScreen appliance might have a vulnerability that allows the filters to be
bypassed.

As stated at the beginning of this chapter, attackers target what they can talk to. In this
case, the web server and mail server must be accessible to outside users. If the web
server software or the mail server software contains vulnerabilities, this design would not
prevent it from being taken over, which is a major concern because services that have had
the worst history for security vulnerabilities include web and mail server software.
Stateful packet filtering firewalls rely primarily on the contents of the packet header to
make their security decision, so they would be unable to detect an attack that uses
malformed requests targeted at the web or mail server software. The use of a web proxy
and a mail proxy would provide the ability to look at the application data in the packet to
determine whether an invalid request is being made. Although this method is not perfect,
it would provide better security than relying entirely on the packet header to make the
security decision.

The next potential problem is the permissive setting between the web server and the
database server. An attacker who managed to gain control of the web server could use it
to attack any TCP service running on the database server. This rule should be more
restrictive, permitting only the minimum TCP traffic necessary to allow the web server to
make the necessary database queries. It is worth noting that the internal firewall does
provide this restriction. It only allows the web server to send SQLnet1 (TCP Port 1521)
traffic to the database server. You might ask why it is important to restrict the traffic
between the web server and the database server at the external firewall when the internal
firewall is going to accomplish the same thing. As was stated previously, whenever you
can stop a particular problem with multiple defensive techniques, you increase the
resiliency of the network to attack.

The last items worth talking about are potential vulnerabilities in the NetScreen devices.
Some versions of the NetScreen software are vulnerable to an attack that allows packets
into the DMZ that should have been filtered (http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CAN-2001-0589). Ensuring that version 2.5r6 or higher is installed on the
NetScreen devices will prevent this attack.

Determining the Access That Remains: The Internal Firewalls

The internal firewalls are the last line of network filters for the GIACE network. Their
purpose is to provide design redundancy for the NetScreen appliances while protecting the
internal and management networks.

The internal firewalls are implemented using a pair of Nokia IP330 firewall appliances
running Check Point FireWall-1 version 4.1. Like the NetScreen-100s, the Nokias are
stateful inspection firewalls; however, unlike the NetScreen configuration, the Nokias
have a single rulebase to control all filtering decisions. Table 23.5 is the configuration of
this rulebase.

Table 23.5. Rulebase for the Internal Firewalls

No. Source Destination Service Action

1 Monitoring
Server

Internal
Firewall

FireWall-1,
SSH, ICMP,
SNMP

Allow

2 Any Internal
Firewall

Any Drop

3 Web
Server

Database SQLnet1 Allow

4 Internal
Network

Screened
Service
Network

http, https Allow

5 Internal
Network

NOT (Screened
Service
Network)

Any Allow

6 Partner
and
Supplier
VPN

Database IPSec Allow

7 Screened
Service
Network,
Internal
Network,
Border
Routers

Log Server Syslog Allow

8 Screened
Service
Network,
Internal
Network,
Border
Routers

NTP Server NTP Allow

9 Backup
Server

Screened
Service
Network,
Internal
Network,
Border Routers

Backup Allow

10 Monitoring
Server

Screened
Service
Network,
Internal
Network,
Border Routers

SNMP, ICMP Allow

11 Monitoring
Server

Border
Routers,
External
Firewall

SSH Allow

12 Any Any Any Deny

Determining the Impact: The Internal Firewall

This filtering layer provides additional protection for the internal network over and above
that provided by the external firewalls. Separation of the management network and the
internal network is a particularly good idea. As with the external firewalls, though, some
access remains after the firewall's security controls are considered. Here are three issues
that should be addressed:

The internal network is granted access to the management network.

Screened service network hosts can communicate with some internal systems.

The SSH daemon on the firewall might contain vulnerabilities.

The first issue to address is the protection of the management network. Separating the
management network from the rest of the network is a good security precaution. As is the
case in this design, management systems frequently have more access rights to the
network than other systems, which makes them tempting targets. An attacker who
manages to gain control of the monitoring server, for example, would be able to attack
most of the security devices on the network. For this reason, the management network
needs to be carefully protected; yet this rulebase allows internal systems free access to
the management network. Rules 4 and 5 are meant to restrict the internal networks'
access to the screened services network while allowing them free access to the Internet,
but the rules are more permissive than necessary. Rule 5 says that as long as the
destination address is not the screen services network, then the packetsincluding packets
destined for the management networkare allowed.

The next issue to talk about is the control of traffic between the screened services network
and the internal network. This rulebase does a good job of limiting screened service
systems access to the bare minimum required to allow the network to function; however,
any time you allow communication between networks at different trust levels, you need to
be extremely careful. To allow logging and time synchronization, the screen services
network hosts are allowed to send Syslog entries to the log server and make NTP requests
from the NTP server. Both of these systems are located on the management network. If
either of the daemons (Ntpd or Syslogd) contains security vulnerabilities, an attacker
could gain a foothold on the management network. Because of this, special care should be
taken to harden these services.

The rulebase also allows the web server to establish connections with the database server
over the SQLnet1 protocol. Again, as with the Ntpd and Syslogd daemons, if the service,

which handles the SQLnet1 requests, contains vulnerabilities, it is possible for an attacker
to gain control of the database server. In addition, even if the service contains no
vulnerabilities, the web server has a normal amount of access to the database service
running on the database server. An attacker who controls the web server could cause the
database server to perform malicious transactions, such as creating fake supplier invoices.
These transactions would be hard to prevent if the web server is normally allowed to
request them. Only careful application design that includes substantial validity checks on
each transaction could help mitigate this problem.

The last issue to discuss is the reliance on the SSH protocol to administer the firewalls.
The Nokia IP330s prior to release 3.4.1 have the same SSH vulnerability we described for
the Cisco routers. IP330s running older versions of software that require SSH support
should be upgraded.

Repeating as Necessary: Attacking the Whole Network

So far, we have talked about the individual devices that make up the security of the
network and how their configurations might open up the network to attack. Let's see what
might be possible if we combine all of this information.

Our attack will start by looking for vulnerabilities in the web server, the mail server, and
the DNS server. The reason for this is simple; after the routers and firewalls have done
their jobs, these are the only systems we can still establish connections to. If any of these
systems contain vulnerabilities, we might be able to gain access. For example, if we
assume that the web server is running Internet Information Server 5.0, it is possible that
the web server is vulnerable to a buffer overflow attack.1 A successful attack would place
us in complete control of the web server.

But wait! Look back at the network diagram in Figure 23.1. Isn't there an IDS located on
the screened services network that might detect the attack? The important word here is
might . Most IDS tools are signature based. If the attack is new or the IDS has not been
updated, it is possible that the IDS does not contain a signature for the attack, in which
case it would not be able to produce an alert2. In addition, in some cases, attacks can be
reengineered to specifically avoid detection by IDS tools.3

Assuming that we are now in control of the web server, what should we do? This depends
on the review goals. If the goal is to embarrass GIACE, we now have enough privileges to
deface the website. If we are trying to steal data, we are in a good position to accomplish
this as well. The web server needs to be able to query the database server to fulfill its
role. We could potentially use this access to query customer account information, steal
fortune sayings, or capture any other information that the web server would normally
have access to on the database. We could also Trojanize the web server, replacing the
scripts that implement the website (CGIs, JSPs, and so on) with versions that record the
transactions between the users and the site.

If we want to gain control of more hosts on the GIACE network, the other screened service
network systems would be good targets. By using the web server to launch the attacks, we
can circumvent the external firewalls and attack any system on the screened service
network. What about attacking systems on the internal network?

We still have two layers of firewalls between the internal networks and us. The result of
both layers leaves us with limited access from the screened services network. We can
send Syslog packets to the log server, NTP packets to the NTP server, and SQLnet1
packets to the database server. As with the web server, we need a vulnerability in the
service software if we want to continue the attack. In this case, if GIACE is running Oracle
8i on the database server, it might be possible to proceed. Some versions of Oracle 8i's
listener services contain a buffer overflow vulnerability that allows an attacker to gain
remote access to the server (http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-
0499).

Taking over the database server allows us direct access to any of the internal systems,
including user workstations. In addition, it allows us to attack any of the systems on the

management network. Remember: The internal firewalls do not prevent hosts on the
internal network from communicating with the management network. The likely reason for
this is that the administrator is using a workstation located on the internal network to log
in to management network systems. As was mentioned in Chapter 13, "Separating
Resources," using ARP poisoning techniques makes it possible to eavesdrop on the
conversations between the internal network and other networks, even though the network
is implemented using a switch instead of a hub. If the administrator wants to access
management network systems by using Telnet, FTP, or any other protocol that does not
encrypt authentication information, we will be able to capture the administrator's
username/password combination and use it to log in. This would pretty much be game
over because we would then have control of every major system on the network.

You might be asking yourself how realistic this sample attack is. We had to rely on
vulnerabilities on the web and database servers to accomplish the attack, and we had to
assume that the IDS would not pick up the attack. This is a key point to consider when
performing your review. Even when you cannot find a vulnerability for a particular service
or system you are running, it can still be useful to assume the existence of a vulnerability
to discover the impact it could cause should one be discovered in the future. It is almost
beside the point that the products we chose to use to illustrate the example actually
contained exploitable vulnerabilities. It is much more important to recognize that even
good security architectures can be improved.

These additional steps can be used to improve this design:

Use proxy firewalls or Deep Packet Inspection firewalls for high-risk services. Web and
mail service software does not have a good history for security. If we want to
strengthen our border defenses, we need to use firewalls that can look at the content
of a message, not just its source and destination.

Do not allow direct access from publicly accessible systems to back-end systems.
Instead, implement middleware systems that enforce reasonable security checks
between your public servers and your back-end databases.

If you must use SNMP, use version 3.0 of the protocol and implement its strong
authentication mechanisms. If you cannot use version 3.0, make sure you enable
SNMP trap alertsespecially for authentication failuresto enable yourself to detect when
someone is attempting to attack the SNMP service.

Keep all the security devices and public systems up to date with the latest security
patches.

Practical Design 2

The second design we will look at is the security architecture created by Sam Campbell.
Sam's design is shown in Figure 23.2 and can be downloaded at
http://www.giac.org/practical/Sam_Campbell_GCFW.zip. This is an interesting design that
has many sophisticated security features:

The design uses multiple layers of firewalls that are not only from different vendors
but are also different firewall types (proxy versus stateful inspection).

All internal systems use private addresses.

The public web server is hosted on a server that is running a security-hardened
version of HP UNIX.

Standard daemons for DNS and mail have been replaced with more secure
alternatives: djbdns (http://cr.yp.to/djbdns.html) for DNS and Qmail
(http://cr.yp.to/qmail.html) for mail.

A centralized authorization database is maintained using an LDAP server. This server
authenticates external customers, suppliers, and partners.

RSA's SecurID system is being used to strongly authenticate remote users who are
then allowed to establish an IPSec VPN with the internal firewall.

A reverse proxy server implemented using Aventail's extranet product is being used to
allow suppliers and partners secure access to the network.

Figure 23.2. This security architecture uses a security-hardened
version of UNIX to protect the web server.

[View full size image]

Sam's design has five security devices that need to be examined: the border router, the
external firewall, the public web server, the internal firewall, and the extranet server.
Each of these devices plays a role in determining how much access we can get to the
GIACE network. Just as in the previous case study, we provide a discussion of the access
that remains for each of these devices and what impact this access would have to the
network's security. We wrap up our discussion by showing how all the vulnerabilities can
be combined to reach the review goals as well as provide recommendations to improve the
security of the design.

Determining the Access That Remains: The External Firewall

As in the previous review, we want to look at each security device to determine what
access remains to the attacker after the device is added to the network and find any
additional vulnerabilities that might exist in the device. Where appropriate, we assume
vulnerabilities so that we can analyze where additional security measures might be

warranted.

Because this design's border router is set up similarly to the first design we looked at, we
will not spend time discussing it. Beyond the border router, there are two paths into the
network: toward the external firewall and toward the public web server. We will begin our
discussion by looking at the security implemented by the external firewall.

The design uses a Symantec firewall to provide access control between the Internet and
the internal networks. Unlike the stateful firewalls used in the previous design, the Raptor
is a proxy firewall. As was covered in Chapter 4, "Proxy Firewalls," this type of firewall
acts as a go-between for network connections. This method provides some security
benefits, including the ability to hide the structure of the internal network and to make
security decisions based on the content as well as the header of the packet.

Proxy firewalls can hide the structure of the network because they act as a middleman for
all the network connections. All incoming connections are negotiated at the firewall, which
then negotiates a second connection with the system that will actually handle the
transaction. This configuration makes it difficult for an attacker to discover details about
the host he is attempting to attack. As an example, if an Nmap scan with operating system
detection was conducted against a network protected by a Symantec firewall, the result
would look like all the public servers were Symantec firewalls.

Discovering a Network Behind a Proxy Firewall

Proxy firewalls are good at hiding the structure of the internal network, but they
are not perfect. In a penetration testing assignment I conducted, I ran up
against a proxy firewall that allowed external users to FTP into a particular host
on the internal network. The firewall's FTP proxy required that you FTP into the
firewall and then specify which host on the internal network you wanted to
connect to. If you specified the correct host and provided a valid
username/password combination, a connection was established. A small
programming error in this arrangement allowed me to map the internal
network. Here's how it worked: The proxy firewall returned an authorization
error if you specify the IP address of a valid host, but did not provide a good
username/password. If you specified the address of a nonexistent host, you
would get a connection refused message. Using this difference, I created a

script that attempted to access IP addresses within the typical private ranges
(10.0.0.x, 192.168.x.x, and so on). Any address that returned an authorization
error meant that I had detected the address of a live host.

The method that proxy firewalls use to protect networks also allows for inherent Network
Address Translation (NAT). Because the firewall will act as the public front for all the
protected systems, it is the only one that needs to have any public IP addresses. The
protected systems can be numbered using any private addressing scheme. This does
require that the firewall know which system will handle a particular incoming request.
Table 23.6 shows the translation settings used to allow external requests to reach the
appropriate internal system.

Table 23.6. Translation Settings on the External
Firewall for the Public Services

Destination
Address

Destination
Service

Redirected
Address Description

1.1.1.3 SMTP Mail Relay Accept
incoming mail.

1.1.1.3 DNS External DNS Accept
incoming DNS
requests.

1.1.2.1 IPSec-ESP Internal
Firewall

Allow remote
employees in.

1.1.1.5 HTTPS Extranet Server Allow suppliers
and partners in.

Because these systems are the only servers that have an external IP address, they are the
only systems protected by the firewall that an external attacker will be able to directly
communicate with. In our review, we will want to look at the chance that an attacker
could use this capability to attack these systems.

Hosts on the inside of the network that will require the ability to initiate external network
connections must also have translation rules established on the firewall. Table 23.7 shows
the rules for this design.

Table 23.7. Translation Rules to Allow Outbound
Network Connections

Server Address to
Translate To

Description

Mail Relay 1.1.1.3 Allow outbound mail.

Web Proxy 1.1.1.3 Allow outbound HTTP
requests.

Internal Firewall 1.1.2.2 Needed for IPSec
UDP key exchange
between remote
users and the
internal firewall.

The implication of this table is that these are the only hosts (besides the public web
server, border router, and external IDS) on the GIACE network that will be allowed to
initiate connections to the Internet. This means that any attempts to attack the Internet
from the service network need to be launched from one of these systems.

Of course, the main purpose for the firewall is to provide access control. Table 23.8 shows
the access control settings used in this design.

Table 23.8. External Firewall Rulebase

Incoming
Interface

Outgoing
Interface Source Destination Service Action

Internet Service Any Ext. DNS DNS Allow

Service Internet External
DNS

Any DNS Allow

Internet Service Any Mail Relay SMTP Allow

Service Internet Mail Relay Any SMTP Allow

Any Extranet Any Extranet
Server

HTTPS Allow

Internet Corporate Any Internal
Firewall

IPSec-
ESP,
IPSec-IKE

Allow

Corporate Internet Internal
Firewall

Any IPSec-
ESP,
IPSec-IKE

Allow

Service Corporate Mail Relay Mail Server SMTP Allow

Service Internet Web Proxy Any HTTP,
HTTPS,
FTP

Allow

Corporate Service Desktop
LAN

Web Proxy HTTP,
HTTPS,
FTP

Allow

Corporate Service Desktop
LAN

Any SSH Allow, Log

Corporate Service Mail
Server

Mail Relay SMTP Allow

Corporate Internet Any Any Any Deny

Internet Any Any Any NetBIOS
over IP

Deny, No
Log

Note

The Symantec firewall that was used in this design includes the incoming and
outgoing interface in each access rule. The names of the interfaces are
configured during installation of the firewall. Although the interface names are
pretty self-evident, it is worth noting that the corporate interface is the one
connected to the internal firewall.

Determining the Impact: The External Firewall

This external firewall implementation doesn't give us much to complain about. Assuming
that the firewall does not contain vulnerabilities that would allow us to circumvent its
security rules, the only systems protected by the firewall that an external attacker could
initiate a connection with are the mail relay server, the external DNS server, the internal
firewall, and the extranet server. For an attack to succeed, one of these servers would

have to be vulnerable. However, even if one of the servers is vulnerable to some exploit,
the proxy nature of this firewall might prevent the attack from succeeding. As an example,
suppose that the Qmail software running on the mail relay server had a buffer overflow
vulnerability in its handling of the SMTP HELO command. The firewall's mail proxy limits
the format and length of the data that the HELO command supplies. It is unlikely that the

data the attacker would need to provide to successfully attack this system would meet
these length and format restrictions. This does not mean that this solution is bulletproof.
Remember that we should also consider vulnerabilities in the security device. In this case,
a quick search on the vulnerability database at http://www.securityfocus.com reveals
several problems that could affect its security:

The firewall's RealAudio proxy contains a potentially exploitable buffer overflow
vulnerability (http://www.securityfocus.com/bid/6389). Caused by improper bounds
checking within the proxy, under some circumstances, it could lead to complete
compromise of the firewall.

The firewall's HTTP proxy has a few security problems. First, it has an information
disclosure vulnerability (http://www.securityfocus.com/bid/5959). This allows an
attacker to discover what hosts exist behind the firewall because of an overly
revealing error message returned by the proxy. Next, the HTTP proxy has a denial of
service vulnerability caused by a problem in the proxy's DNS resolution functionality
(http://www.securityfocus.com/bid/5958). Last, it has a bug in its handling of
requests that allows an attacker to connect to web servers behind the firewall as long
as the web service is on a nonstandard port (http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2001-0483). This vulnerability would not help an
attacker browse web materials on this network because no web servers are running on
nonstandard ports on the GIACE network. It would enable the attacker to discover
what hosts are running on the network, though.

The firewall may allow attackers to bypass firewall restrictions by piggybacking on on-
going connections (http://www.securityfocus.com/bid/5387). This is caused by a
weakness in the method the firewall uses to generate its initial sequence numbers.

The firewall is susceptible to a DoS attack related to UDP packets
(http://www.securityfocus.com/bid/3509). The attack is possible because the firewall
does not properly handle zero-length UDP packets. This attack would normally be easy
to prevent by blocking UDP packets heading toward the firewall at the border router.
Unfortunately, this will not work because the firewall must pass UDP packets to allow
the remote employees to set up IPSec tunnels with the internal firewall.

The firewall has a bug in its handling of HTTP proxy requests that allows an attacker
to connect to web servers behind the firewall as long as the web service is on a
nonstandard port (http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0483).
This vulnerability would not help an attacker browse web materials on this network
because no web servers are running on nonstandard ports on the GIACE network. It
would enable the attacker to discover what hosts are running on the network, though.
A hotfix is available to fix this problem.

Neither of these vulnerabilities would help an attacker gain unauthorized access to this
network. If no other potential access paths were available for an attacker to use, we might
decide to analyze the impact that adding an artificial vulnerability to the network would
have. In this case, though, other areas in the network show a greater potential for
problems, including the public web server.

Determining the Access That Remains: The Public Web Server

This design uses the highly unorthodox approach of locating the public web server on a
host connected directly to the Internet with no firewalls in-between. This host is also
acting, for all intents and purposes, as a proxy firewall between the Internet and the
Fortune Application LAN. The designer felt comfortable doing this because this is no
ordinary web server. The product he has used is an HP Virtual Vault Server. HP Virtual

Vault is an HP UNIXbased system that has been heavily modified to increase its security.
The biggest change is the absence of an all-powerful root account. Instead, the power of
the root user has been separated into 50 distinct privileges. These privileges can be
granted or revoked as needed on a per-user, process, or file basis. This provides
tremendous power in limiting the impact of service vulnerabilities. Even if an attacker can
successfully take over a service on a Virtual Vault, the service might not have enough
privileges on the Virtual Vault to allow the attacker to do anything useful. In addition, the
Vault comes installed with nothing activated by default. You must manually add interface
cards, the web server, and so on, which eliminates the possibility that a vulnerability in a
service that is not being used could be used to compromise the Vault. More information on
trusted OSs such as the Virtual Vault can be found at
http://csrc.nist.gov/secpubs/rainbow/std001.txt.

Note

Multilevel security operating systems, such as HP Virtual Vault Server, have clear
security advantages over standard servers and seem easy to recommend from a
functionality standpoint. However, before you rush out to implement one, you
must carefully consider the additional effort required to install and maintain
these systems. These servers can be tricky to configure correctly. The added
flexibility in permissions adds complexity in implementation.

The version of Virtual Vault being used for this design comes with an integrated Netscape
Enterprise web server. This web server hosts the public website for the GIACE network
and is the primary public interface between GIACE and its customers. To perform this role,
the web server connects to the Fortune Application Server using its second network
interface, which is connected directly to the Fortune Application LAN. This application
server implements the back-end processing for the site, including storing and retrieving
transaction information in the corporate database and authenticated customers by
querying the corporate LDAP server.

Determining the Impact: The Public Web Server

This is an interesting way of implementing the public web server for this site, but it is also
somewhat risky. The security of the most critical parts of the GIACE network depends on
the strength of a single product: the Virtual Vault. If the Virtual Vault security should fail,
an attacker would have access to the "crown jewels" of this network. Placing the public
web server behind the external firewall, while increasing the load on the firewall, would
provide some additional protection for this critical GIACE resource.

Determining the Access That Remains: The Extranet Server

The extranet server allows partners and suppliers access to the hosts on the Fortune
Application LAN. The extranet server is implemented using an Aventail extranet server.
The Aventail extranet server is a form of reverse proxy that allows external users, after
they have authenticated, to connect to internal systems. To protect the confidentiality of
these transactions, including the exchange of authentication data, the Aventail solution
encrypts these conversations.

Table 23.9 shows the configuration details for the extranet server.

Table 23.9. Rulebase for the Extranet Server

Source
Destination
Port

Destination
Method User Authentication

Any Application
Server

5656 Any LDAP
username/password

Any Application
Server,
Shares
Server

5656, 80 Any LDAP
username/password
and client
certification

Any Shares
Server

NetBIOS
over IP

Any LDAP
username/password
and client
certification

As you can see from this information, two classes of access are available. Suppliers are
granted access to the application server by providing a valid username/password. After
this is performed, the supplier is granted access to port 5656 on the application server,
which is where the customer GIACE fortune application is hosted. Partners are granted
additional access to the network, but they are required to also provide a client certificate
in addition to a valid username/password. All authentication data, including the client
certificates, is held on the corporate LDAP server.

The added access granted to the partners includes the ability to connect to a web service
located on the application server as well as to connect to the NetBIOS ports on the shares
server. This shares server is not shown on the network diagram, but it is located on the
Fortune Application LAN. It is used as a place to share files between GIACE and its
partners.

Determining the Impact: The Extranet Server

This solution does allow secure access from partners and suppliers, but there are still a
few points to be made:

The use of simple username/password authentication might allow an attacker to guess
or brute force a valid password, granting him access to the fortune application. If the
fortune application has any exploitable vulnerabilities, the attacker might gain a
foothold on the Fortune Application LAN. The use of certificates here would eliminate
this risk, but it might not be practical with numerous suppliers. Other strong
authentication alternatives, such as SecurID tokens, could also be used; however, if
this is not feasible, the only alternative is to make sure the fortune application is
carefully designed to prevent misuse.

The extranet server shares an authentication server (the LDAP server) with the public
web server. If the web server is allowed to request new user accounts, it is possible
that an attacker could add a web user account and then use it to authenticate to the
extranet server. Proper application design would eliminate this possibility, but it is
still a good idea to separate the storage of customer and business partner
authentication databases.

The location of the shares server places the GIACE "crown jewels" at unnecessary
risk. Authenticated partners are allowed to connect using the NetBIOS protocol to the
shares server to share files with GIACE. Depending on the configuration of the shares
server, though, this might be sufficient access to allow a motivated attacker to gain
control of the server, which in this case would allow him to gain a foothold on the
Fortune Application LAN. Although this risk is only a concern if the partner is the

attacker or has had his certificate stolen, it is a risk that could easily be mitigated by
relocating the shares server.

Determining the Access That Remains: The Internal Firewall

The internal firewall protects the desktop and corporate LANs while allowing remote users
to establish IPSec tunnels to the GIACE network. These remote users are authenticated
using SecurID tokens. The firewall is implemented using a Nokia IP440 appliance running
Check Point FireWall-1 version 4.1. Table 23.10 shows its configuration.

Table 23.10. Rulebase for the Internal Firewall

Source Destination Service Action

Desktop LAN Corporate LAN DNS, IMAP,
LDAP, POP3,
SMTP, SSH

Allow

Corporate LAN Desktop LAN X, SNMP, Ping Allow

Mail Relay, Mail
Server

Mail Server,
Mail Relay

SMTP Allow

Corporate LAN External DNS DNS Allow

trustedusers@GIACE Corporate LAN Any Client Encrypt

normalusers@GIACE Corporate LAN DNS, IMAP,
LDAP, POP3,
SMTP, SSH

Client Encrypt

normalusers@GIACE Desktop LAN Any Client Encrypt

Fortune LAN Corporate LAN LDAP Allow

Fortune LAN Any Any Deny, Log

Desktop LAN Web Proxy HTTP, HTTPS Allow

Any NTP-Server NTP Allow

Any Any Any Deny, Log

Determining the Impact: The Internal Firewall

This is a reasonably secure rule set, especially considering all the other security measures
in effect on this network. One point of concern is worth discussing, though.

The use of SSH might allow an internal attacker access to the corporate network. The
internal firewall allows the desktop LAN to communicate with the corporate LAN using
several protocols, including IMAP and SSH. The use of SSH is probably to allow an
administrator, while he is at his desk, to administer corporate LAN systems. At the same
time, protocols that allow unencrypted authentication, such as IMAP, are also allowed
between the two networks, which might create an opportunity for an internal attacker to
gain administrative access to corporate servers.

This access would rely on a couple of configuration details. First, the SSH daemons on the
corporate network would need to accept username/password authentication (their default
configuration). Second, an administrative user would need to have used the same
password for his mail account and his user account on a corporate server. We'll leave it up
to you to decide how realistic you think this would be.

To implement the attack, the internal attacker would first use ARP poisoning techniques to
convince the local systems that the MAC address of the local interface of the firewall is
actually the MAC address of the attacker's system. This method results in all the desktop
LAN traffic destined for other networks to be redirected to the attacker's machine. By
eavesdropping on all this traffic, the attacker can capture the IMAP authentication session
when the administrator goes to retrieve his mail. Using the username/password from this
session, the attacker would be able to use SSH to log in to any corporate servers in which
the administrator has used the same password.

Prevention of this attack is simple. Make sure all SSH servers are configured to only
accept public key authentication and make sure the SSH private keys are well protected.
Also, if you must use the nonencrypted mail access protocols (as opposed to IMAP+SSL,
for example), create a different set of usernames/passwords just for mail access.

Repeating as Necessary: Attacking the Whole Network

All in all, this is a good security design that would be extremely difficult to attack from the
outside. An attack is not impossible, though. Here is a potential scenario that might grant
access to the "crown jewels."

As previously mentioned, an inordinate amount of trust has been placed in a single server.
If the HP Virtual Vault contained sufficient vulnerability, an attacker would have free
access to the Fortune Application LAN. As luck would have it, the version of Virtual Vault
that was used contains two key vulnerabilities that might be useful to an attacker.

The first is a buffer overflow in the publisher module of the Virtual Vault's web server.
(http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0746). If the web-published
module were installed on the Vault, it is possible that an attacker could use this
vulnerability to execute arbitrary code at the privilege level of the web server, although
this is somewhat unlikely because HP rated the publisher module as "high risk" and did
not include it as part of the standard distribution.

The second vulnerability is in Virtual Vault's mkacct command, which creates a new

account on the server (http://www.securityfocus.com/bid/1843). This program contains a
vulnerability that can allow a local user to add privileges to his account. Using these in
combination might allow an attacker to gain control of the web server's account and then
elevate his privileges to the point where he is as close to root equivalent as is possible on
a Virtual Vault system.

Unfortunately for the attacker, it is unlikely that the web server would have the mkacct

privilege, making the second half of this attack impossible. This is the strength of the
Virtual Vault system. By limiting permissions to just those required for the job at hand,
you drastically reduce the risk of exploitation.

All is not lost for our attacker, though. The web server must have sufficient rights to
perform its normal activities. This includes the ability to retrieve customer data, retrieve
fortunes, and capture other sensitive data that the web server would normally have access
to. In this case, even web server access might meet the goals of the attacker. The lesson
here is never to rely too heavily on one solution. Moving the web server behind the
external firewall would prevent this attack from succeeding.

Summary

In this chapter, we analyzed the effectiveness of two good security designs. Each provided
multiple layers of defense using different security techniques to provide defense in depth,
and each would prove difficult for a real-world attacker to break into. However, as good as
they were, we were able to identify areas in each that could be improved.

The process we used to accomplish this was adversarial review. Instead of concentrating
on what the security architecture prevented, we concentrated on what it might allow. As is
often the case, a design might allow far more than you expect. When performing your own
adversarial review, keep a few things in mind:

It is not important what a device is supposed to do. Think about what it could do.

Pay special attention to the services accessible to the attacker. These are where the
attack must start.

Do not assume that the attacker will always be external. It is a useful exercise to look
at each of your network segments to see what an attacker could accomplish if he
started his attack from there.

Pay attention to the ways your design can reduce an attacker's ability to discover your
network, but conduct your own review as if the attacker has full knowledge of your
design. This might seem unfair, but it is much better to weed out all vulnerabilities,
not just the vulnerabilities you think will be easy for an attacker to discover.

It is much better for you to conduct this review than to allow the vast collection of
Internet attackers to perform it for you. We hope this chapter has provided you with the
incentive to look at your designs in a new light.

References

1 Eeye Advisory AD20010618. "All Versions of Microsoft Internet Information Services
Remote Buffer Overflow (SYSTEM Level Access)."
http://www.eeye.com/html/Research/Advisories/AD20010618.html. June 2001.

2 M. Handley, C. Kreibich, and V. Paxson . "Network Intrusion Detection: Evasion, Traffic
Normalization, and End-to-End Protocol Semantics (HTML)." (Compressed PostScript)
(PDF) Proc. USENIX Security Symposium. 2001.

3 Eeye Advisory AD20010705. "%u Encoding IDS Bypass Vulnerability."
http://www.eeye.com/html/Research/Advisories/AD20010705.html. September 2001.

Chapter 24. A Unified Security Perimeter:
The Importance of Defense in Depth
When we were young teenagers, we were fearless. We drove our cars too fast, didn't wear
seatbelts; it is amazing we are alive today. Now that we are older, we still drive fast, but
we do it in very sophisticated vehicles. We wear seatbelts, our cars have front and side
airbags, antilock breaks, and skid management, we pay insurance, and as we age, we eat
vitamin A to improve our night vision and we wear special driving glasses. We apply a
defense-in-depth approach to driving. What's the difference? Nowadays, with a spouse and
kids counting on us, we have something to lose.

Could it be that in our journey as system and network builders a similar thing has
happened? Just a dozen years ago, less than half the organizations that employ the
readers of this book had a firewall. Today, many of our security operations centers look
like NASA control rooms with failover firewalls, VPNs, intelligent IPS switches, antivirus,
antispam, IDS (including anomaly IDS to pick up the activity of the worms our IPS
switches don't have a signature for), correlation engines, and enough cooling to keep it all
running to ice the streets of a really hot city such as Houston, Texas in August. What's
changed? We have something to lose. What are we trying so hard to protect? Over the
past decade the value of our organizations is measured more and more by the value of our
intellectual property (IP). Today, IP accounts for more than half the value of most
nonagricultural organizations and is at least 90% of high-tech companies.

Throughout the book, we have touched on defense in depth. We have made an assertion
that no single defensive component is enough to protect our information assets. We are at
a crossroads as a community, in our desire for ease of use; the most prevalent desktop
operating systems simply cannot be secured without resorting to external tools. Do you
remember the discussion of rickety operating systems in the preface of this book? If
security was as simple as putting a firewall between the Internet and the system needing
to be defended, that would be great, but it is not that simple. Even if the system is robust,
there is more to do to achieve a reasonable level of risk. The lesson of devastating attacks
such as Nimda is that a vulnerable system simply has to browse from a hostile web server
and it can be infected. Does this depress you? We hope not. Life is full of risk, damage,
and mayhem, yet we not only survive, but we prosper. To prosper, defense in depth is
imperative as a design paradigm. Bad things are going to happen. We need to limit the
damage to a minimum.

This chapter gives you a lot to think about and helps to tie all the topics of the book
together. In the first half of this chapter, we employ the classic castle analogy to help
make our perimeter defense points crystal clear as we introduce the problem of the rigid
perimeter. At the end of that discussion, we focus on static packet filters and Network
Address Translation (NAT) from a defense-in-depth perspective. Then we consider softer
perimeter solutions that tie up the attacker's time by absorbing the attacks, much like the
crumple zone of your automobile absorbs energy in a crash. We discuss internal defenses,
which are the information technology equivalent of the watertight doors built in to ships.
Finally, we consider defense in depth for information.

Castles: An Example of Defense-in-Depth Architecture

Castles are often used as an information security analogy; castles typically have a
perimeter control that includes one way in and out. Castles also use chokepoints. It is
easy to see defense in depth in action; to rescue the princess in the tower, you have to
cross the moat and bash down the big door. Then you find yourself in a sally port area,
which is similar to an airlock. There are external control doors, an assembly area, an
interior set of doors, and only one set of doors opens at a time. So even if you break down
one set of doors, you have to cram into the assembly area, where there may be ports
through which the insiders can shoot at you. Then you have another set of doors to go
through. We can employ many elements from castle architecture in our networks. The
border routers and firewalls are used in the same way as moats and sally ports. The castle
is not invincible, but the defense-in-depth architecture is one to carefully consider.
Castles aren't still in military use today because they had a number of problems that
relate to modern perimeter defense. Cannons were a big problem. Backdoors and secret
passages did more than a few castles in, and the fact that they were stationary and easy
to find was a significant disadvantage. With our networks, we have similar problems.
802.11 wireless access points and modems, especially on auto-answer, are the backdoors
and secret passages of our networks. Sites with public address space, like castles, are
exposed, stationary, and easy to find and attack.

In the next section of this chapter, we use the analogy of a castle to explore some of the
components of defense in depth.

Hard Walls and Harder Cannonballs

Gunpowder and cannons were the primary forces that put castles out of business. Even if
you build the walls 60 meters thicka huge investment of building resourcesthe attackers
can hammer the walls into dust and then breach the perimeter. By using denial of service
(DoS) techniques of SYN floods or UDP floods as cannonballs, attackers might not be able
to turn your firewall into dust, but they might well be able to shut down your site.

If a firewallespecially an application gateway firewallis directly connected to the Internet,
it probably doesn't have the speed in terms of CPU cycles to withstand a DoS attack. As
we covered in Chapter 12, "Fundamentals of Secure Perimeter Design," the border router
and firewall deployed together are more robust because the router is faster and can be
configured to block many DoS attacks. Thus, a couple layers of defense are more effective
than a single layer.

Before the cannon was available, the perimeter breach device of choice for castles and
keeps (a keep is the inner sanctuary of a castle) was the battering ram. The actual
doorway of the castle tended to be made of metal and wood and was connected to stone,
each of which reacts differently to the ram's attack. Wood, for instance, is softer than
iron; therefore, the metal fasteners tend to erode the wood as the doorway withstands the
shock. The holes in the wood get bigger; the joints weaken, and pretty soon the defense is
breached. The functional equivalent for the battering ram is the DoS attack. As discussed
in the preface to this book, in our networks, we have the firewall applications on top of
operating systems, and attackers might target either the firewall application or the
underlying operating system. This was the case with the flaw in Intel Pentium chips,
where a single op code command series (F0 0F C7 C8) could halt the processor

(http://catless.ncl.ac.uk/Risks/19.45.html#subj5).

We have already discussed using border routers to shield firewalls from attack, but border
routers are also susceptible to attack. Many of them do not respond well to ping floods
directed against them. In fact, a sufficiently large number of attacking systems directed
against the primary backbones might be able to drop portions of the Internet. The solution

for an attack against the Internet is outside the scope of this book, but the best answer is
related to defense in depthdesign the routers and network to be managed by an out-of-
band network. A solution to the ping flood against your border router might be to add one
more layer. A tool such as Attack Mitigator from Top Layer is an example of a very fast
box that can be optimized to stop DoS attacks. Unless these attacks can saturate your
entire data pipe, this layer can withstand the attacker's battering ram. Several companies
are currently developing similar defenses against distributed DoS attacks, and additional
products should be available by the time this book is printed.

Secret Passages

Although it is certainly true that a castle's perimeter can be breached, we should also take
a second to think about how well those ancient perimeters worked. Thick stone walls, like
firewalls, do work well to help keep the barbarians out. Because they work so well, people
invested a lot of effort trying to get around perimeter defenses. A favorite movie trick to
circumvent these perimeters is the secret passage. Let's take a minute to examine how
easy and likely it is that you might have a tunnel through your firewall that acts as a
secret passage, or a leak you are not aware of in your perimeter.

Tunnels Through the Firewall

If the firewall is perceived to be too restrictive, users may find ways to get through it; one
of the most common ways is to tunnel through HTTP. There are several ways to do this,
including SOAP (Simple Object Access Protocol), non-RFC tunnels, and attacking the web
server (putting it under your control and using it to send data via HTTP).

SOAP (Simple Object Access Protocol)

RFC 3288 describes SOAP as a means of implementing web services across the Internet
and tunneling through perimeters using HTTP. These tunnels act as third-party servers to
forward your message from, say, a system inside your firewall to a server you might not
otherwise be able to access.

SOAP can be sent either in a synchronous way (for example, when it contains an RPC call)
or in an asynchronous way (for example, when it contains an XML message). The latter is
usually the case. SOAP does not care about the content, only about the addressee. You
might as well regard it as a simple envelope: It can carry anything. SOAP is not concerned
about the content; it just lets the mailman (usually HTTP) deliver the envelope. The first
generation of commercial SOAP and XML firewalls is already available from companies
such as Xtradyne, Flamenco, and Datapower.

Non-RFC Approaches to HTTP Tunneling

HTTP tunneling does not have to be based on the RFC standards; all you have to do is
encode your message properly using HTML and the tunnel will work. On the non-RFC side
of the house, dozens of tools, such as the original GNU httptunnel, encapsulate a
communication stream in HTTP. For one example, you might want to visit
http://www.nocrew.org/software/httptunnel.html. If you look at the data, you will see GET,
PUT and POST commands passing through the tunnel. Most even incorporate HTML tags,

making these tunnels a bit tough to spot.

If you have an intrusion detection system (IDS), such as Snort, that can perform
statistical analysis, or a traffic measurement tool, such as Cisco's NetFlow, you can often
detect these HTTP tunnels. If you think about it, when you surf the Web, you specify a
URL, wait, and then the page starts to display. In terms of the traffic signature, the client
initiates the connection and sends a few bytes to the server, and the server sends a
considerable amount of data back to the client. Now to be sure, some web applications

enable the client to PUT or POST, so there is a potential for a false positive; however, with

a bit of practice, you can detect a number of these tunnels. Of course, technology is not
enough. After you detect a tunnel, your organization's policy dictates your next move. Is
there a policy against unauthorized connections at your site? Would your organization's
policy define a tunnel as an unauthorized connection? If the answer to the preceding two
questions is yes, then what actions does the policy permit or require you to take?

Attacking the Web Server

A lot of organizations feel that web server security is not an interesting or important topic.
The SANS Institute commissioned a course on Apache security from researcher Ryan
Barnett. When it did not sell, we purchased Google AdWords for the Hands On Apache
Security class with a number of search words related to web security. Google reported we
had such an abysmal "click-through ratio" that it essentially said, "Keep your money," and
disabled the search words (http://www.sans.org/onsite/description.php?tid=41).

However, because web servers are Internet facing, they remain under constant attack. If
an attacker is able to compromise a web server, he can tunnel information from the
server. This is why your IDSs should always alert if your web server initiates a connection
to any other system. However, the attacker can still PUT and GET information right in the

HTTP stream.

Ryan Barnett conducted an experiment using an open proxy server for a week as a
honeypot demonstrates that not only are web servers directly under attack, but they are
also being tested to see if they are an open proxy so the attackers can create "proxy
chains" (proxy web servers connecting to other proxy web servers) to mask their identity.
An article by Barnett and Northcutt describing the experiment can be found at
http://www.sans.org/rr/special/http_elephant.php.

PUT Attacks, September 20, 2004

To illustrate that web servers really are under attack, consider an excerpt from
the Internet Storm Center's (ISC) Handler's diary dated September 20, 2004:

"Increase in HTTP PUT requests. A report from Ryan stated that he noticed an
increase of HTTP PUT attempts to his public web servers over the past few
weeks. After looking at the file names attempting to be uploaded, it appeared
that this was an attempt to deface his web site."

Some of the file names in his logs included the following:

PUT /index.html HTTP/1.0

PUT /at4k3r.htm HTTP/1.0

PUT /ka.htm HTTP/1.0

PUT /kateam HTTP/1.0

PUT /scanned HTTP/1.0

PUT /inf.txt HTTP/1.0

PUT /ownz.htm HTTP/1.0

PUT /hdg.htm HTTP/1.0

Johannes Ullrich, the ISC's CTO, checked SANS web logs and found similar
activity. Fortunately, the attempted defacements were not successful. This

highlights the importance of restricting the authorized HTTP request methods on
public web servers. This "hack" (the easiest defacement method of them all)
can be effectively denied by not allowing the PUT method and also with
appropriate DocumentRoot directory ownership/permissions. Check your web
logs for this type of behavior. A simple Snort rule to ALERT on PUT statements

for sites that do not expect uploads would also be prudent.

Change in the Perimeter Configuration

Even a performance problem or the perception of a performance problem can lead to the
creation of a secret passagea leak in the perimeter. People just want to get their work
done, and if the perimeter is slowing them down, they find ways to get around the
perimeter.

Even at highly secured DoD facilities or other high-value assets, security officers might
discover that the firewall administrator has changed the web or some other proxy
application on the firewall to a simple packet filter. If it happened to you, would you be at
a loss as to why the officer would have done such a thing? It does make sense. The
primary task of firewall administrators is to create ACLs or rules that open up the firewall.
Firewalls might ship with a default rule to deny anything that is not specifically allowed
(deny all), but that does not mean the firewall administrator is oriented to deny all. We
should never forget the human element. From time to time, this administrator will almost
certainly get phone calls or emails from people saying that the firewall is too slow. He
knows packet filters are faster than proxy applications, so one day he decides to fix the
firewall and switch it from a proxy to a packet filter.

If you are not monitoring your firewall configuration, the first time you realize something
is wrong might be when you start seeing attacks from the Internet that are clearly
operating-system specific. HTTP, for instance, often gives away operating system
information in the protocol headers; therefore, if the attackers run a website, they might
know exactly what to target. Of course, this would only be an issue if certain websites on
the Internet were malicious. This would be a serious problem for a site that is not
interested in using NAT and making all the internal machines private addresses.

An emerging best practice to help protect your site from administrative changes is to
continually scan your perimeter from the outside using assessment tools. Managed scan
services, such as Qualys (http://www.qualys.com), have subscription offerings so that you
can schedule these scans via a web browser interface. They maintain a database of your
configuration and provide a variety of canned reports. They also have an interface so that
you can build your own reports. This way, if a new port is open or a new IP address
becomes active, you can get a report to that effect. From a defense-in-depth perspective,
you should seriously consider an active scanning program for any of your systems that
can be reached from the Internet. Attackers will certainly scan you, so you had best probe
your systems so that you see what the attackers see.

Insider Threats

The insider threat is divided into two major components: people and programs. It never
hurts to mention that throughout history, one of the best ways to get into a castle, bank,
Secure Compartmented Information Facility (SCIF), or perimeter defense is to pay
someone off. An equally effective and potentially cheaper method is the use of spyware
and keystroke loggers.

Insider Employees and Contractors

Money is a powerful tool. If a firewall administrator would put a site at risk for free,
imagine what a bit of coercion and $100,000 might be able to do. The CERT study on the
insider threat, available at http://www.cert.org/archive/pdf/bankfin040820.pdf, shows that

87% of the time, attackers do not use a technically sophisticated approach. Why bother?
They can burn a DVD of all your intellectual property, put it in a briefcase, and walk out of
the facility.

The defense-in-depth strategy here is to employ good background checks when hiring, do
a bit of random monitoring, and keep an eye out for people who come in early, leave late,
and work weekends. (Although all my peers work long hours, this is still a classic indicator
of problems.) Sudden changes in financial status, signs of alcohol or drug use, and talk of
entitlement ("They owe me.") can all be signs of an insider problem.

Insider Programs, Spyware, and Keystroke Loggers

It is a lot of fun to watch the expression on people's faces the first time they run
antispyware tools such as Spybot Search and Destroy or Ad-Aware. Here are the links for
these tools:

http://www.safer-networking.org/en/download/

http://www.lavasoftusa.com/software/adaware/

Folks that do not run antispyware tools regularly will typically have 60 to 100 spying
URLs, a couple of bots, and a keystroke logger or two. We'll probably be plagued with
software that spies on where we go and what we do as long as people use browsers that
execute software.

Many organizations are not aware of the vulnerabilities browsers have. For instance, see
CERT advisory CA 2003-22 (http://www.cert.org/advisories/CA-2003-22.html).

These organizations using vulnerable browsers have probably yielded a lot of information
to their unscrupulous competitors that are happy to engage in espionage, one password,
one credit card number, one email marked "Proprietary" at a time. In addition to the
antispyware tools, part of defense in depth is to eliminate the buildup of information that
can be mined. If intellectual property is a significant component of the value of your
organization, consider a tool such as CyberScrub (http://www.cyberscrub.com), which
deletes temporary Internet files and all the other intelligence information that
accumulates on your organization's desktop and mobile systems.

Insider people and programs will always be a significant problem. The classic concepts of
the principle of least privilegeletting people and systems have only the access they need
to do their jobs, and the separation of duties, especially where money or valuable
intellectual property is involvedare two of your best defenses. A third defense is similar to
the principle of least privilege: the need to know. The less the insiders know, the less
harm they can do. Strictly enforcing the need to know is one way to hide crucial assets in
the mist, even from insiders.

Hiding in the Mist

Remember the TV mini series The Mists of Avalon from a few years back? The castle
dwellers did one smart thing: They used magic to call up mists to hide their castle. The
location of castles is one of the big problems in the whole castle concept from the
standpoint of military strategy. After the cannon was developed, it became apparent that
castles were the perfect targets. They were so big that it was hard to miss them and waste
a cannon ball, and you knew just where to find them because they were not mobile and
couldn't be hidden. The great news is that we can deploy the functional equivalent of the
mists of Avalon on our networks by using NAT. Someone can attack a perimeter in many
ways, but if you have private addresses and NAT, the attacks or probes might still work to
some extent, but they won't be as useful to the attacker. Suddenly, your internal systems
become difficult to find, as if they are hidden in the mists. Imagine listening in on an IRC
chat room discussion, and you realize the attackers are experimenting with the latest
technique to slip through the perimeter. As you are watching the chat room discussion
between Attacker 1 (A1) and Attacker 2 (A2), you see something resembling the following

scroll across your screen:

A1: Did it work for you? I've got 10 bots banging.

A2: I got through the firewall and got a box to answer.

A1: Lamers, what OS is it? I bet I can crack it in 10 minutes or less.

A2: Passive fingerprinter indicates it must be a windoze box. It reports its IP is
192.168.1.238.

A1: NAT, better keep scanning.

A2: I don't get it. We found one.

A1: Yeah, but which 192.168.1.238 is it exactly?

Easily 100,000 networks start with 192.168.1, and unless you can nail up a source route
or come through a tunnel, you probably can't get to and from one of these networks across
the Internet. If you do have public addresses for the internal machines at your site, you
should seriously consider transitioning to a NAT and private address structure. It can be
the single most valuable tool to prevent successful reconnaissance by those who desire to
be your enemy. In the next section, we briefly discuss three classic techniques used every
day to penetrate perimeters: setting additional flags with a SYN, fragments, and echo
replies. These examples illustrate the point about public and private addresses.

SYN/FIN

Many of the buffer overflows from 1998 through just yesterday often follow
reconnaissance using SynScan, which uses a combination of flags found in byte 13 from
offset zero in the TCP header, and set both the SYN and FIN flags or bits. For a long time,
the SYN and FIN set, in conjunction with an IPID of 39426, has announced the use of the
SynScan tool. However, the flag combination can be more than a signature, the idea
behind a SYN/FIN attack is to add an additional spurious flag to the SYN to attempt to
originate a connection behind a perimeter. Many packet-filtering systems, especially static
packet filters, mask on byte 13 of the TCP header checking for the value 2, the value of
the SYN flag as the only bit set. The TCP flags are URG, ACK, PSH, RST, SYN, and FIN. FIN
is the low-order bit, with a value of 1, if set; SYN is 2, RST is 4, and so on. This is what
RFC 793 specifies, so it makes sense that designers of perimeter systems would inspect
for a value of 2 in byte 13. SYN/RST, for instance, would not meet the logical test and
would be allowed through the packet filter into the internal network, as would SYN/ACK,
an ACK only, and so on. The kicker is that both UNIX and Windows systems will respond to
a SYN/FIN with a SYN/ACK. SYN/FINs are used to penetrate perimeters and to establish a
connection.

This attack is the most dangerous perimeter penetration we are going to discuss;
fragments and echo replies are primarily for reconnaissance, as opposed to system
compromise attacks.

Reconnaissance with Fragments

In this section, we examine the use of incomplete fragment trains. When this
reconnaissance technique is used on a vulnerable site, attackers get a positive answer as
to the existence, or lack thereof, of a live host at every address that is checked.
Fragmentation occurs when a packet is larger than the maximum transmission unit (MTU)
of the next hop in its journey to its destination host.

Only the first fragment has the true header from the original datagram. The other
fragments have only the IP header generated by the router that breaks up the original
datagram; those fragments do not get their true protocol headers until the destination
host reassembles them. This lack of protocol header makes them ideal reconnaissance
tools for attackers. Many perimeter devices do not choose to make the blocking decision

on anything but the first fragment. An attacker can intentionally send in fragments without
the protocol information; these fragments tend to pass through the perimeter to internal
systems. If the internal systems have public addresses, a number of thingsall badcould
happen. If the system being probed exists, it might receive the fragment. Then, when the
other fragments do not arrive, the probed system might respond with an ICMP error
messages saying that the reassembly time was exceeded, which tells the attacker that
there is a live host at that IP address. If the system being probed does not exist, an
internal router might respond with an ICMP host unreachable error message. The attacker
then knows an IP address is not active. To defend against this technique, the perimeter
must block both outgoing ICMP time exceeded in reassembly messages and ICMP host
unreachable messages.

Next, we look at one more way attackers can penetrate perimeter defenses for
reconnaissanceusing echo replies.

Reconnaissance with Echo Replies

ICMP has two forms: error messages that are never replied to and error messages that
take the form of request/reply. ICMP Type 8, Code 0 is an echo request, although it is also
known as a ping, after the ping program. If an ICMP listener receives an echo request, the
listener generally responds with an ICMP Type 0, Code 0 echo reply to tell the original
ICMP speaker that the datagram was received.

These request/reply types of ICMP are generally used for network managementfor
instance, to see if hosts or routers are up. They can also be used for reconnaissance in
many cases because echo replies often pass through perimeters; to block them would
break outbound ping, and people like to use ping. Therefore, attackers send in echo replies
to cause internal routers to respond with ICMP host unreachable error messages. This is
known as inverse mapping . The only active response from the probed site is for systems
that do not exist.

The defense strategy is obvious here. As you learned in Chapter 3, "Stateful Firewalls,"
stateful firewalls maintain a table and might be able to determine whether or not the echo
reply is a response to a ping initiated from within your site. Your design should have a
stateful perimeter layer. As an additional layer of protection, you learned about the
importance of squelching the outbound ICMP error messages in Chapter 6, "The Role of a
Router." If we drop outgoing ICMP unreachable messages, even if our state table fails, we
have this second layer of defense. Of course, the best defense would be to employ
filtering, thus squelching outbound ICMP and NAT.

Defense on the Inside

Even if you are able to enter a castle though a secret passage, a number of barriers still
exist, including those pesky guards with swords, before you can rescue the princess in the
tower. Every single person who sees you is likely to either raise an alarm or attack you.
Plus there will still be additional locked doors. In the past, this was not so with most of
our sites. We did not typically use internal barriers or internal instrumentation. Nowadays,
this is beginning to change with network segmentation and even self-defending networks.

The Need for Compartmentalization

I worked for a Navy lab once that was a loose group of multiple Navy bases in
different states. They each did different kinds of work and had fairly low
interaction, but one day, some "genius" decided that the bases needed a
common email system. They selected what I consider the riskiest email client
on the face of the earth: Microsoft Outlook. That wasn't the half of it, though;
the servicemen wanted a single domain controller for all the users at all the
bases. Chapters 12, "Fundamentals of Secure Perimeter Design," and 18,
"Sample Designs," talk about single points of failure, but this was the most
vulnerable design I have ever seen. If an attacker was able to compromise the
single domain controller, every login for every user at every one of those bases
would be exposed. If you think about the way they build ships with multiple
compartments, each protected by doors, you have a good analogy for building a
robust internal network. We need to employ internal barriers, such as appliance
firewalls, and place and monitor IDS sensors inside our systems.

If attackers get through the perimeter, we still want to employ layers of defense and
instrumentation. Chapter 20, "Network Log Analysis," discusses the kind of information
available in log files. The following sections of this chapter review some of the
technologies we can employ to really get a clue as to what is going on in our networks as
well as how to harden them. These technologies include personal (or host-centric)
firewalls, appliance firewalls, physical airgaps, segmenting the network using switches,
active network defense, as well as the emerging log fusion products.

Host-Centric Firewalls as Sensors

Personal, or host-centric , firewall technology is one of the great breakthroughs in the past
few years, and it is clearly a defense-in-depth technology. Firewalls are barriersone more
layer of defenseand that additional layer is valuable in and of itself. Some firewalls do not
even allow systems to answer pings.

In addition to being an another layer of defense, host-centric firewalls, described in
Chapter 10, "Host Defense Components," are equally as valuable as canaries in a coal
mine. In the past century before modern sensors were developed to detect poisonous gas,
miners took canaries into coal mines. Canaries are more sensitive to poisonous gas than
people, so when the canaries started keeling over, it was time to get out of the mine.
Because we have very little instrumentation internally in our sites, a personal firewall can
be an early sensor, much like a canary, that alerts us to a serious problem of which we
might not otherwise be aware.

If all the writers and editors of this book could be in a very large room with each of you,
the readers, we could conduct a poll. If we asked all of you to raise your hands if you use
a personal firewall, about 70% of your hands would go up. If we asked you if you run a
personal firewall at work behind your corporate firewall, maybe 40% of you would raise
your hands. If the members of that last group were asked how many had ever received an
alarm on their work personal firewall, almost every hand would stay up. The implications
of those alarms are startling. You can chalk up those alerts to one of three things:

False positives, or errors, by the firewall detection

Real attacks generated from outside your organization

Real attacks generated from within your organization

When we instrument an internal network, the results can include finding compromised
systems being used to attack other systems and finding employees who are involved in

hacking. When choosing a personal firewall solution for your organization, you might want
to make the console available with enterprise versions a priority. These are available from
Sygate, Symantec, McAfee, and others. In terms of maintaining situational awareness
(knowing what is going on inside your network) by having reports coming to a central
place, this is a great aid.

Internal Firewalls/Appliances

A number of tools are logwatchers and correlation engines. These are major improvements
on the original swatch. Almost all these include a relational SQL database to manage the
information. Examples include NetForensics, ArcSight, and Intellitactics' NSM, which are
all costly because of the amount of compute power needed to drive the database, the
amount of storage they require, and the amount of manual intervention needed to keep
them up to date. As these tools mature and integrate with passive OS sniffers such as
SourceFire's RNA and Tenable's NeVO, they will enable us to do the same sorts of attack
detection and trend analysis, possibly even more than we can do by using a personal
firewall console. If we design our networks with multiple internal compartments, possibly
using firewall appliances, we have the opportunity for both protection from attacks and
detection of attack attempts inside our internal network.

The Case for Airgaps

Nothing beats a genuine, old fashioned, not-connected-to-the-Net airgap. The department
of defense has a rule that a classified network has to be airgapped from any unclassified
network. That is a sensible rule.

You need an airgap between your networked assets and the servers where you locate your
most critical information. What is the information that truly differentiates you from your
competition? The SANS Institute is engaged in research into securing systems every day,
but its most critical information is either encrypted at rest while on networked computers
or stored on airgapped systems if not encrypted. Several of our peers working for startup
security companies have told us their software development and lab systems are not
connected to a network connected to the Internet. We have discussed the notion of the
hard, crunchy perimeter and the soft, chewy interior. The next section of this chapter
suggests that we should think a bit about softer, absorbent perimeters. Although that
might conjure up thoughts of paper towels, the plan is to discuss honeypots, rate limiting,
and failover.

Self-Defending Network (SDN)

If we look at the way attacks come in today, we can clearly see the secret passage
analogy is quite accurate: Attacks and attackers don't walk in the front door per se
anymore. Our problems come from rogue machines, laptops that have been brought home,
put in sleep mode, and connected back up to your network. The problem lies within the
machines we don't control, such as those of the contractors and vendors who come on
your network to check email and so on.

You might have seen the new advertisements on TV about the Self-Defending Network
from Cisco, with the little girl who installs software on her father's computer! A worm
immediately tries to infect the machine, but luckily the outbreak is stopped before it can
happen, due to the new SDN technology deployed. Let me give you a bit of insight into
what is behind the Self-Defending Network.

The Self-Defending Network is a Cisco-led strategy that includes the facility to improve
the way a host can attach to your network via the checking of parameters that you set to
see if it complies with your security policy, hence enhancing the ability to identify,
prevent, and adapt to threats. Obviously, this will not be perfect, but it seems to be a
major trend. Similar technology is available from Sygate.

Note

The authors wish to thank Patrick Ramseier and other Cisco engineers for
providing us with the technical content to ensure this section is accurate.

This fundamental element of SDN is called NAC, which is short for Network Admission
Control. NAC is an efficient way to leverage the network to intelligently enforce access
control based on your endpoint security posture and is currently supported by a number of
vendors, including Computer Associates, Symantec, Trend Micro, McAfee, and IBM.

There are a few prerequisites in order for NAC to work:

Cisco IOS v.12.8(8)T or later

IOS security image (firewall feature set)

Cisco Trust Agent (CTA), which must be installed on endpoint devices such as
desktops, laptops, and so on

Support for Extensible Authentication Protocol over UDP (EAPoUDP), a protocol
designed to support a number of authentication methods, ranging from MD5 and One
Time Password to device-specific solutions such as RSA or Cryptocard

Cisco Secure Access Control Server (ACS) version 3.3

NAC works by utilizing a software agent called CTA, which will be available as a free
download from http://www.cisco.com and potentially embedded in Symantec, McAfee,
Trend Micro Virus programs as well as the Cisco Security Agent.

Here are the steps used for the comprehensive compliance validation on a Layer 3 device
such as a router:

1. When a new host is attempting to attach to your network, the IP packet triggers an
Intercept ACL on your router. The purpose of the Intercept ACL is to initiate the
network admissions process; the first step is to query a policy server for a posture. In
addition, the NAC program will occasionally query existing hosts to ensure they are
the same admitted host they are supposed to be.

2. The default ACL determines the initial or interim network access to be granted to the
host.

3. The router then triggers a posture validation by utilizing the CTA. It does that by
using Extensible Authentication Protocol over UDP (EAPoUDP). Postures can include
antivirus, host-based intrusion prevention, or application-specific postures.

4. The CTA agent gathers the information and sends the posture credentials back to the
router via EAPoUDP again.

5. The router then forwards the collected credentials to an access control server (ACS)
by using EAP over Radius.

6. ACS can optionally proxy portions of that posture authentication to vendor servers so
you can make sure all hosts that enter your network have the right antivirus
definition or DAT level for your antivirus policy.

7. ACS validates the posture and then determines the authorization rights, to make sure
the host presented is healthy, and whether it needs to be segmented off to be
updated or quarantined.

8. ACS then sends the host's authorization policy back to the router.

9. The host IP access is granted, denied, or restricted, depending on the posture
assessment.

10. The router periodically reassesses inactive hosts to ensure the posture has not
changed. It does this by using a new mechanism called L3 EAP Status Query. This
poll makes sure of the following:

That CTA is still there.

It is the same validated device.

The posture hasn't changed.

Active hosts are reassessed as well. If they stop responding to the status queries, a
revalidation is triggered.

If a large number of vendors support NAC in the same way the major antivirus players
have, you will be able to make sure all your endpoints conform to your security policy
before they attach to your network via switch, router, wireless, or any other method. If
this is done in conjunction with absorbent perimeters (the next strategy we discuss), you
have a very solid security model.

Absorbent Perimeters

For years, the primary advance in perimeter security was the silent drop, where a probe
was dropped without a response, such as an ICMP administratively prohibited message.
Today, it is possible to construct perimeters that are even harder to probe from an
attacker's point of view than these black-hole-style systems. Chapter 10 discusses a
number of host-based firewalls, including SunScreen and Psionic PortSentry. One such
host-based firewall that remains a bit ahead of its time is NFR's BackOfficer Friendly
(http://www.nfr.com/resource/backOfficer.php). This technology incorporates a kind of
active defense. If the attacker is scanning for a web server, NFR's BackOfficer Friendly
provides a valid HTTP response. It answers to Telnet requests or even Back Orifice pings.
The logic is to keep the attacker off base. Raptor firewalls have a similar capability at the
perimeter. These devices, possibly in conjunction with the occasional silent drop, make
reconnaissance a more challenging proposition for attackers. Other technologies we can
employ to create a perimeter that is able to absorb attacks include honeypots, rate
limiting, and failover.

Honeypots

One early example of a honeypot was the deception toolkit (DTK) developed by Fred
Cohen and available from his website (http://www.all.net/dtk/dtk.htm). DTK was a state
machine written in Perl that made it possible to emulate almost any service. The software
came preconfigured to emulate about 20 network services, including a Telnet written in
the C language. NFR's BackOfficer Friendly, which we just discussed, can also be
considered a state machine. It is a honeypot as well as a personal firewall. Such
technology has two major advantages for the organization that deploys it. It tends to tie
up the attackers' resources as they are burning their time and effort against the honeypot,
and it provides you with information about what the attackers are trying to do.

The Internet Storm Center (ISC) depends on honeypots to capture malicious code, after
they determine it is running, by large changes in the destination port number of traffic. In
this case, the honeypot is the actual Windows or Linux operating system with a weak
security model so that it can be infected. This is an alternative to the state machine
approach. The state machine is advantageous because it is unlikely that an attacker can
break out of the state machine and use the honeypot to attack someone else. The native
operating system is advantageous because it becomes a thousand times more difficult for
the attackers to figure out they are dealing with a fake system.

No discussion of honeypots is complete without mentioning the Honeynet project
(http://www.honeynet.org/), championed by Lance Spitzner and a number of security
researchers. The Honeynet project continues to add to our understanding of attacker
techniques and motivation. Today, the Honeynet Alliance is available for organizations
interested in fostering research about honeypots. The Honeynet Alliance tends to use
actual operating systems for its technology; the original Honeynet was an actual network
with firewalls, targets, and an IDS. Today, through the magic on VMware, it is possible to
simulate an entire network using only a single computer. This solution is much cheaper
and less complex, and it might allow the defensive community to deploy more honeypots.
There is also Neils Provost's excellent honeyd, a free software solution that is rapidly
becoming the honeypot of choice. More information is available at
http://www.honeyd.org/.

Should your organization consider a honeypot? It is an advanced technique. If you already
have your perimeter functioning well, an IDS collecting data, and host-based intrusion
detection on at least the critical systems, a honeypot might be a next logical step. A
honeypot can be deployed on the screened subnet or DMZ as a third DNS server, an FTP
server, or any other server. Also, it would draw fire and not be obviously out of place. A

honeypot might be the only way to actually capture the full attack if the perimeter is
knocking down the traffic. As defenses advance and defenders consider automated
response, this technology can be used to help assess threat. Originally, the primary auto-
response capabilities were to drop the connection, forge a reset to knock down the attack,
and shun the attacker's IP address. Each of these has drawbacks, and a significant
potential exists for self-inflicted DoS. Nevertheless, as the attacks we face become ever
more sophisticated, auto-response must be considered as a defense-in-depth tool.

In addition to the types of active response we have discussed in this section, another tool
to consider is rate limiting.

Rate Limiting

Rate limitingmanaging the amount of bandwidth granted to a connectionwas developed for
Quality of Service (QoS) reasons. Throughout the history of networking, we have had to
deal with various degrees of service and capability. Researchers have long proposed
various QoS solutions, including buffering, advances in queuing theory, and protocol
advances. These are primarily for performance, especially with services that do not react
well to changes in throughput, such as streaming audio or video; however, QoS solutions
offer fascinating possibilities for creating perimeters that absorb attacks as a defensive
methodology. Like any other auto-response, these techniques come with their own
problems and dangers, but they are worth considering, especially to buy time to evaluate
and respond to an attack. The primary advantage is to avoid tipping our hand to the
attacker whose activity we have identified. Rate limiting is similar to the active response
and honeypot-style defenses. Also, if we do accidentally target the wrong host with our
active defense, we do less damage because we slow the attacks down more than stopping
them. The three possible ways to implement rate limiting are in the network switch we
control, in effective use of the protocol, and at the application.

Network switches are rapidly becoming more sophisticated, and QoS is available in off-
the-shelf products, such as the Entarasys switch. If the IDS detects an attack, it can
simply begin to modulate the available bandwidth to the attacker. This might be a security
option that managed service providers could deploy. You can't have a conversation with
someone in this business for five minutes before you start hearing a story about a
customer who made a change without informing him or her, setting off the security alarms
and whistles. Not all switches support rate limiting, but there are some fascinating things
that we can implement with existing and emerging protocols.

If an attack were UDP based, it would be simple for the perimeter defense mechanisms to
issue an ICMP source quench message. This tells the sender to slow down. You can modify
the performance of a TCP connection in several ways. If the other side is Explicit
Congestion Notification (ECN)capable, we can send a congestion message and ask the
sender to back off. Even if the attacker does not run ECN, we can take a page out of the
LaBrea work done by Tom Liston and send an initial response with a small TCP window
size and then set it to zero from time to time to keep the attacker from sending data.

These first two approachessetting a limit using hardware, such as a switch, or ICMP source
quenchcan easily be set in motion by an IDS as an auto-response, and there have been
applications of both. One simple example at the application layer is when a user mistypes
his password several times. The response can be to slow down the rate at which the
system tells the user that the password is incorrect. We can also consider defense at the
application, although this will not be practical until we start using better practices in
coding. That said, it is worth noting that the software application might be the best place
to detect and respond to certain attacks, such as illegal values and buffer overflows. It
would be interesting to see Sendmail and named implementations with a built-in
defensive capability. Named, for instance, could trivially identify attempts to use the
obsolete query class CHAOSnet. It could send an alert to the defensive systems, respond
by delaying the answer, and then possibly transmit a BIND version number that would
send attacks down the wrong path, such as 4.9.1, an ancient version of BIND. If such
technology does become available, it certainly would help us implement defense in depth.

In this section of the chapter, we have considered several techniques for implementing
perimeters that are more flexible than the standard border router firewalltype perimeter.
None of these techniques should ever be used in lieu of those technologies, but they can
supplement and enhance our perimeter defense. One of the critical issues in a perimeter,
of course, is uptime or availability, and one of the most important technologies to help us
achieve this is automated failover.

Failover

Failover is the practice of maintaining a hot standby and transferring operations to the
standby if the primary fails. When you're considering purchase requirements for firewalls
and other perimeter devices, one crucial capability is failover. Many commercial and
freeware products and designs seek to balance security and degree of polling, usually
through Hot Standby Routing Protocol (HSRP), maintaining NAT tables and connection
state, as well as load and performance balancing. If you plan to implement failover, buy
all the firewalls at the same time and maintain strict configuration management so that
they have the same patch level at all times to avoid problems.

Failover products are dynamic by nature, but it never hurts to ask the manufacturer's
technical representatives if it is possible to deploy their products in a failover mode that
allows both failover and static routing between the secure or intranet sides of perimeter
devices. Static routing helps you avoid the risk that the compromise of a single router
could lead to the manipulation of the organization's dynamic routing tables. If an attacker
can manipulate the routes, he can cause traffic to pass through an arbitrary IP address he
controls. The security mechanism for routing tends to be a password or an MD5 hash,
which is not considered fully robust. Passwords can be sniffed, and although MD5 is a
strong security mechanism, cryptographic experts have asserted that the implementation
for routing was hastily done and is not perfect. Static routes are read from a table;
therefore, even if a router is compromised, as long as the remaining routers do not accept
ICMP redirects or router discovery messages, they and their routes will remain intact.

Maintaining near 100% uptime is great, but it also means that a failure in our security
design, process, or procedure results in our precious information leaking all the faster.
Next, we will consider defense in depth with information, covering the problems and some
of the solutions we can employ.

Defense in Depth with Information

Defense in depth as a concept goes beyond the protocol to an architecture and orientation
of protecting information. One of the goals of this book is a holistic treatment of the
perimeter. This includes not just routers, firewalls, and VPNs, but policy, system
hardening, intrusion detection, and software architecture. In the final major section of our
discussion of defense in depth, we want to revisit the problem of information leakage and
also restate the case for encryption.

The Problem of Diffusion

One fascinating security problem is the diffusion of information. An organization might
have three levels of information confidentiality: top secret, secret, and confidential.
Sooner or later, a classified piece of data ends up on a system or network that is not rated
for that level of information.

Today, business can be characterized by intense competition, where a single misstep in
information control can be disastrous. We label critical information proprietary, but laptops
can be lost and systems can become infected with the Sircam worm and send random files
out onto the Internet. AOL versions 6 and 7 both occasionally decide to attach some file
that has been recently sent in an email message to someone else. If you're lucky enough
to realize this is happening, and you have a slow-enough connection, you can cancel the
email; however, if you have a broadband connection and the file is small, it's impossible
to stop the email and retrieve the file. It turns out that it is nearly impossible to prevent
information diffusion, but we can develop architectures to minimize the problem. Some of
the problems we need to design and plan for to minimize diffusion include backdoors,
wireless devices, remote controlware, email, and social engineering.

When PCs first started being deployed, modems were controllable problems. They were
slow, expensive, and external, so you could find them by walking through your
organization. You would think your top firewall and network administrators would know
not to leave a modem on a critical system on auto-answer, but administrators can be the
worst culprits. After all, it is a lot easier to roll out of bed, dial up the organization, fix
whatever is wrong, and go back to sleep than to drive in to fix the problem. Defensive
measures include wardialing your own phone numbers with ToneLoc (a free tool) or
PhoneSweep from Sandstorm (if you need to use commercial software).

802.11 wireless access points (WAPs) bring a whole new dimension to the problem. At
less than $200 each, WAPs will end up all over your organization whether you prohibit
them or not. They do not require much skill to set up, and they are simple to eavesdrop on
with tools such as AirSnort or any packet sniffer if the data is in the clear. If you are going
to run wireless, consider the wireless intrusion detection and prevention tools available
from AirDefense and AirMagnet.

Tip

The best advice is to get a wireless card with an external unidirectional antenna,
download a copy of Kismet (available from http://www.kismetwireless.net/), and
walk your perimeter on a regular basis before someone else does. Kismet runs on
Linux, but if you are a Windows user, you can run it from Knoppix, a bootable
CD-ROM version of Linux available from www.knoppix.org.

The term remote controlware is made up, used to describe the suite of products ranging
from Symantec's pcAnywhere (which can be identified by access to port 22, 5631, or
5632) to the HTTP tunneling service available from www.Gotomypc.com. Policy and
security awareness training are your primary tools for managing these types of
technologies.

If you don't think you have a problem with information leakage via email, try scanning
just your email headers for a month. If you want to collect information to demonstrate the
problem with diffusion to your management, this can be one of the most powerful ways to
do it. Many times, your management will agree to allow you to copy just the subject lines
because that is part of the header, the equivalent of the outside of an envelope. You will
quickly learn that a lot of sensitive information is sent via email. In addition to policy and
awareness training, one old trick is to create a fake acronym and add it to particularly
sensitive documents. After all, no one will notice one more acronym. Then you can add
this as a string to your IDS so that it alerts if the word you have created crosses your
perimeter. Think of it as marker dye for tracking information diffusion.

We have made a case for understanding a bit about how diffusion of information happens
in the organization. Although we have offered a number of technical solutions, the best
answer is an active and powerful security awareness program. Most security awareness
programs consist of a canned brief and a poster or mouse pad with a catchy slogan. We
need to do better than this, and we can. The users in our organizations are not stupid;
they can set up a modem in auto-answer mode and deploy a wireless access point. The
best security awareness program is one that treats the users as peers. Get involved!
Perhaps your information security officer is not the most technical person in the
organization; if that is the case, help him out. With permission from your manager and
security officer, set up a wireless access point and demonstrate AirSnort. In most
awareness programs, you see the users nodding off, eyes fixed and brains in a wait state.
When you show someone decrypting what people normally think are private
communications, the lights go on. After that, users will think twice before using a WAP in
the office or at a conference without a VPN. The more your users know, the more capable
they will be of making educated decisions. That said, information diffusion happens. There
are just too many ways information can become exposed. This final section of the chapter
and this book is a reminder of the importance of cryptography in defense in depth.

Cryptography and Defense in Depth

Here's a question for you: What is free for personal use and reasonably priced
commercialware, provides defense in depth instantly, is exhaustively reviewed, yet
underused? One answer would be Pretty Good Privacy (PGP). PGP is a bit cumbersome to
use, and the web of trust needs to be established in advance of need, but for a community
of 2 to 200, it's quite serviceable.

Many organizations have implemented Public Key Infrastructure (PKI) by now, but they
don't use their solution for encrypting email. As we travel we hear horror stories of users
with two-factor authentication, leaving the token component in their USB drive and going
home for the evening as a regular practice (that way they don't lose their tokens).

Can PGP and PKI interoperate? Yes, to some extent. PGP can import an X509 certificate as
a legacy RSA signature. However, beware: PGP 7 and PGP 8 do not protect the secret key
portion of the imported certificate.

Note

To view a set of step-by-step instructions by Ridge Cook for organizations that
must have PGP/PKI interoperability, visit
http://www.mccune.cc/PGPpage2.htm#X.509.

Microsoft has often been flamed during its history for its cryptography and security
practices, yet Windows 2003 Server shipped with Kerberos, IPSec, and encrypting file
system support for certificates as part of the operating system. We have the tools we
need; we just need to implement them. One government organization in Crystal City,
Virginia implemented VPNs from the desk of government officials to the printers. This kept
an insider who was not trustworthy from intercepting and reading sensitive data off the
network. We should think about this example. Encrypting data at rest and in transit takes
a bit of work and a bit of discipline to manage the keys, but it is the most bombproof way
to implement defense in depth.

Summary

The threat against our systems and information has never been greater; yet, the primary
reason we lose is because we sometimes fail to apply good security design and practice.
2004 was the year of the worm, with over a dozen NetSky versions, reruns of MSBlast,
and Sasser. However, almost all the attacks exploited known vulnerabilities for which
patches were available. If we take the responsibility to implement sound design and
security practice, we can move forward. There is no single silver bullet, no magic product,
no vendor that will do it all for us. On the other hand, tools both free and commercial are
available that we can use to build an architecture that layers defense in depth.

Part V: Appendixes

 A Cisco Access List Sample Configurations

 B Crypto 101

Appendix A. Cisco Access List Sample
Configurations
This appendix comprises two access lists that demonstrate possible ways to securely
configure a Cisco router as a standalone security device. These sections use best practices
as described in Chapter 2, "Packet Filtering," and Chapter 6, "The Role of a Router," listed
out so that a complete configuration can be seen in its entirety. The first access list is
used to demonstrate a network that has no publicly shared resources, and the second
access list illustrates an example of a network with publicly accessible mail, DNS, and web
servers.

Complete Access List for a Private-Only Network

The following sample access list is appropriate for a network that has outbound and return
traffic only, with no public servers or screened subnets. Most likely, this network is a low-
risk/low-budget setup in which security is not first priority. Therefore, a single
inexpensive security device is chosen. For an example of an access list that works with
public servers, see the next section. Both are designed to work on a Cisco router that runs
IOS version 12.0 or later.

no ip source-route
no service tcp-small-servers
no service udp-small-servers
no service finger

Next are all the commands to be applied directly to the external serial interface, including
the access-group commands that apply the inbound and outbound filters to it. The serial
0 interface connects the router to the Internet. We also stop all services that need to be

disabled at the interface configuration level.

interface serial 0
 ip access-group filterin in
 ip access-group filterout out
 no cdp enable

 no snmp
 no ip direct-broadcast
 no ip redirects
 no ip unreachables

The next section is an inbound, reflexive access list called filterin, which begins with an

ingress filter to prevent spoofing. It is followed by a permit list that only allows in ICMP
packet-too-big statements. Filterin concludes with an evaluate packets statement,

which checks the reflexive list "packets" to see whether the incoming traffic matches it
and will be permitted through. Any traffic that fails the evaluate packets check is
dropped by an implied deny all. However, we append a deny ip any any log-input

statement so that we can keep track of all denied traffic. If you wanted to open any other
services or ports inbound, the permit statements would be added here, before the
evaluate packets line.

ip access-list extended filterin
deny ip 190.190.190.0 0.0.0.255 any
deny ip 10.0.0.0 0.255.255.255 any
deny ip 127.0.0.0 0.255.255.255 any
deny ip 172.16.0.0 0.15.255.255 any
deny ip 192.168.0.0 0.0.255.255 any
deny ip 224.0.0.0 15.255.255.255 any
deny ip host 0.0.0.0 any
permit icmp any any packet-too-big
evaluate packets
deny ip any any log-input

Filterout is next. It is the outbound reflexive access list that was applied to interface

serial 0. It lists all the traffic types we are allowing out of our network. Through the use
of the packet's reflexive access list, the evaluate packets statement in the filterin

access list will determine the return traffic that is allowed back in. You might notice that
the last statement under filterout is an ICMP packet-too-big statement. This

statement allows outbound information to other routers that send acceptable return traffic,
but with too large of a packet size. This statement is not reflexively inspected; therefore,
it doesn't allow for return traffic. ICMP traffic has varying results when it is used in a
reflexive access list, so for most applications, it is best to simply apply ICMP in individual
inbound and outbound nonreflexive access lists. If your security policy specifies any other
outbound traffic (and in turn, return traffic) that isn't already listed here, you can add the
permit statements to the bottom of the list, following the pattern of the other reflexive

statements. To make sure that a statement is treated reflexively, verify that it ends with
the keyword reflect followed by the identifying list name packets.

ip access-list extended filterout
permit tcp any any eq 21 reflect packets
permit tcp any any eq 22 reflect packets
permit tcp any any eq 23 reflect packets
permit tcp any any eq 25 reflect packets
permit tcp any any eq 53 reflect packets
permit tcp any any eq 80 reflect packets
permit tcp any any eq 110 reflect packets
permit tcp any any eq 119 reflect packets
permit tcp any any eq 143 reflect packets
permit tcp any any eq 443 reflect packets
permit udp any any eq 53 reflect packets
permit icmp any any packet-too-big

The ethernet 0 interface is configured and has extended access list number 112 applied

inbound as an egress filter, only allowing packets to pass with addresses that match the
internal network's address range. This prevents programs that spoof addresses when
performing malicious actions from being able to leave your network. This way, you remain
a good Internet neighbor. An extended access list format was chosen because it facilitates
the use of the log-input command. Notice that we add a deny ip any any log-input
rule to track inappropriate traffic as it attempts to exit the network segment and use log-
input to enable tracking of MAC addresses.

interface ethernet 0
 ip access-group 112 in

access-list 112 permit ip 190.190.190.0 0.0.0.255 any
access-list 112 deny ip any any log-input

In the previous examples, the following information is assumed:

We have two router interfaces: a serial 0 interface that connects us to the Internet
and an ethernet 0 interface that connects us to our private network.

This list is a template with suggestions; it shouldn't be considered a full solution for
any particular network.

We want to limit the outbound traffic (and return traffic) to the services that are listed
in filterout.

The internal private network number is 190.190.190.0.

We want to limit our ICMP message interactions to make packet-too-big statements
the only type we allow outnone is allowed back in. (Ping and TRaceroute are

disallowed internally.)

Any use of FTP outbound requires a passive (PASV) FTP client and server support for
the same.

The listing format used for the access list information is for easier reading.

Listing A.1 shows the complete router access list.

Listing A.1. The Complete Router Access List for a Private-Only
Network

no ip source-route
no service tcp-small-servers
no service udp-small-servers
no service finger

interface serial 0
ip access-group filterin in
ip access-group filterout out
no cdp enable

no snmp
no ip direct-broadcast
no ip redirects
no ip unreachables

ip access-list extended filterin
deny ip 190.190.190.0 0.0.0.255 any
deny ip 10.0.0.0 0.255.255.255 any
deny ip 127.0.0.0 0.255.255.255 any
deny ip 172.16.0.0 0.15.255.255 any
deny ip 192.168.0.0 0.0.255.255 any
deny ip 224.0.0.0 15.255.255.255 any
deny ip host 0.0.0.0 any
permit icmp any any packet-too-big
evaluate packets
deny ip any any log-input

ip access-list extended filterout
permit tcp any any eq 21 reflect packets
permit tcp any any eq 22 reflect packets
permit tcp any any eq 23 reflect packets
permit tcp any any eq 25 reflect packets
permit tcp any any eq 53 reflect packets
permit tcp any any eq 80 reflect packets
permit tcp any any eq 110 reflect packets
permit tcp any any eq 119 reflect packets
permit tcp any any eq 143 reflect packets
permit tcp any any eq 443 reflect packets
permit udp any any eq 53 reflect packets
permit icmp any any packet-too-big

interface ethernet 0
ip access-group 112 in

access-list 112 permit ip 190.190.190.0 0.0.0.255 any
access-list 112 deny ip any any log-input

Complete Access List for a Screened Subnet Network
That Allows Public Server Internet Access

The following is an access list that takes the preceding section's access lists and
incorporates inbound access to a screened subnet containing web, mail, and DNS servers.
This example would most likely be used for a lower-risk, lower-budget network that needs
to use its router as its sole security device. By using an additional interface to serve as a
"screened subnet," we allow increased protection while implementing publicly accessible
services. All public access servers are assumed to be properly hardened, and because of
their volatile nature, any available defense-in-depth measures should be implemented.

In this initial section, we disable unneeded global services. These commands must be
configured in global configuration mode:

no service finger
no ip source-route
no service tcp-small-servers
no service udp-small-servers

Next are all the commands to be applied directly to the external serial interface, including
the access-group commands that apply the inbound and outbound filters to it. The serial
0 interface is the one that connects the router to the Internet. We also stop all services to

be disabled at the interface configuration level.

interface serial 0
 ip access-group filterin in
 ip access-group filterout out

 no snmp
 no ip direct-broadcast
 no ip redirects
 no ip unreachables
 no cdp enable

Next is the filterin access list, which includes antispoofing commands. This list is

followed by ingress lines that allow any web, SMTP, or DNS inbound traffic to the server
that handles such a request. It next allows ICMP packet-too-big packets, followed by an
evaluate packets line that reflexively examines any remaining inbound traffic to see if it
matches any of the currently temporarily formed reflexive access lists that filterout
created. This is followed by a statement to log all denied inbound packets.

ip access-list extended filterin
deny ip 190.190.190.0 0.0.0.255 any
deny ip 10.0.0.0 0.255.255.255 any
deny ip 127.0.0.0 0.255.255.255 any
deny ip 172.16.0.0 0.15.255.255 any
deny ip 192.168.0.0 0.0.255.255 any
deny ip 224.0.0.0 15.255.255.255 any
deny ip host 0.0.0.0 any
permit tcp any host 200.200.200.2 eq 80
permit tcp any host 200.200.200.3 eq 25
permit tcp any host 200.200.200.4 eq 53
permit udp any host 200.200.200.4 eq 53

permit icmp any any packet-too-big
evaluate packets
deny ip any any log-input

Filterout is next, and it starts by allowing response traffic back from the web, mail, and
DNS servers. Notice the est (established) keyword at the end of these lists. This confirms

that only replies are leaving the servers, behaving like an egress list for our screened
subnet. Following that is the reflexive access lines that permit outbound traffic and create
the reflexive lists that allow inbound traffic. To grant other services outbound access, you
would need to add a reflexive access list here. Filterout is ended with an ICMP filter
allowing packet-too-big messages to go through.

ip access-list extended filterout
permit tcp host 200.200.200.2 eq 80 any gt 1023 est
permit tcp host 200.200.200.3 eq 25 any gt 1023 est
permit udp host 200.200.200.4 eq 53 any gt 1023
permit tcp any any eq 21 reflect packets
permit tcp any any eq 22 reflect packets
permit tcp any any eq 23 reflect packets
permit tcp any any eq 25 reflect packets
permit tcp any any eq 53 reflect packets
permit tcp any any eq 80 reflect packets
permit tcp any any eq 110 reflect packets
permit tcp any any eq 119 reflect packets
permit tcp any any eq 143 reflect packets
permit tcp any any eq 443 reflect packets
permit udp any any eq 53 reflect packets
permit icmp any any packet-too-big

Progressing to interface ethernet 0, no outbound list is applied; therefore, any traffic that

matches the private network's address range is passed on.

interface ethernet 0
 ip access-group filterin1 in

Filterin1 is applied inbound to the ethernet 0 interface. Filterin1 contains an egress

filter, only allowing traffic that is addressed from the private network's address range to
be forwarded to the serial interface. It also contains a deny statement, logging all

nonstandard egress traffic.

ip access-list extended filterin1
permit ip 190.190.190.0 0.0.0.255 any
deny ip any any log-input

Ethernet 1 contains filterout2 and filterin2.

Filterout2 permits network traffic in from the Internet to be forwarded to the web server

if it's HTTP traffic, to the mail server if it's SMTP traffic, and to the external DNS server if
it's DNS traffic. Notice that these first three lines serve as a basic ingress filter.
Filterout2 also permits ICMP packet-too-big messages to pass and supports logging of

undesirables through its last statement.

interface ethernet 1
ip access-group filterout2 out

ip access-group filterin2 in

ip access-list extended filterout2
permit tcp any gt 1023 host 200.200.200.2 eq 80
permit tcp any gt 1023 host 200.200.200.3 eq 25
permit tcp any host 200.200.200.4 eq 53
permit udp any host 200.200.200.4 eq 53
permit icmp any 200.200.200.0 0.0.0.255 packet-too-big
deny ip any any log-input

Filterin2 allows reply traffic from each of the three public servers out to the serial
interface. This serves as a basic egress filter. Packet-too-big messages are also
forwarded. The deny any 190.190.190.0 line disables communications between the

screened subnet and your private network. This is necessary because the outbound traffic
on ethernet 0 is open to the screened subnet. The next lines allow SMTP and DNS traffic
from their particular servers to the Internet. Serial 1's filterout then passes this traffic

through its reflexive access lists so that it will have the same level of protection as the
private network's outbound traffic. If any other outbound traffic is desired from the
screened subnet, this is where additional filters are added. These additional filters are
added after the deny statement that prevents everything except reply traffic from entering

the private segment, but before the last statement that logs undesirables. DNS support for
the private segment would most likely be handled internally (split DNS) or by an outside
party. No DNS zone transfers would take place between the private and screened subnets.

ip access-list extended filterin2
permit tcp host 200.200.200.2 eq 80 any gt 1023 est
permit tcp host 200.200.200.3 eq 25 any gt 1023 est
permit udp host 200.200.200.4 eq 53 any gt 1023
permit icmp 200.200.200.0 0.0.0.255 any packet-too-big
deny ip any 190.190.190.0 0.0.0.255
permit tcp host 200.200.200.4 any eq 53
permit udp host 200.200.200.4 any eq 53
permit tcp host 200.200.200.3 any eq 25
deny ip any any log-input

In the preceding example, the following information is assumed:

This list is a template with suggestions; it shouldn't be considered a full solution for
any particular network.

The screened subnet's network number is 200.200.200.0.

The internal private network number is 190.190.190.0.

The screened subnet's web server's address is 200.200.200.2.

The screened subnet's SMTP mail server's address is 200.200.200.3.

The screened subnet's DNS server's address is 200.200.200.4.

No other hosts are on the screened subnet.

We have three router interfaces: a serial 0 interface that connects us to the
Internet, an ethernet 0 interface that connects us to our private network, and an
ethernet 1 interface that connects us to our screened subnet.

We want to limit the outbound traffic (and return traffic) to the services that are listed
in filterout.

We want to limit our ICMP message interactions to make packet-too-big statements

the only type we allow outnone is allowed back in. (Ping and traceroute are

disallowed internally.)

Any use of FTP outbound requires a PASV (or passive) FTP client and server support
for the same.

The listing format used for the access list information is for easier reading.

Listing A.2 shows the complete router access list.

Listing A.2. The Router Access List for a Screened Subnet Network
That Allows Public Server Internet Access

no service finger
no ip source-route
no service tcp-small-servers
no service udp-small-servers

interface serial 0
ip access-group filterin in
ip access-group filterout out

no snmp
no ip direct-broadcast
no ip redirects
no ip unreachables
no cdp enable

ip access-list extended filterin
deny ip 190.190.190.0 0.0.0.255 any
deny ip 10.0.0.0 0.255.255.255 any
deny ip 127.0.0.0 0.255.255.255 any
deny ip 172.16.0.0 0.15.255.255 any
deny ip 192.168.0.0 0.0.255.255 any
deny ip 224.0.0.0 15.255.255.255 any
deny ip host 0.0.0.0 any
permit tcp any host 200.200.200.2 eq 80
permit tcp any host 200.200.200.3 eq 25
permit udp any host 200.200.200.4 eq 53
permit icmp any any packet-too-big
evaluate packets
deny ip any any log-input

ip access-list extended filterout
permit tcp host 200.200.200.2 eq 80 any gt 1023 est
permit tcp host 200.200.200.3 eq 25 any gt 1023 est
permit udp host 200.200.200.4 eq 53 any gt 1023
permit tcp any any eq 21 reflect packets
permit tcp any any eq 22 reflect packets
permit tcp any any eq 23 reflect packets
permit tcp any any eq 25 reflect packets
permit tcp any any eq 53 reflect packets
permit tcp any any eq 80 reflect packets
permit tcp any any eq 110 reflect packets
permit tcp any any eq 119 reflect packets
permit tcp any any eq 143 reflect packets
permit tcp any any eq 443 reflect packets
permit udp any any eq 53 reflect packets
permit icmp any any packet-too-big

interface ethernet 0
ip access-group filterin1 in

ip access-list extended filterin1
permit ip 190.190.190.0 0.0.0.255 any
deny ip any any log-input

interface ethernet 1
ip access-group filterout2 out
ip access-group filterin2 in

ip access-list extended filterout2
permit tcp any gt 1023 host 200.200.200.2 eq 80
permit tcp any gt 1023 host 200.200.200.3 eq 25
permit tcp any host 200.200.200.4 eq 53
permit udp any host 200.200.200.4 eq 53
permit icmp any 200.200.200.0 0.0.0.255 packet-too-big
deny ip any any log-input

ip access-list extended filterin2
permit tcp host 200.200.200.2 eq 80 any gt 1023 est
permit tcp host 200.200.200.3 eq 25 any gt 1023 est
permit udp host 200.200.200.4 eq 53 any gt 1023
permit icmp 200.200.200.0 0.0.0.255 any packet-too-big
deny ip any 190.190.190.0 0.0.0.255
permit tcp host 200.200.200.4 any eq 53
permit udp host 200.200.200.4 any eq 53
permit tcp host 200.200.200.3 any eq 25
deny ip any any log-input

Example of a Router Configuration as Generated by the
Cisco Auto Secure Feature

As stated in Chapter 6, the Cisco auto secure command allows for a simplified way to apply
best security practices with very little interaction from the administrator. The user would be
prompted as to which of the listed access lists auto secure should apply to the Internet-facing
interfaces. The default choice would add them all.

Listing A.3 shows a sample router configuration as created by auto secure.

Listing A.3. An Example of a Configuration as Generated by Cisco Auto
Secure

no service finger
no service pad
no service udp-small-servers
no service tcp-small-servers
service password-encryption
service tcp-keepalives-in
service tcp-keepalives-out
no cdp run
no ip bootp server
no ip http server
no ip finger
no ip source-route
no ip gratuitous-arps
no snmp-server
banner k My Banner k
security passwords min-length 6
security authentication failure rate 10 log
enable password 7 XXXXXXXXXXXXX
aaa new-model
aaa authentication login local_auth local
line console 0
 login authentication local_auth
 exec-timeout 5 0
 transport output telnet
line aux 0
 login authentication local_auth
 exec-timeout 10 0
 transport output telnet
line vty 0 4
 login authentication local_auth
 transport input telnet
service timestamps debug datetime localtime show-timezone msec
service timestamps log datetime localtime show-timezone msec
logging facility local2
logging trap debugging
service sequence-numbers
logging console critical
logging buffered
int FastEthernet0
 no ip redirects
 no ip proxy-arp

 no ip unreachables
 no ip directed-broadcast
 no ip mask-reply
int Serial0
 no ip redirects
 no ip proxy-arp
 no ip unreachables
 no ip directed-broadcast
 no ip mask-reply
int Ethernet0
 no ip redirects
 no ip proxy-arp
 no ip unreachables
 no ip directed-broadcast
 no ip mask-reply
ip cef
ip access-list extended autosec_iana_reserved_block
 deny ip 1.0.0.0 0.255.255.255 any
 deny ip 2.0.0.0 0.255.255.255 any
 deny ip 5.0.0.0 0.255.255.255 any
 deny ip 7.0.0.0 0.255.255.255 any
 deny ip 23.0.0.0 0.255.255.255 any
 deny ip 27.0.0.0 0.255.255.255 any
 deny ip 31.0.0.0 0.255.255.255 any
 deny ip 36.0.0.0 0.255.255.255 any
 deny ip 37.0.0.0 0.255.255.255 any
 deny ip 39.0.0.0 0.255.255.255 any
 deny ip 41.0.0.0 0.255.255.255 any
 deny ip 42.0.0.0 0.255.255.255 any
 deny ip 49.0.0.0 0.255.255.255 any
 deny ip 50.0.0.0 0.255.255.255 any
 deny ip 58.0.0.0 0.255.255.255 any
 deny ip 59.0.0.0 0.255.255.255 any
 deny ip 60.0.0.0 0.255.255.255 any
 deny ip 70.0.0.0 0.255.255.255 any
 deny ip 71.0.0.0 0.255.255.255 any
 deny ip 72.0.0.0 0.255.255.255 any
 deny ip 73.0.0.0 0.255.255.255 any
 deny ip 74.0.0.0 0.255.255.255 any
 deny ip 75.0.0.0 0.255.255.255 any
 deny ip 76.0.0.0 0.255.255.255 any
 deny ip 77.0.0.0 0.255.255.255 any
 deny ip 78.0.0.0 0.255.255.255 any
 deny ip 79.0.0.0 0.255.255.255 any
 deny ip 83.0.0.0 0.255.255.255 any
 deny ip 84.0.0.0 0.255.255.255 any
 deny ip 85.0.0.0 0.255.255.255 any
 deny ip 86.0.0.0 0.255.255.255 any
 deny ip 87.0.0.0 0.255.255.255 any
 deny ip 88.0.0.0 0.255.255.255 any
 deny ip 89.0.0.0 0.255.255.255 any
 deny ip 90.0.0.0 0.255.255.255 any
 deny ip 91.0.0.0 0.255.255.255 any
 deny ip 92.0.0.0 0.255.255.255 any
 deny ip 93.0.0.0 0.255.255.255 any
 deny ip 94.0.0.0 0.255.255.255 any
 deny ip 95.0.0.0 0.255.255.255 any
 deny ip 96.0.0.0 0.255.255.255 any
 deny ip 97.0.0.0 0.255.255.255 any
 deny ip 98.0.0.0 0.255.255.255 any

 deny ip 99.0.0.0 0.255.255.255 any
 deny ip 100.0.0.0 0.255.255.255 any
 deny ip 101.0.0.0 0.255.255.255 any
 deny ip 102.0.0.0 0.255.255.255 any
 deny ip 103.0.0.0 0.255.255.255 any
 deny ip 104.0.0.0 0.255.255.255 any
 deny ip 105.0.0.0 0.255.255.255 any
 deny ip 106.0.0.0 0.255.255.255 any
 deny ip 107.0.0.0 0.255.255.255 any
 deny ip 108.0.0.0 0.255.255.255 any
 deny ip 109.0.0.0 0.255.255.255 any
 deny ip 110.0.0.0 0.255.255.255 any
 deny ip 111.0.0.0 0.255.255.255 any
 deny ip 112.0.0.0 0.255.255.255 any
 deny ip 113.0.0.0 0.255.255.255 any
 deny ip 114.0.0.0 0.255.255.255 any
 deny ip 115.0.0.0 0.255.255.255 any
 deny ip 116.0.0.0 0.255.255.255 any
 deny ip 117.0.0.0 0.255.255.255 any
 deny ip 118.0.0.0 0.255.255.255 any
 deny ip 119.0.0.0 0.255.255.255 any
 deny ip 120.0.0.0 0.255.255.255 any
 deny ip 121.0.0.0 0.255.255.255 any
 deny ip 122.0.0.0 0.255.255.255 any
 deny ip 123.0.0.0 0.255.255.255 any
 deny ip 124.0.0.0 0.255.255.255 any
 deny ip 125.0.0.0 0.255.255.255 any
 deny ip 126.0.0.0 0.255.255.255 any
 deny ip 197.0.0.0 0.255.255.255 any
 deny ip 201.0.0.0 0.255.255.255 any
 permit ip any any
remark This acl might not be up to date. Visit www.iana.org/assignments/ipv4-add
ress-space for update list
exit
ip access-list extended autosec_private_block

 deny ip 10.0.0.0 0.255.255.255 any
 deny ip 172.16.0.0 0.15.255.255 any
 deny ip 192.168.0.0 0.0.255.255 any
 permit ip any any
exit
ip access-list extended autosec_complete_bogon
 deny ip 1.0.0.0 0.255.255.255 any
 deny ip 2.0.0.0 0.255.255.255 any
 deny ip 5.0.0.0 0.255.255.255 any
 deny ip 7.0.0.0 0.255.255.255 any
 deny ip 23.0.0.0 0.255.255.255 any
 deny ip 27.0.0.0 0.255.255.255 any
 deny ip 31.0.0.0 0.255.255.255 any
 deny ip 36.0.0.0 0.255.255.255 any
 deny ip 37.0.0.0 0.255.255.255 any
 deny ip 39.0.0.0 0.255.255.255 any
 deny ip 41.0.0.0 0.255.255.255 any
 deny ip 42.0.0.0 0.255.255.255 any
 deny ip 49.0.0.0 0.255.255.255 any
 deny ip 50.0.0.0 0.255.255.255 any
 deny ip 58.0.0.0 0.255.255.255 any
 deny ip 59.0.0.0 0.255.255.255 any
 deny ip 60.0.0.0 0.255.255.255 any
 deny ip 70.0.0.0 0.255.255.255 any
 deny ip 71.0.0.0 0.255.255.255 any

 deny ip 72.0.0.0 0.255.255.255 any
 deny ip 73.0.0.0 0.255.255.255 any
 deny ip 74.0.0.0 0.255.255.255 any
 deny ip 75.0.0.0 0.255.255.255 any
 deny ip 76.0.0.0 0.255.255.255 any
 deny ip 77.0.0.0 0.255.255.255 any
 deny ip 78.0.0.0 0.255.255.255 any
 deny ip 79.0.0.0 0.255.255.255 any
 deny ip 83.0.0.0 0.255.255.255 any
 deny ip 84.0.0.0 0.255.255.255 any
 deny ip 85.0.0.0 0.255.255.255 any
 deny ip 86.0.0.0 0.255.255.255 any
 deny ip 87.0.0.0 0.255.255.255 any
 deny ip 88.0.0.0 0.255.255.255 any
 deny ip 89.0.0.0 0.255.255.255 any
 deny ip 90.0.0.0 0.255.255.255 any
 deny ip 91.0.0.0 0.255.255.255 any
 deny ip 92.0.0.0 0.255.255.255 any
 deny ip 93.0.0.0 0.255.255.255 any
 deny ip 94.0.0.0 0.255.255.255 any
 deny ip 95.0.0.0 0.255.255.255 any
 deny ip 96.0.0.0 0.255.255.255 any
 deny ip 97.0.0.0 0.255.255.255 any
 deny ip 98.0.0.0 0.255.255.255 any
 deny ip 99.0.0.0 0.255.255.255 any
 deny ip 100.0.0.0 0.255.255.255 any
 deny ip 101.0.0.0 0.255.255.255 any
 deny ip 102.0.0.0 0.255.255.255 any
 deny ip 103.0.0.0 0.255.255.255 any
 deny ip 104.0.0.0 0.255.255.255 any
 deny ip 105.0.0.0 0.255.255.255 any
 deny ip 106.0.0.0 0.255.255.255 any
 deny ip 107.0.0.0 0.255.255.255 any
 deny ip 108.0.0.0 0.255.255.255 any
 deny ip 109.0.0.0 0.255.255.255 any
 deny ip 110.0.0.0 0.255.255.255 any
 deny ip 111.0.0.0 0.255.255.255 any
 deny ip 112.0.0.0 0.255.255.255 any
 deny ip 113.0.0.0 0.255.255.255 any
 deny ip 114.0.0.0 0.255.255.255 any
 deny ip 115.0.0.0 0.255.255.255 any
 deny ip 116.0.0.0 0.255.255.255 any
 deny ip 117.0.0.0 0.255.255.255 any
 deny ip 118.0.0.0 0.255.255.255 any
 deny ip 119.0.0.0 0.255.255.255 any
 deny ip 120.0.0.0 0.255.255.255 any
 deny ip 121.0.0.0 0.255.255.255 any
 deny ip 122.0.0.0 0.255.255.255 any
 deny ip 123.0.0.0 0.255.255.255 any
 deny ip 124.0.0.0 0.255.255.255 any
 deny ip 125.0.0.0 0.255.255.255 any
 deny ip 126.0.0.0 0.255.255.255 any
 deny ip 197.0.0.0 0.255.255.255 any
 deny ip 201.0.0.0 0.255.255.255 any

 deny ip 10.0.0.0 0.255.255.255 any
 deny ip 172.16.0.0 0.15.255.255 any
 deny ip 192.168.0.0 0.0.255.255 any

 deny ip 224.0.0.0 15.255.255.255 any
 deny ip 240.0.0.0 15.255.255.255 any

 deny ip 0.0.0.0 0.255.255.255 any
 deny ip 169.254.0.0 0.0.255.255 any
 deny ip 192.0.2.0 0.0.0.255 any
 deny ip 127.0.0.0 0.255.255.255 any
 permit ip any any
remark This acl might not be up to date. Visit www.iana.org/assignments/ipv4-add
ress-space for update list
exit
ip access-list extended 100
 permit udp any any eq bootpc

Appendix B. Crypto 101
Cryptography is the practice and study of encryption and decryption. Cryptography is an
important part of what makes a Virtual Private Network (VPN) work. This appendix is a
primer on how cryptography works. It defines the various terms used for the cryptographic
processes so that you can better understand the technologies that are part of the VPN.
Cryptography is an immensely complicated and varied field. The purpose of this appendix
is to briefly describe the encryption technologies necessary to better understand VPNs and
how they work. It is meant to be a supplement for the VPN material that appears
throughout the book, primarily in Chapter 7, "Virtual Private Networks," and Chapter 16,
"VPN Integration."

Note

Quite a few specific terms are used regularly when speaking of cryptographic
technologies. Throughout this appendix, we will define these terms and briefly
explain them to facilitate the understanding of the VPN. Don't worrywe only
cover those terms you actually need to know!

A discussion of cryptography rarely occurs without the mention of encryption keys. Keys
are secret values used to encode and decode messages. These values can vary in length,
with the length of the key corresponding directly to the security of the encoded message.
Encryption keys come in symmetric and asymmetric varieties, which we will discuss in
greater detail later in this appendix.

Cleartext and plain text are terms that define information before it is placed into an
encrypted form. After the same information is encrypted, it is called ciphertext .

The formula or method by which information is encrypted is called the encryption
algorithm , or cipher (also spelled cypher). An algorithm is a mathematical means by which
cleartext is transformed into encoded ciphertext.

Encryption Algorithms

Many encryption algorithms are commonly used to protect data. Of these, most can be
categorized as symmetric or asymmetric key algorithmstwo very different approaches to
encryption.

Shared Key: Symmetric

A shared key , or symmetric key , is an encryption method that uses the same key value for
both encryption and decryption. Its use assumes that everyone involved has had time in
advance to securely exchange a secret key that no one else knows. This key value is then
used to encrypt information that is exchanged. This means of encryption can be fast
because the mathematics needed to create ciphertext from a shared secret key does not
have to be as complex as the type used with asymmetric algorithms. The main
disadvantage to the symmetric algorithm is that it is difficult to remotely exchange keys
or start a symmetric exchange with an unknown party and authenticate that person is who
he says he is. How can you give a remote party your key if he doesn't already have it? You
would need to have a secure channel to pass the key. Because you most likely don't have
such a channel (otherwise you wouldn't need to pass the key), you are in the middle of a
catch-22. With a symmetric algorithm, we have established confidentiality of data as long
as the key remains secret, and we have some basic key-exchange issues.

Many symmetric encryption algorithms are available for use today, including Data
Encryption Standard (DES), 3DES, Advanced Encryption Standard (AES), Rijndael,
Blowfish, and International Data Encryption Algorithm (IDEA). Of these, DES, 3DES, and
AES are the most commonly used encryption algorithms in today's VPNs. DES was an
encryption standard set by the National Institute of Standards and Technology (NIST) in
1977. DES, a symmetric algorithm with a 56-bit key, seemed unbreakable with the
technology of the time. However, as time has passed and processing power has multiplied,
DES has been proven breakable many times.

Does this mean that DES is not a suitable algorithm to use for your VPN? Maybe. You have
to weigh the value of your data against the price paid to retrieve it. No one wants his
payroll posted on a billboard, but by the same token, it is unlikely that you will install a
walk-in vault to protect it from interlopers. (If you would, don't use DES.) Some
businesses that are exchanging standard transactions that have no real value to outside
parties are effectively using DES as their VPN algorithm because DES is less resource and
bandwidth intensive than the stronger alternatives. If you operate a financial institution or
you have top-secret information that you are exchanging, don't use DES.

As an interim solution to the vulnerability of DES, 3DES has become popular. Most
popularly used with three 56-bit keys for a total of a 168-bit key strength, 3DES provides
considerably more protection. Even so, with the breaking of DES, a call went out for a new
Advanced Encryption Standard (AES). The winner was Rijndael, an algorithm made by
Vincent Rijmen and Joan Daemen, two highly respected Belgian cryptographers. Although
AES is considered stronger than 3DES, it has taken considerable time for VPN vendors to
add AES support to their products. 3DES is still a fine solution for most secure
implementations today, but many organizations are moving to AES as it becomes available
in their VPN products.

Symmetric algorithms are important to VPNs because they supply the confidentiality
component that the VPN supplies. They work well to protect the heavy burden of the VPN's
data flow because of their speed-per-strength advantage over other encryption algorithm
types.

PublicPrivate Key: Asymmetric

Asymmetric key algorithms use a different method of encryption. Two different keys are
used: a public key and a private key. The public key is used to encrypt the ciphertext, and
the private key is used to decode it back to cleartext. The interesting thing about this
process is the relationship between these two keys. The public key cannot be used to
reverse-engineer the private key. Therefore, although ciphertext can be generated by
anyone with a copy of the public key, only the person who possesses the private key can
decrypt it. For this reason, the mathematics behind asymmetric algorithms are
considerably more complex than those used in symmetric algorithms. In turn, asymmetric
algorithms are also much slower and more processor intensive.

We still haven't resolved the issue of how to start an encrypted communication session
with someone whom you haven't previously been able to exchange keys with. Because the
public key cannot compromise the ciphertext, it can be freely distributed. This does not
guarantee, however, that the message is coming from the person it claims to be. Despite
still lacking guaranteed authentication, integrity, and nonrepudiation, we still have
confidentiality of our data and no more key exchange issues.

One popular example of asymmetric key encryption is Pretty Good Privacy (PGP). PGP is a
means to exchange information securely with persons whom you might not ever have met
face to face. It uses publicly dispersible keys (in coordination with private keys) and even
has specific key servers set up for the distribution of these public keys. This way, if the
person with whom you are exchanging information has "posted" his public key on a key
server, you can search for it by the person's email address or name. Then the
communication can begin. Posting public keys to a key server is not a necessary part of
the process; keys can just be emailed back and forth.

The two most commonly used asymmetric algorithms are Diffie-Hellman and RSA's public-
key algorithm. Diffie-Hellman is used heavily in VPN technology, as a part of the Oakley
key exchange protocol. It and Internet Security Association Key Management Protocol
(ISAKMP) make up the standard negotiation and key-management option of IPSec, called
the Internet Key Exchange (IKE) protocol. Whitfield Diffie and Martin Hellman created
Diffie-Hellman in 1976. It was the first of the public key algorithms.1

Diffie-Hellman is most commonly used in VPNs as a means to exchange information to set
up a symmetric algorithm tunnel using a protocol such as DES or 3DES. The advantages of
public-key cryptography are used to allow the creation of an outside connection without
previous knowledge. This connection is used to pass the vital symmetric-key information
and configuration data that cannot be securely transferred otherwise. Then the symmetric
algorithm communication can begin. When using the Diffie-Hellman algorithm in
conjunction with a VPN, you have to choose the group type that will be used: group 1 or
group 2. The differences between the groups include the size of the prime number that is
used (768 bit for group 1 and 1024 bit for group 2) and the length of the prime modulus in
32-bit words (24 for group 1 and 32 for group 2). Group 2 provides more security but
takes more processing power to implement.

Although asymmetric algorithms are too slow to be practical as a means to encrypt the
main data flow transmitted via the VPN, they are an effective way to exchange key
information in the negotiation and key exchange phase of VPN initialization. Because
symmetric algorithms have key-exchange woes and faster encryption speeds, asymmetric
and symmetric algorithms make an excellent pair. By using asymmetric algorithms to
exchange keys to be used for a symmetric connection, you have removed your key
exchange issues, while benefiting from the speed advantage of the symmetric algorithm.

Digital Signatures and Hash Algorithms

Digital signatures and hash functions are the missing pieces in our secure communication
method. They help provide integrity of data, additional authentication, and nonrepudiation.
Digital signatures are meant to prove that a piece of information came from a certain

individual or entity. This authentication is accomplished with encryption. If you receive a
message that was encrypted with a key that only one other person has, then it is most
likely from that person.

However, a symmetric key does not function well in this model because you have all the
same key-management issues that occur with standard symmetric key transactions. For
this reason, asymmetric encryption has become a popular means to integrate digital
signature capability. You can encrypt a document with your private key, and the person to
whom you are sending the document can decrypt it with your public key, proving (because
you are the only individual with your private key) that the message was from you.
Therefore, we have nonrepudiation and integrity checking because any changes in the
encrypted text result in jumbled output. However, we lack true confidentiality because
anyone with our public key can decrypt the message. The biggest disadvantage of this as
a signing method is the sluggishness of asymmetric encryption. A signature should be able
to be retrieved in a timely fashion; otherwise, it loses its practicality. Also, anyone with
your public key can read the document, so the document loses its confidentiality unless
you then encrypt it a second time, adding even more time to the whole process. Wouldn't
it be nice to have a means to ensure integrity, authentication, and nonrepudiation and not
have the speed disadvantage of asymmetrically encrypting an entire message?

Enter the hash algorithm. Hash algorithms are used to create a "fingerprint" of a piece of
information or file. You can use this fingerprint, called a hash or message digest , to verify
that the file has not been changed. If the file changes, so will its hash. This helps
guarantee the integrity of the information without having to verify the entire file, bit by
bit. With a one-way hash, it is difficult to reverse-engineer the original source
information, or find or create information that can produce the same hash. People are
confused about how one-way hashes can be verified. If these hashes can't be reversed,
how do you know that they correctly represent the original information? The answer is
deceptively simple. You take the document for which you are verifying integrity and create
a second hash using the same algorithm. You then compare the hashes. If the documents
are the same, the hashes will be the same as well. Also, because a one-way hash function
is being used, it is unlikely that you just happened upon a document that produced the
same hash.

Two of the more popular hash algorithms are Message Digest 5 (MD5) and Secure Hash
Algorithm (SHA-1). SHA-1 is the more secure hash algorithm of the two, but it is slower
than MD5. In most practical applications, it is okay to use either, unless your security
policy dictates the use of the more secure SHA-1. Both algorithms are available and
commonly used in VPN setups for integrity checking of information.

Understanding the basics of cryptography is essential for designing, implementing, and
maintaining VPN solutions. The use of speedy symmetric encryption algorithms keep data
flows confidential, and asymmetric algorithms allow for easy key exchange. Hash
algorithms ensure integrity with digital signatures, which provide authentication and
ensure nonrepudiation. Combine these technologies and you ensure the three goals of a
secure communication channelconfidentiality, integrity, and authenticationcan be
successfully established.

References

1 W. Diffie and M. Hellman , "New Directions in Cryptography." IEEE Transactions on
Information Theory, vIt-22, n.6. November 1976.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

command (Telnet)
/etc/inetd.conf files (Unix)
 editing
/etc/xinetd.conf files (Unix)
 editing
802.11 networks
 AP
 FakeAP
 hardening, disabling bridges
 hardening, disabling SSID broadcasts 2nd 3rd 4th
 hardening, disabling Web management
 hardening, locking MAC addresses 2nd 3rd
 hardening, locking wired management 2nd
 hardening, passwords
 hardening, updating firmware
 segmenting
 VLAN 2nd
 warchalking
 wardriving
 defense in depth strategies
 host defenses
 VPN/IPSec
 designing
 auditing network controls
 auditing signal leakage 2nd
 case studies 2nd 3rd 4th 5th
 network separation
 network separation, AP segmentation
 network separation, Layer 3 access controls 2nd 3rd
 network separation, VLAN 2nd
 network separation, wireless DMZ 2nd
 signal leakage
 WDoS defense 2nd
 infrstructure mode
 types of
 802.11a
 802.11b
 802.11g
 wireless encryption
 auditing 2nd 3rd
 EAP-TLS 2nd 3rd
 implementing 2nd
 LEAP 2nd 3rd 4th
 PEAP 2nd 3rd
 TinyPEAP
 WEP 2nd
 WPA protocol 2nd
 WPA protocol, dictionary attacks 2nd
802.11a networks
802.11b networks
802.11g networks

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

AAA authentication command (routers)
abbreviations
 Cisco routers
absorbent perimeters
 failover 2nd
 honeypots
 DTK 2nd
 Honeynet project website
 rate limiting 2nd 3rd
accelerator cards
 performance bottlenecks
accelerators
 network performance 2nd
access (security policies) 2nd
access control verification (network security assessments)
 firewall management 2nd
 traffic restrictions 2nd 3rd
access controls
 network security assessments 2nd
access lists
 Cisco router VPN configurations 2nd
 private-only network
 examples for 2nd 3rd 4th 5th
 screened subnet network
 examples for 2nd 3rd 4th 5th 6th 7th
access lists (Telnet)
 VTY 2nd 3rd
access-class command (Telnet) 2nd
accessing
 border routers
 preventing
 modems, controlling
ACK (acknowledged) flags
 established keyword
ACK (acknowledgement) flags
ACK scans 2nd
 Nmap
ACL (access control lists)
 deny 2nd
 extended
 blocking ICMP echo requests 2nd
 established keyword 2nd
 established keyword, DNS 2nd
 filtering ICMP messages 2nd
 filtering ports
 fragments 2nd
 FTP 2nd 3rd
 IP addresses, friendly net access 2nd
 PASV FTP 2nd 3rd
 ports
 rule order 2nd
 sytnax of 2nd
 implicit denies 2nd
 in/out keywords 2nd 3rd
 VLAN interfaces
 IPv6 2nd
 log keywords
 named 2nd
 adding/deleting entries 2nd 3rd
 reflexive ACL
 numbered
 reflexive 2nd
 FTP 2nd
 ICMP
 named ACL 2nd
 outbound traffic 2nd
 PASV FTP

 TCP flags 2nd

 UDP
 rule order, planning
 standard
 applying to interfaces
 blacklisting 2nd 3rd
 egress filtering 2nd
 ingress filtering 2nd 3rd 4th
 IP addresses, friendly net access 2nd
 syntax of
 wildcard masks 2nd 3rd 4th
ACLs
 routers
Active Ports (Smartline) 2nd
active scanning software
 perimeter configuration changes 2nd
Add/Remove Programs applet (Windows)
 programs, removing
address ranges (IP)
 blocking
addresses
 application layer
 obtaining via ping
 MAC adddresses, displaying 2nd
addresses (IP)
 address ranges
 blocking
 spoofed addresses
 blocking
administration points (routers)
 locking down 2nd 3rd
administrative accounts
 passwords 2nd 3rd 4th
 protecting
 UNIX root accounts 2nd
 Windows Administrator accounts 2nd
administrative controls (security policies)
Administrator accounts (Windows)
 host hardening 2nd
 renaming
 SID
adversarial reviews 2nd
 deciding origin of attacks
 deciding what attacks to prevent
 determining attacker access 2nd 3rd
 egress filters 2nd
 external firewalls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 extranet servers 2nd 3rd
 ingress filters 2nd
 internal firewalls 2nd 3rd 4th 5th

 No CDP Messages filter setting 2nd
 No IP Directed Broadcasts filter setting
 No IP Unreachable Messages filter setting
 No Source Routing filter setting
 public Web servers 2nd 3rd
 determining impact of misconfigurations/vulnerabilities 2nd
 external firewalls 2nd 3rd 4th 5th 6th 7th
 extranet servers 2nd
 internal firewalls 2nd 3rd 4th 5th 6th
 public Web servers 2nd
 routers 2nd 3rd 4th 5th
 determining maximum amount of network access 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 internal firewalls 2nd 3rd 4th 5th 6th 7th
 GIAC GCFW designs
 identifying additional security controls 2nd
AFT (Authenticated Firewall Traversal) [See SOCKSv5 protocol]
aggressive mode authentication exchanges (IKE phase 1 negotiations)
AH (Authentication Header) protocol
 ESP protocol combinations 2nd
 ICV
 packet header information 2nd 3rd
AIDE (Advanced Intrusion Detection Environment) file integrity checker utility
AirCrack
 wireless encryption, auditing
airgaps
AirSnort
 wireless encryption, auditing 2nd
alerts
 system/network monitoring
all-in-one security solutions
 routers

 ACLs

 CBAC
 CBAC, inspect statements
 CBAC, stateful inspection
 NAT 2nd
 NAT, configuring 2nd
 NAT, viewing translation tables
 PAT 2nd
 PAT, viewing translation tables
 placement of 2nd
Allwhois.com website
 whois searches
analysis phase (network security assessments) 2nd 3rd
 best practices
analyzing hypothesis test results (troubleshooting process)
analyzing network log files 2nd
 automating
 data retrieval 2nd
 designing reports 2nd
 file formats
 log volume
 SIM software
 developing feel for
 finding fun in
 firewall logs, Check Point Firewall-1 logs 2nd 3rd
 firewall logs, Cisco PIX logs 2nd
 firewall logs, IPTable logs
 firewall logs, Norton Personal Firewall logs 2nd
 firewall logs, ZoneAlarm logs 2nd
 IDS logs 2nd
 keyword searches
 router logs 2nd
 router logs, Cisco router logs 2nd
 timestamps
anomaly detection (IDS) 2nd
anonymizing proxies
 JAP
 proxy chaining
antivirus software 2nd 3rd
 compatibility of 2nd
 compromised hosts
 DoS attacks
 EICAR test files
 gateways 2nd
 internal network defense, role in
 limitations of 2nd 3rd 4th
 malware mutation detection
 packers 2nd
 polymorphic malware detection
 signature updates

 spyware
 strengths of 2nd
AP (access points)
 FakeAP
 hardening
 disabling bridges
 disabling SSID broadcasts 2nd 3rd 4th
 disabling Web management
 locking MAC addresses 2nd 3rd
 locking wired management 2nd
 passwords
 updating firmware
 segmenting
 VLAN 2nd
 warchalking
 wardriving
applets
 Add/Remove Programs (Windows)
 removing programs
 Computer Management (Windows)
 creating/deleting file shares
application layer
 addresses, obtaining
 ping
 troubleshooting
 BinText utility 2nd
 Dig
 ldd utility
 Nslookup 2nd 3rd
 strings utility
 system call trace utilities 2nd

application layer encryption

 VPN
application protocols
 deep packet inspection 2nd 3rd
 FTP
 tracking state 2nd
 HTTP
 tracking state 2nd
 inspection, troubleshooting via stateful firewalls 2nd 3rd
 multimedia
 tracking state
applications
 ** double post as software 1st level entry
 administrator access
 external access 2nd
 security
 buying
 demos
 evaulation checklists 2nd
 gathering user information 2nd
 handling unsecurable applications 2nd
 deploying
 encryption
 evaluating security 2nd
 host security
 interapplication communications, CORBA
 interapplication communications, DCOM 2nd
 interapplication communications, HTTP
 interapplication communications, IIOP
 interapplication communications, SOA
 interapplication communications, SOAP 2nd
 interapplication communications, Web services 2nd 3rd
 internal use exclusivity 2nd
 multitier
 component placement 2nd
 database components
 middleware components 2nd
 user interface components 2nd
 network compatibility
 firewalls
 NAT 2nd
 network defense design, recommendations for 2nd
 operating system support
 performance/reliability 2nd
 security versus performance 2nd
 single-system
 component placement
 software architecture, defining role in
 testing
 host security 2nd

 network security 2nd
architecture (software)
 applications
 administrator access, external access 2nd
 administrator access, security
 defining
 deploying
 encryption
 evaluating security 2nd
 host security
 interapplication communications, CORBA
 interapplication communications, DCOM 2nd
 interapplication communications, HTTP
 interapplication communications, IIOP
 interapplication communications, SOA
 interapplication communications, SOAP 2nd
 interapplication communications, Web services 2nd 3rd
 internal use exclusivity 2nd
 multitier, component placement 2nd
 network compatibility, firewalls
 network compatibility, NAT 2nd
 operating system support
 performance/reliability 2nd
 security versus performance 2nd
 single-system, component placement
 defining 2nd
 firewalls
 IP protocols
 network security case studies
 customer feedback systems
 customer feedback systems, architecture recommendations

 customer feedback systems, software deployment locations 2nd

 Web-based online billing applications
 Web-based online billing applications, architecture recommendations 2nd
 Web-based online billing applications, software deployment locations 2nd
 packet-filtering
architectures
 Big Brother system/network monitoring software
 defense in depth
 absorbent perimeters
 absorbent perimeters, failover 2nd
 absorbent perimeters, honeypots 2nd 3rd 4th
 absorbent perimeters, rate limiting 2nd 3rd
 castle analogy
 castle analogy, hiding 2nd 3rd 4th 5th
 castle analogy, internal defenses 2nd 3rd 4th 5th 6th 7th 8th
 castle analogy, layered defenses 2nd
 castle analogy, secret passages 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 compartmentalization
 network security
 evaluating
 perimeter security, developing
 design elements, firewall/VPN interaction 2nd 3rd 4th 5th 6th
 design elements, firewalls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 design elements, routers 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 design elements, VPN/firewall interaction 2nd 3rd 4th 5th 6th
 determining attacker type, determined insiders 2nd
 determining attacker type, determined outsiders 2nd 3rd
 determining attacker type, script kiddies 2nd
 determining attacker type, worms 2nd 3rd
 determining business requirements, business-related services 2nd
 determining business requirements, cost 2nd 3rd
 determining business requirements, fault tolerance 2nd 3rd 4th 5th 6th 7th 8th 9th
 determining business requirements, performance 2nd 3rd 4th 5th 6th 7th
 resource protection, bridges 2nd 3rd
 resource protection, copiers
 resource protection, IP-based telephony systems
 resource protection, modems 2nd
 resource protection, PBX systems
 resource protection, printers
 resource protection, routers 2nd 3rd
 resource protection, servers 2nd
 resource protection, switches 2nd 3rd
 resource protection, voice mail systems
 resource protection, workstations 2nd
architectures (IPSec)
 gateway-to-gateway
 VPN
 host-to-gateway
 VPN
 host-to-host

 VPN
architectures (network)
 network performance
 broadcast domains 2nd
 OSPF
 RIP 2nd
 TCP/IP, MTU 2nd
 TCP/IP, socket buffer sizes 2nd
 TCP/IP, window sizes
 WAN 2nd
architectures (software)
 defining
ARIN
 IP address ranges, determining
ARP (Address Resolution Protocol)
 link layer troubleshooting 2nd 3rd
ARP cache poisoning attacks 2nd
ASIC (application-specific integrated circuits) 2nd
Asleap
 wireless encryption, auditing
assessing network security
 exploitation phase
 penetration tests 2nd 3rd
 network service discovery phase 2nd
 service discovery
 service discovery;banner retrieval 2nd 3rd 4th
 service discovery;Nmap 2nd
 service discovery;system matrixes 2nd
 service discovery;Telnet 2nd
 system enumeration
 system enumeration, ICMP scans 2nd

 system enumeration, packet traces 2nd

 system enumeration, TCP/UDP packet scans 2nd
 technique risk levels
 perimeter device verification phase
 access control verification
 access control verification, firewall management 2nd
 access control verification, traffic restrictions 2nd 3rd
 assessment stations 2nd
 firewall validation 2nd
 listener stations 2nd
 planning phase
 assembling test resources
 determining scope
 determining scope, assessment logistics
 determining scope, assessment technique risk levels
 determining scope, documentation
 written authorization
 reconnaissance phase
 determining IP address ranges
 DNS discovery 2nd
 organization-specific data searches 2nd
 organizational Web presences 2nd
 reverse lookups
 search engines 2nd
 sensitive information searches
 whois searches
 remote access phase
 VPN/remote proxies
 VPN/remote proxies, access controls 2nd
 VPN/remote proxies, authentication 2nd 3rd
 VPN/remote proxies, client restrictions 2nd
 VPN/remote proxies, encryption
 wardialing 2nd 3rd 4th
 wardriving 2nd 3rd
 results analysis/documentation phase 2nd 3rd
 best practices
 executive summaries 2nd 3rd
 introductions
 prioritizing findings by risk
 technique risk levels
 vulnerability discovery phase 2nd 3rd
 eEye Security Retina 2nd
 GFI LANguard Network Security Scanner 2nd 3rd 4th
 ISS Internet scanner 2nd 3rd 4th
 Nessus 2nd 3rd 4th 5th
 researching vulnerabilities 2nd
 technique risk levels
assessment stations
 network security assessments 2nd
assigning

 passwords
asymmteric key encryption algorithms
 Diffie-Hellman 2nd
 PGP
 public/private keys
Attack Mitigator (TopLayer)
attacks [See also adversarial reviews] [See exploits]
 border router attacks, preventing
 credit-card
 CD-Universe 2nd
 DDoS
 Smurf attacks
 dictionary
 LEAP 2nd
 passwords
 WPA 2nd
 fingerprinting
 Google hacking
 hacker approach to (network security design)
 motives for 2nd
 routers
 logins
 SNMP 2nd
 SSH protocol
 Smurf
 spoofing
 MAC addresses 2nd
 worms
 identifying
 Nimda, defense in depth case study 2nd
auditing

 defining

 passwords
 process of
 routers
 via RAT 2nd
 security logs
 UNIX 2nd 3rd
 Windows 2nd
 wireless encryption 2nd 3rd
 wireless network security
 network controls
 signal leakage 2nd
auditing security (IDS)
authenticating
 NTP
 routers 2nd 3rd
authentication
 network security assessments 2nd 3rd
 packets
 AH protocol 2nd 3rd 4th
 routers
 SNMP 2nd 3rd 4th
authentication (VPN requirements)
authentication exchanges (IKE phase 1 negotiations)
authority (security policies)
authorization of network security assessments
Authorize.Net
 DoS attacks 2nd
auto secure command (Cisco)
 router configurations
 examples of 2nd 3rd 4th 5th 6th
auto securing routers 2nd
automated attacks
 secure perimeter design 2nd 3rd
automating
 host hardening 2nd
 network log analysis
 data retrieval 2nd
 designing reports 2nd
 file formats
 SIM software
 network log analysis, log volume
automating incident responses 2nd
awareness (user)
 defense in depth architecurte, role in

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

backdoors
 NetStumbler website
 unenforceable security policies 2nd
BackOfficer Friendly personal firewall (NFR)
bandwidth
 availability of (network latency)
 defining
bandwidths
 circuit 2nd
banner retrieval
 network security assessments 2nd 3rd 4th
banners
 login banners (routers), creating 2nd
bastion hosts
 defining 2nd
BBDISPLAY host (Big Brother system/network monitoring software)
BBNET host (Big Brother system/network monitoring software)
BBPAGER host (Big Brother system/network monitoring software)
Beagle worm
best practices (network security assessment documentation)
Big Brother system/network monitoring software 2nd 3rd 4th
 architecture of
 hosts/procedures, defining 2nd
 monitoring local system attributes 2nd 3rd
 network/remote service accessibility 2nd 3rd
 SNMP support
BinText utility
 application layer, troubleshooting 2nd
BlackICE network connection monitoring utility 2nd
blacklisting
 IP address ranges
 spoofed IP addresses
 spyware 2nd
BlackWidow
blocking
 ICMP echo requests 2nd
 IP address ranges
 spoofed IP addresses
 spyware 2nd
Blue Coat cacheflow servers
border firewalls
 validation (network security assessments) 2nd
border routers
 access, preventing
 adversarial reviews
 determining impact of misconfigurations/vulnerabilities 2nd 3rd 4th 5th
 defining
 egress filters
 adversarial reviews, determining attacker access 2nd
 functions of 2nd
 ICMP destination unreachable messages
 ingress filters
 adversarial reviews, determining attacker access 2nd
 No CDP Messages filter setting
 adversarial reviews, determining attacker access 2nd
 No IP Directed Broadcasts filter setting
 adversarial reviews, determining attacker access
 No IP Unreachable Messages filter setting
 adversarial reviews, determining attacker access
 No Source Routing filter setting
 adversarial reviews, determining attacker access
 Nokia IP350
 rulebase for
 perimeter defense, role in
 ping floods
bottlenecks (performance)
 accelerator cards

bridges

 secure perimeter design 2nd 3rd
bridges (AP), disabling
broadband connections
 case studies 2nd 3rd 4th 5th 6th
broadcast domains
 ARP cache poisoning attacks 2nd
 network performance 2nd
 security zones, creating 2nd 3rd 4th 5th
BSD Airtools
 wireless encryption, auditing
BSSID (Basic Service Set Identifiers)
btmp files (UNIX)
 security logs, auditing
buffer overflow exploits
bump in the wire solutions [See NIPS (network intrusion prevention systems);intelligent switches]
burstable T1 lines
business case studies
 complex e-commerce sites 2nd
 DMZ 2nd 3rd 4th
 internal networks 2nd
 Internet 2nd 3rd
 proxy layers 2nd 3rd
 security networks 2nd 3rd 4th
 small e-commerce sites 2nd 3rd 4th 5th 6th 7th 8th 9th
business-related services
 secure perimeter design 2nd
buying software
 demos
 evaulation checklists 2nd
 unsecurable software, handling 2nd
 user information, gathering 2nd
bypassing firewalls
 HTTP tunneling 2nd
 insider threats, employees/contractors 2nd
 insider threats, spyware/keystroke loggers 2nd
 perimeter configuration changes 2nd 3rd
 SOAP
 Web server attacks 2nd 3rd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

CA (Certificate Authorities)
 digital certificates
 PKI
 SSL standard connections 2nd
cacheflow servers 2nd
Campbell, Sam
 GIAC GCFW network security design, adversarial review of 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th
21st 22nd
Canvas exploitation library software
case studies
 Check Point Firewall-1, troubleshooting
 FW Monitor 2nd
 defense in depth
 Nimda worm 2nd
 IDS
 networks with multiple external access points 2nd
 simple network infrastructures 2nd 3rd
 unrestricted network environments 2nd 3rd
 network performance
 ISDN network connections 2nd
 satellite-based networks 2nd
 router link encryption 2nd
 secure perimeter design
 complex e-commerce business sites 2nd
 complex e-commerce business sites, DMZ 2nd 3rd 4th
 complex e-commerce business sites, internal networks 2nd
 complex e-commerce business sites, Internet 2nd 3rd
 complex e-commerce business sites, proxy layers 2nd 3rd
 complex e-commerce business sites, security networks 2nd 3rd 4th
 small businesses with basic Internet presence 2nd 3rd 4th 5th 6th 7th
 small e-commerce business sites 2nd 3rd 4th 5th 6th 7th 8th 9th
 telecommuters using broadband connections 2nd 3rd 4th 5th 6th
 SSL Web server
 VPN
 IPSec 2nd 3rd
 SSL 2nd
 terminal servers 2nd 3rd
 wireless network security design 2nd 3rd 4th 5th
castle analogy (defense in depth)
 hiding
 fragment reconnaissance
 ping reconnaissance
 SYN/FIN attacks 2nd
 internal defenses
 airgaps
 internal firewalls
 personal firewalls
 SDN 2nd 3rd 4th
 layered defenses 2nd
 secret passages
 firewall tunnels
 firewall tunnels, HTTP tunneling 2nd
 firewall tunnels, insider threats 2nd 3rd 4th
 firewall tunnels, perimeter configuration changes 2nd 3rd
 firewall tunnels, SOAP
 firewall tunnels, Web server attacks 2nd 3rd
CBAC
 routers
 inspect statements
 stateful inspection
CBAC (context-based access control)
CD-Universe
 credit card attacks 2nd
CDP (Cisco Discovery Protocol)
 disabling
Certificate Authorities (CA)
 digital certificates

 PKI

 SSL standard connections 2nd
change management (perimeter security maintenance)
 communicating proposed changes
 detecting/preventing unauthorized changes 2nd
 discovering systems/devices
 patches 2nd
 personnel support
 rolling back undesired changes
 testing changes
 verifying proper system operation
changes, reviewing (troubleshooting process)
Check Point Firewall F-1
 network log analysis 2nd 3rd
 SmartView Tracker
Check Point Firewall-1
 troubleshooting
 FW Monitor 2nd
 FW Monitor, case studies 2nd
Check Point Firewall-1 firewalls
 network log analysis, automating 2nd
Check Point Firewall-1 NG firewalls
 IPS 2nd
 OPSEC Alliance
Check Point FireWall-1 stateful firewalls 2nd 3rd 4th 5th
 implied rules
 protocol support 2nd
 SmartDashboard
 SmartDefense 2nd
 state tables
 state tables, example of 2nd
 stateful inspection, configuring for 2nd
 timeouts 2nd
Check Point Integrity
Check Point VSX (Virtual System Extension)
checklists
 host hardening 2nd
chokepoint devices (NIPS)
chokepoint NIPS (network intrusion prevention systems)
 firewalls 2nd
 Check Point Firewall-1 NG 2nd
 modwall 2nd
 IDS plus something classification
 HogWash
 IntruShield 2nd
 LaBrea Technologies Sentry 2nd
 NFR Sentivist 2nd
 Snort-Inline
chokepoints
chroot facility 2nd

chroot jails
ciphertext
 defining
circuit bandwidths 2nd
circuit firewalls
Cisco
 CSA 2nd
 PIX VPDN configuration example 2nd 3rd 4th
 routers
 access list rules 2nd
 IPSec VPN configuration examples 2nd 3rd 4th 5th 6th 7th 8th 9th
 SDN 2nd 3rd 4th
 NAC 2nd 3rd 4th
 stock options exploits
 transform sets
Cisco ACL (access control lists)
 deny 2nd
 extended
 blocking ICMP echo requests 2nd
 established keyword 2nd
 established keyword, DNS 2nd
 filtering ICMP messages 2nd
 filtering ports
 FTP 2nd 3rd
 IP addresses, friendly net access 2nd
 PASV FTP 2nd 3rd
 ports
 rule order 2nd
 syntax of 2nd
 fragments 2nd
 implicit denies 2nd

 in/out keywords 2nd 3rd

 VLAN interfaces
 IPv6 2nd
 log keywords
 named 2nd
 adding/deleting entries 2nd 3rd
 reflexive ACL
 numbered
 reflexive 2nd
 FTP 2nd
 ICMP
 named ACL 2nd
 outbound traffic 2nd
 PASV FTP
 TCP flags 2nd
 UDP
 rule order, planning
 standard
 applying to interfaces
 blacklisting 2nd 3rd
 egress filtering 2nd
 ingress filtering 2nd 3rd 4th
 IP addresses, friendly net access 2nd
 syntax of
 wildcard masks 2nd 3rd 4th
Cisco auto secure command
 router configurations
 examples of 2nd 3rd 4th 5th 6th
Cisco extended ACL (access control lists)
 established keyword 2nd
 DNS 2nd
 FTP 2nd 3rd
 ICMP echo requests
 blocking 2nd
 ICMP messages
 filtering 2nd
 IP addresses
 friendly net access 2nd
 PASV FTP 2nd 3rd
 ports
 filtering
 rule order 2nd
 syntax of 2nd
Cisco IPv6 ACL (access control lists) 2nd
Cisco PIX firewall logs
 analyzing 2nd
Cisco PIX stateful firewalls
 fixup command 2nd 3rd 4th
 FWSM 2nd
 inbound/outbound traffic connections 2nd

 PDM 2nd
 Configuration screen 2nd
 Hosts/Networks screen
 System Properties screen
 Translation Rules screen
 show conn command 2nd
Cisco reflexive ACL (access control lists) 2nd
 FTP 2nd
 ICMP
 named ACL 2nd
 outbound traffic 2nd
 PASV FTP
 TCP flags 2nd
 UDP
Cisco router logs
 analyzing 2nd
Cisco routers [See routers]
 Cisco ACL
 Cisco wildcard masks 2nd 3rd 4th
 deny 2nd
 extended
 extended, blocking ICMP echo requests 2nd
 extended, established keyword 2nd 3rd 4th
 extended, filtering ICMP messages 2nd
 extended, filtering ports
 extended, friendly net IP address access 2nd
 extended, FTP 2nd 3rd
 extended, PASV FTP 2nd 3rd
 extended, ports
 extended, rule order 2nd
 extended, syntax of 2nd

 fragments 2nd

 implicit denies 2nd
 in/out keywords 2nd 3rd
 IPv6 2nd
 log keywords
 named 2nd
 named, adding/deleting entries 2nd 3rd
 named, reflexive ACL
 numbered
 planning rule order
 reflexive 2nd
 reflexive, FTP 2nd
 reflexive, ICMP
 reflexive, named ACL 2nd
 reflexive, outbound traffic 2nd
 reflexive, PASV FTP
 reflexive, TCP flags 2nd
 reflexive, UDP
 standard, applying to interfaces
 standard, blacklisting 2nd 3rd
 standard, egress filtering 2nd
 standard, friendly net IP address access 2nd
 standard, ingress filtering 2nd 3rd 4th
 standard, syntax of
 configuring 2nd
 network filtering
Cisco standard ACL (access control lists)
 blacklisting 2nd 3rd
 egress filtering 2nd
 ingress filtering 2nd 3rd 4th
 interfaces, applying to
 IP addresses
 friendly net access 2nd
 syntax of
Cisco TCP Keepalives services
 router hardening
Cisco wildcard masks 2nd 3rd 4th
Citrix MetaFrame
 reverse proxies
clarity (security policies)
class maps
 footprints
cleartext
 defining
client networks
 resource separation
 dialup connections 2nd
 LAN-connected desktops 2nd
 laptops 2nd
 VPN 2nd

 wireless systems 2nd 3rd
CLOSE-WAIT state (TCP connections)
CLOSED state (TCP connections)
CLOSING state (TCP connections)
clustering firewalls 2nd
Code Red worm
 SANS Institute exploit
collecting symptoms (troubleshooting process) 2nd
commands
 Cisco router shorthand
communicating risks (security policies) 2nd
community names (SNMP)
 router attacks 2nd
community strings (SNMP)
company atmosphere, determining (security policies)
 contracts 2nd
 directives
 unwritten policies
 written policies
compartmentalization
complete access lists
 private-only networks
 examples for 2nd 3rd 4th 5th
 screened subnet networks
 examples for 2nd 3rd 4th 5th 6th 7th
complex e-commerce site case studies 2nd
 DMZ 2nd 3rd 4th
 internal networks 2nd
 Internet 2nd 3rd
 proxy layers 2nd 3rd
 security networks 2nd 3rd 4th

compliance (security policies)

Computer Management applet (Windows)
 file shares, creating/deleting
Computer Security Incident Handling Step by Step [ITAL] (SANS Institute)
concentrators (VPN)
conciseness (security policies) 2nd
confidentiality (VPN requirements)
configuration management
 defining
 responsibility of
Configuration screen (PDM) 2nd
configuring
 antivirus software
 EICAR test files
 Cisco routers 2nd
 mail relays 2nd 3rd 4th
 NAT for routers 2nd
 NTP
 routers 2nd 3rd
 perimeters
 firewall tunnels 2nd 3rd
 personal firewalls
 workstations 2nd
 routers 2nd
 TFTP 2nd
conformance (security policies)
connection tracking
 defining
console ports (routers)
 hardening 2nd
containment phase (incident response)
content filters
 network performance 2nd
contractors
 firewall tunnels 2nd
contracts
 security policies, writing 2nd
control (security policies)
 administrative controls
copiers
 secure perimeter design
CORBA (Common Object Request Broker Architecture)
 interapplication communication
Core Impact exploitation library software
corporate culture, determining (security policies)
 contracts 2nd
 directives
 unwritten policies
 written policies
Corporate Servers security zone, creating 2nd

Corporate Workstations security zone, creating
correlating events
 network log files
cost
 secure perimeter design 2nd 3rd
 versus risk 2nd
costs
 VPN
CPU usage (routers)
 proc command 2nd
Crack password-cracking software 2nd
crafted packets
credit card attacks
 CD-Universe 2nd
credit card exploits
 script kiddies
CRL (certificate revocation lists) 2nd
 RA
crown jewels, information as 2nd
crypto key generate rsa command (SSH)
crypto maps 2nd
cryptography
 ciphertext, defining
 cleartext, defining
 encryption
 application layer, VPN
 network layer, VPN 2nd
 network security assessments
 transport layer, VPN
 tunneling, VPN 2nd 3rd
 wireless

 wireless, auditing 2nd 3rd

 wireless, EAP-TLS 2nd 3rd
 wireless, implementing 2nd
 wireless, LEAP 2nd 3rd 4th
 wireless, PEAP 2nd 3rd
 wireless, TinyPEAP
 wireless, WEP 2nd
 wireless, WPA protocol 2nd 3rd 4th
 encryption algorithms
 asymmetric key
 asymmetric key, Diffie-Hellman 2nd
 asymmetric key, PGP
 asymmetric key, public/private keys
 digital signatures 2nd
 hash algorithms
 hash algorithms, MD5
 hash algorithms, SHA-1
 shared key
 shared key, DES
 encryption kyes
 defining
 hardware accelerators
 network performance 2nd
 network layer
 network performance 2nd 3rd 4th 5th
 PGP
 PKI
 plain text, defining
 public key
 network performance
 symmetric key
 algorithm key sizes
 network performance 2nd
 transport layer
 network performance 2nd 3rd
crystal box designs, defining
CSA (Cisco Security Agent) 2nd
Csico 3660 routers

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

daemons
 NFS (UNIX) services
 deactivating 2nd
data
 as crown jewels 2nd
 defense in depth
 cryptography
 cryptography, PGP
 cryptography, PKI
 diffusion of data 2nd 3rd
 diffusion of data, remote controlware
 diffusion of data, WAP
data integrity (VPN requirements) 2nd
data storage
 routers
database components (multitier applications)
DCOM (Distributed Component Object Model)
 interapplication communication 2nd
DDoS (Distributed Denial of Service) attacks
 network performance 2nd 3rd 4th
DDoS (distributed denial of service) attacks
 Smurf attacks
DDoS attack mitigation systems
deactivating
 NFS service daemons (UNIX) 2nd
 r-commands (UNIX)
 remote access services 2nd 3rd 4th
 Remote Desktop service (Windows)
 Remote Registry Service (Windows)
 resource-sharing services 2nd
 Server service (Windows)
 SNMP 2nd
 Terminal Services (Windows)
 user accounts
 UNIX 2nd
 versus deleting
deception devices
dedicated servers
 security zones, creating 2nd 3rd
dedicating
 servers
deep packet inspection 2nd 3rd
Deep Packet Inspection
deep packet inspection
 SSL
Deep Packet Inspection firewalls
 high-risk services
default routes
defense components (hosts)
 managing
 updating
defense in depth
 case studies
 Nimda worm 2nd
 cryptography
 cryptography, PGP
 cryptography, PKI
 defining 2nd
 information
 diffusion of 2nd 3rd
 diffusion of, remote controlware
 diffusion of, WAP
 infrastructure of
 internal network
 internal network, antivirus software
 internal network, auditing 2nd
 internal network, configuration management 2nd

 internal network, host hardening 2nd

 internal network, personal firewalls 2nd 3rd
 perimeter
 perimeter, border routers
 perimeter, egress filtering 2nd
 perimeter, IDS 2nd
 perimeter, ingress filtering 2nd
 perimeter, IPS
 perimeter, proxy firewalls
 perimeter, stateful firewalls 2nd
 perimeter, static packet filters 2nd 3rd
 perimeter, VPN 2nd
 security policies
 user awareness
defense in depth architectures
 absorbent perimeters
 failover 2nd
 honeypots
 honeypots, DTK 2nd
 honeypots, Honeynet project website
 rate limiting 2nd 3rd
 castle analogy
 hiding
 hiding, fragment reconnaissance
 hiding, ping reconnaissance
 hiding, SYN/FIN attacks 2nd
 internal defenses
 internal defenses, airgaps
 internal defenses, internal firewalls
 internal defenses, personal firewalls
 internal defenses, SDN 2nd 3rd 4th
 layered defenses 2nd
 secret passages, firewall tunnels 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 compartmentalization
defense-in-depth security structures
 routers
 NBAR 2nd 3rd 4th 5th 6th
 packet filtering 2nd
deleting
 file shares (Windows)
 user accounts
 versus deactivating
demos (software)
denial of service attacks
 Smurf attacks
deny ACL (access control lists) 2nd
deny any log command
deploying
 host-based IDS 2nd
DES (Data Encryption Standard)

designing
 network log reports 2nd
designing perimeter security
 attacker type, determining
 determined insiders 2nd
 determined outsiders 2nd 3rd
 script kiddies 2nd
 worms 2nd 3rd
 business requirements, determining
 business-related services 2nd
 cost 2nd 3rd
 fault tolerance
 fault tolerance, geographic redundancy 2nd
 fault tolerance, intrasite redundancy 2nd 3rd 4th 5th
 fault tolerance, intrasystem redundancy
 performance 2nd
 performance, detailed logs 2nd
 performance, encryption 2nd
 performance, inline security devices
 case studies
 complex e-commerce business sites 2nd
 complex e-commerce business sites, DMZ 2nd 3rd 4th
 complex e-commerce business sites, internal networks 2nd
 complex e-commerce business sites, Internet 2nd 3rd
 complex e-commerce business sites, proxy layers 2nd 3rd
 complex e-commerce business sites, security networks 2nd 3rd 4th
 small businesses with basic Internet presence 2nd 3rd 4th 5th 6th 7th
 small e-commerce business sites 2nd 3rd 4th 5th 6th 7th 8th 9th
 telecommuters using broadband connections 2nd 3rd 4th 5th 6th
 cost, determining 2nd
 design elements

 firewalls 2nd

 firewalls, access control 2nd
 firewalls, basic filtering 2nd
 firewalls, inline 2nd
 firewalls, ISP controlled routers 2nd
 firewalls, parallel 2nd 3rd
 firewalls, VPN interaction 2nd 3rd 4th 5th 6th
 routers 2nd 3rd 4th
 routers, access control 2nd
 routers, basic filtering 2nd
 routers, ISP controlled 2nd
 VPN, firewall interaction 2nd 3rd 4th 5th 6th
 network composition, determining
 potential threats, determining
 resource protection
 bridges 2nd 3rd
 copiers
 IP-based telephony systems
 modems 2nd
 PBX systems
 printers
 routers 2nd 3rd
 servers 2nd
 switches 2nd 3rd
 voice mail systems
 workstations 2nd
desktops
 LAN-connected
 resource separation 2nd
 remote software
 risks of 2nd
 single session
 single session, client integration
 single session, perimeter defenses 2nd
 single session, server integration 2nd
 single session, uses of
 terminal servers
 terminal servers, client integration
 terminal servers, perimeter defenses
 terminal servers, server integration
 terminal servers, uses of 2nd
 terminal servers, VPN case studies 2nd 3rd
destination addresses (packets)
detailed logs
 system performance 2nd
detecting intrusions
 network log files
determined insiders
 Cisco stock options exploits
 secure perimeter design 2nd

determined outsiders
 secure perimeter design 2nd 3rd
developing perimeter security
 attacker type, determining
 determined insiders 2nd
 determined outsiders 2nd 3rd
 script kiddies 2nd
 worms 2nd 3rd
 business requirements, determining
 business-related services 2nd
 cost 2nd 3rd
 fault tolerance
 fault tolerance, geographic redundancy 2nd
 fault tolerance, intrasite redundancy 2nd 3rd 4th 5th
 fault tolerance, intrasystem redundancy
 performance 2nd
 performance, detailed logs 2nd
 performance, encryption 2nd
 performance, inline security devices
 case studies
 complex e-commerce business sites 2nd
 complex e-commerce business sites, DMZ 2nd 3rd 4th
 complex e-commerce business sites, internal networks 2nd
 complex e-commerce business sites, Internet 2nd 3rd
 complex e-commerce business sites, proxy layers 2nd 3rd
 complex e-commerce business sites, security networks 2nd 3rd 4th
 small businesses with basic Internet presence 2nd 3rd 4th 5th 6th 7th
 small e-commerce business sites 2nd 3rd 4th 5th 6th 7th 8th 9th
 telecommuters using broadband connections 2nd 3rd 4th 5th 6th
 cost, determining 2nd
 design elements

 firewalls 2nd

 firewalls, access control 2nd
 firewalls, basic filtering 2nd
 firewalls, inline 2nd
 firewalls, ISP controlled routers 2nd
 firewalls, parallel 2nd 3rd
 firewalls, VPN interaction 2nd 3rd 4th 5th 6th
 routers 2nd 3rd 4th
 routers, access control 2nd
 routers, basic filtering 2nd
 routers, ISP controlled 2nd
 VPN, firewall interaction 2nd 3rd 4th 5th 6th
 network composition, determining
 potential threats, determining
 resource protection
 bridges 2nd 3rd
 copiers
 IP-based telephony systems
 modems 2nd
 PBX systems
 printers
 routers 2nd 3rd
 servers 2nd
 switches 2nd 3rd
 voice mail systems
 workstations 2nd
dialup connections
 resource separation 2nd
dictionary attacks
 LEAP 2nd
 passwords
 WPA 2nd
differential scanning software
 NDiff 2nd
Diffie-Hellman asmmetric key encryption algorithms
Diffie-Hellman asymmetric key encryption algorithms
diffusion of information 2nd 3rd
 remote controlware
 WAP
Dig
digital certificates
 CA
 RA
digital signatures
 defining 2nd
 ICV
directives (corporate)
 security policies, writing
disabling
 bridges (AP)

 CDP
 Finger services 2nd
 PAD services
 proxy-ARP 2nd
 router services
 CDP
 Finger services 2nd
 PAD services
 proxy-ARP 2nd
 small services 2nd
 servers
 via routers 2nd
 source routing
 SSID broadcasts 2nd 3rd 4th
 Time service 2nd
 Web management
disabling/removing (host hardening)
 OS components
discovery process (network security design)
dispatchers (load balancers)
 Layer 4
 network performance 2nd
 Layer 7
 network performance 2nd
displaying
 host routing tables
 MAC addresses 2nd
distribute-list command (routers)
distribute-list out command (routers)
distributed IDS services
DMZ

 complex e-commerce site case studies 2nd 3rd 4th

 wireless 2nd
DMZ (de-militarized zones)
 defining 2nd
 DNS servers 2nd
DNS
 established keyword 2nd
 Split DNS
 functions of 2nd
 spoofing attacks 2nd
DNS requests
 network log analysis
DNS servers
 DMZ 2nd
 recursive queries
 screened subnets 2nd
 source port 53 queries
 Split DNS
 configuring 2nd 3rd 4th
 justifying
 zone transfers
documentation
 network security assessments, planning
documentation (troubleshooting rules) 2nd
documentation phase (network security assessments) 2nd 3rd
 best practices
 executive summaries 2nd 3rd
 introductions
 prioritizing findings by risk
documenting
 security policies
domain command (SSH)
 router hardening
Doom
 LANs
DoS (Denial of Service)
 WDoS 2nd
DoS (Denial of Service) attacks 2nd [See also smurf attacks]
 antivirus software
 Authorize.Net 2nd
DoS attacks
 ICMP flooding
 network performance
 zombie systems
 ICMP flooding, DDoS attacks
 network performance 2nd 3rd 4th
 ICMP flooding, smurfing attacks
 network performance 2nd
 SYN flooding
 network performance 2nd 3rd

DTK (deception toolkit) 2nd
dyanmic packet-filtering
 IPv6 ACL 2nd
 reflexive ACL 2nd
 reflexive ACL, FTP 2nd
 reflexive ACL, ICMP
 reflexive ACL, named ACL 2nd
 reflexive ACL, outbound traffic 2nd
 reflexive ACL, PASV FTP
 reflexive ACL, TCP flags 2nd
 reflexive ACL, UDP
dynamic routing protocols 2nd
 route authentication 2nd
 update blocking 2nd 3rd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

e-commerce
 business case studies
 complex sites 2nd
 complex sites, DMZ 2nd 3rd 4th
 complex sites, internal networks 2nd
 complex sites, Internet 2nd 3rd
 complex sites, proxy layers 2nd 3rd
 complex sites, security networks 2nd 3rd 4th
 small sites 2nd 3rd 4th 5th 6th 7th 8th 9th
EAP-TLS protocol 2nd 3rd
echo replies, reconnaissance by
editing
 Unix files for network service control
eEye Security Retina vulnerability scanner 2nd
egress filtering 2nd
 perimeter defense, role in 2nd
egress filters
 adversarial reviews
 determining attacker access 2nd
EICAR test files
 antivirus software, testing
email
 security of
 security policies, implementing 2nd
 unenforceable security policies 2nd 3rd
employees
 business case studies
 complex e-commerce sites 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
 small e-commerce sites 2nd 3rd 4th 5th 6th 7th 8th 9th
 firewall tunnels 2nd
 small business case studies
 companies with basic Internet presence 2nd 3rd 4th 5th 6th 7th
encryption
 application connections
 application layer
 VPN
 IDS sensor deployment
 network layer
 VPN 2nd
 network performance
 hardware accelerators 2nd
 network layer cryptography 2nd 3rd 4th 5th
 public key cryptography
 router link encryption case study 2nd
 SSL Web server case study
 symmetric key cryptography 2nd
 transport layer cryptography 2nd 3rd
 network security assessments
 public key authentication
 SSH protocol
 system performance 2nd
 Telnet
 transport layer
 VPN
 VPN 2nd 3rd
 application layer
 network layer 2nd
 transport layer
 tunneling 2nd 3rd
 wireless
 auditing 2nd 3rd
 EAP-TLS 2nd 3rd
 implementing 2nd
 LEAP 2nd 3rd 4th
 PEAP 2nd 3rd
 TinyPEAP
 WEP 2nd

 WPA protocol 2nd

 WPA protocol, dicitionary attacks 2nd
encryption algorithms
 asymmetric key
 Diffie-Hellman 2nd
 PGP
 public/private keys
 digital signatures 2nd
 hash algorithms
 hash algorithms, MD5
 hash algorithms, SHA-1
 shared key
 DES
encryption keys
 defining
eradication phase (incident response) 2nd
ESP (Authentication Header) protocol
 IPSec tunnel mode
ESP (Encapsulating Security Payload) mode (IPSec)
 UDP encapsulation
 VPN perimeter defenses
ESP protocol
 AH protocol combinations 2nd
 IPSec transport mode
 IPSec tunnel mode
 NAT 2nd
 packet headers, components of 2nd
 packet traces, example of 2nd
ESSID (Extended Service Set Identifiers)
established keyword 2nd
 DNS 2nd
ESTABLISHED state (TCP connections)
Ethereal
Ethernet
 frame tagging
evaulation checklists (software) 2nd
event correlation
 network log files
Event Viewer (Windows)
 security logs, auditing
Exchange 2000 Server Enterprise Edition (Microsoft)
 mail relays, configuring 2nd
exec-timeout command (Telnet)
exec-timeout x command (SSH)
 router hardening
executable packers
 antivirus software 2nd
 websites
executive summaries (network security assessment documentation) 2nd 3rd
expiration (security policies) 2nd

exploitation library software
 Canvas
 Core Impact
 Metasploit
exploitation phase (network security assessments)
 penetration tests 2nd 3rd
exploits
 Authorize.Net
 DoS attacks 2nd
 buffer overflow
 Cisco stock options
 credit cards
 script kiddies
 RingZero Trojan 2nd
 SANS Institute
 Code Red worm
 SNMP
 SubSeven
 Trojan horses
 zero-day
extended ACL (access control lists)
 established keyword 2nd
 DNS 2nd
 FTP 2nd 3rd
 ICMP echo requests
 blocking 2nd
 ICMP messages
 filtering 2nd
 IP addresses
 friendly net access 2nd
 PASV FTP 2nd 3rd

 ports

 filtering
 rule order 2nd
 syntax of 2nd
extensible authentication protocols
 EAP-TLS 2nd 3rd
 LEAP 2nd
 dictionary attacks 2nd
 PEAP 2nd 3rd
 TinyPEAP
external firewalls
 adversarial reviews
 determining attacker access 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 determining impact of misconfigurations/vulnerabilities 2nd 3rd 4th 5th 6th 7th
 NetScreen-100
 adversarial reviews
 adversarial reviews, determining attacker access 2nd 3rd 4th 5th
 From DMZ rulebase 2nd
 incoming rulebase 2nd
 outgoing rulebase
 To DMZ rulebase
 outbound network connections, translation settings for 2nd
 public services, translation settings for 2nd
 rulebases
external networks
 IDS sensor deployment 2nd
extortion 2nd
extranet servers
 adversarial reviews
 determining attacker access 2nd 3rd
 adversarial reviews, determining impact of misconfigurations/vulnerabilities 2nd
 rulebases

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

failover 2nd
FakeAP
false positive/negative signatures 2nd 3rd
false positives
 HIPS
 IPS
fault tolerance
 secure perimeter design
 geographic redundancy 2nd
 intrasite redundancy 2nd 3rd 4th 5th
 intrasystem redundancy
feel (network log analysis), developing
file and print services [See resource-sharing services]
file globbing vulnerabilities [See Linux;WU-FTPD]
file integrity checkers
file integrity checkers (host-based IDS) 2nd
 AIDE
 Samhain
 Tripwire
 Tripwire Manager
 Winalysis
file permissions
 race conditions 2nd
 restricting
 Windows
 Windows, NTFS
file permissions, restricting
 UNIX 2nd
file shares (Windows)
 creating/deleting
file transfers
 SSH
Filter Action Wizard (Windows XP)
 IPSec parameters, enforcing 2nd 3rd
filtering
 egress
 role in perimeter defense 2nd
 ingress
 role in perimeter defense 2nd
 network log file data 2nd
filtering packets
 software architecture
filters
 content
 network performance 2nd
 egress
 adversarial reviews, determining attacker access 2nd
 ingress
 adversarial reviews, determining attacker access 2nd
 No CDP Messages filter setting
 adversarial reviews, determining attacker access 2nd
 No IP Directed Broadcasts filter setting
 adversarial reviews, determining attacker access
 No IP Unreachable Messages filter setting
 adversarial reviews, determining attacker access
 No Source Routing filter setting
 adversarial reviews, determining attacker access
 packet
 network performance 2nd
FIN scans
 Nmap
FIN-WAIT-1 state (TCP connections)
FIN-WAIT-2 state (TCP connections)
Finger services
 disabling 2nd
fingerprinting
Firewall F-1 (Check Point)

 network log analysis 2nd 3rd

 SmartView Tracker
firewall logs
 analyzing
 Check Point Firewall F-1 2nd 3rd
 Cisco PIX logs 2nd
 IPTable logs
 Norton Personal Firewall logs 2nd
 ZoneAlarm logs 2nd
Firewall Toolkit (FWTK) 2nd
Firewall-1 (Check Point)
 troubleshooting
 FW Monitor 2nd
 FW Monitor case studies 2nd
Firewall-1 firewalls (Check Point)
 network log analysis, automating 2nd
Firewall-1 NG firewalls (Check Point)
 IPS 2nd
 OPSEC Alliance
firewalls 2nd
 application compatibility
 as chokepoints
 as security policies 2nd
 Check Point Firewall-1
 automating network log analysis 2nd
 Check Point Firewall-1 NG
 IPS 2nd
 OPSEC Alliance
 Check Point VSX
 chokepoint NIPS 2nd
 Check Point Firewall-1 NG firewalls 2nd
 modwall firewalls 2nd
 circuit
 clustering 2nd
 compromised hosts
 deep packet inspection 2nd 3rd
 Deep Packet Inspection
 high-risk services
 deep packet inspection
 SSL
 defining
 external
 adversarial reviews, determining attacker access 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 adversarial reviews, determining impact of misconfigurations/vulnerabilities 2nd 3rd 4th 5th 6th 7th
 NetScreen-100, adversarial reviews 2nd 3rd 4th 5th 6th
 NetScreen-100, From DMZ rulebase 2nd
 NetScreen-100, incoming rulebase 2nd
 NetScreen-100, outgoing rulebase
 NetScreen-100, To DMZ rulebase
 rulebases

 translation settings for outbound network connections 2nd
 translation settings for public services 2nd
 host-based
 IDS logs 2nd
 host-centric
 role in internal network defense 2nd 3rd
 IDS sensor deployment 2nd
 inline
 system performance
 internal
 adversarial reviews
 adversarial reviews, determining attacker access 2nd 3rd 4th
 adversarial reviews, determining impact of misconfigurations/vulnerabilities 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 Nokia IP330, adversarial reviews 2nd 3rd
 Nokia IP330, rulebases 2nd
 rulebases
 IPChains
 Nmap ACK scans 2nd
 IPSec
 VPN
 managing (network security assessments) 2nd
 modwall
 IPS 2nd
 NetScreen-100
 adversarial reviews, determining attacker access 2nd 3rd 4th 5th 6th
 From DMZ rulebase 2nd
 incoming rulebase 2nd
 outgoing rulebase
 To DMZ rulebase
 Netscreen-204 (Juniper)
 rulebase for 2nd

 Nokia IP330

 adversarial reviews 2nd 3rd
 rulebases 2nd
 Nokia IP350
 rulebase for
 Nokia IP440
 adversarial reviews, determining attacker access 2nd
 personal 2nd 3rd
 BackOfficer Friendly (NFR)
 configuring 2nd
 IPSec packet-filtering 2nd
 Norton 2nd 3rd
 PF 2nd 3rd 4th
 role in internal network defense 2nd 3rd
 workstations
 workstations, websites
 ZoneAlarm Pro 2nd
 proxy
 advantages of 2nd
 configuring
 disadvantages of 2nd 3rd
 FTP 2nd
 FTP, bypassing via
 functions of
 FWTK 2nd
 Gauntlet 2nd
 generic proxies 2nd
 hiding network structures 2nd
 high-risk services
 internal protected networks
 market availability 2nd 3rd
 network discovery 2nd
 network performance 2nd
 nontransparent, request handling
 performance of
 PORT command 2nd 3rd
 protocol compatibility 2nd
 protocol support
 protocol-aware logs
 protocol-aware logs, RingZero Trojan exploit 2nd
 RETR command
 role in perimeter defense
 SOCKS protocol
 SOCKSv4 protocol
 SOCKSv5 protocol
 Squid
 transparent, request handling 2nd
 URL
 versus stateful firewalls
 VPM

 redundancy 2nd 3rd
 secure perimeter design 2nd
 access control 2nd
 basic filtering 2nd
 inline firewalls 2nd
 ISP controlled routers 2nd
 parallel firewalls 2nd 3rd
 VPN interaction 2nd 3rd 4th 5th 6th
 servers
 IPSec packet-filtering 2nd
 PF 2nd 3rd 4th
 versus workstation firewalls 2nd
 software architecture
 IP protocols
 stateful
 application layer commands
 Check Point FireWall-1 2nd 3rd 4th 5th
 Check Point FireWall-1, configuring for stateful inspection 2nd
 Check Point FireWall-1, implied rules
 Check Point FireWall-1, protocol support 2nd
 Check Point FireWall-1, SmartDashboard
 Check Point FireWall-1, SmartDefense 2nd
 Check Point FireWall-1, state table example 2nd
 Check Point FireWall-1, state tables
 Check Point FireWall-1, timeouts 2nd
 Cisco PIX
 Cisco PIX, fixup command 2nd 3rd 4th
 Cisco PIX, FWSM 2nd
 Cisco PIX, inbound/outbound traffic connections 2nd
 Cisco PIX, PDM 2nd 3rd 4th 5th 6th 7th
 Cisco PIX, show conn command 2nd

 FTP control sessions

 functions of 2nd
 Juniper Networks NetScreen 2nd
 multimedia protocols
 Netfilter/IPTables 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 network performance 2nd
 port command (FTP)
 role in perimeter defense 2nd
 troubleshooting application protocol inspection 2nd 3rd
 versus proxy firewalls
 Symantec
 adversarial reviews, determining attacker access 2nd 3rd 4th 5th 6th 7th
 troubleshooting
 FW Monitor 2nd
 Telnet
 tunnels
 HTTP tunneling 2nd
 insider threats;employees/contractors 2nd
 insider threats;spyware/keystroke loggers 2nd
 perimeter configuration changes 2nd 3rd
 SOAP
 Web server attacks 2nd 3rd
 validation (network security assessments) 2nd
 VLAN
 resource separation 2nd
 workstations
 configuring 2nd
 Norton Personal Firewalls 2nd 3rd
 versus server firewalls 2nd
 websites
 Zonealarm Pro 2nd
firmware
 AP firmware, updating
fixup command (Cisco PIX stateful firewalls) 2nd 3rd 4th
Fluhrer, Scott
 Weaknesses in the Key Scheduling Algorithm of RC4 [ITAL] 2nd
focus (troubleshooting rules) 2nd
follow up phase (incident response)
footprints
forming hypothesis (troubleshooting process) 2nd
Foundstone Fport
fping utility
Fport (Foundstone)
frag option (Nmap)
fragments
 Nmap frag option
fragments (packet-filtering) 2nd 3rd
fragments, reconnaissance by
freeware
 spyware

 blocking 2nd
freshness (proxy caches)
friendly net access (IP addresses) 2nd 3rd 4th
From DMZ rulebase (NetScreen-100 external firewall) 2nd
FTP
 PASV FTP
 extended ACL 2nd 3rd
 router hardening
FTP (
 reflexive ACL 2nd
FTP (File Transfer Protocol)
 extended ACL 2nd 3rd
 port command
 stateful firewalls
 state
 tracking 2nd
FTP (File Transfer Protocols)
 proxy firewalls 2nd
 bypassing
FW Monitor
 Check Point Firewall-1, troubleshooting 2nd
 case studies 2nd
FW-1 stateful firewalls 2nd 3rd 4th 5th
 implied rules
 protocol support 2nd
 SmartDashboard
 SmartDefense 2nd
 state tables
 state tables, example of 2nd
 stateful inspection, configuring for 2nd
 timeouts 2nd

FWSM (FireWall Services Module), Cisco PIX stateful firewalls 2nd

FWTK (Firewall Toolkit) 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Gartner IDS Is Dead report 2nd
gateway processing (network latency)
gateway-to-gateway IPSec architectures
 VPN
gateways
 antivirus software 2nd
gateways of last resort
Gauntlet firewall 2nd
GCFW (GIAC Certified Firewall Analyst) network security designs
 adversarial reviews
 determining attacker access, egress filters 2nd
 determining attacker access, external firewalls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 determining attacker access, extranet servers 2nd 3rd
 determining attacker access, ingress filters 2nd
 determining attacker access, internal firewalls 2nd 3rd 4th 5th
 determining attacker access, No CDP Messages filter setting 2nd
 determining attacker access, No IP Directed Broadcasts filter setting
 determining attacker access, No IP Unreachable Messages filter setting
 determining attacker access, No Source Routing filter setting
 determining attacker access, public Web servers 2nd 3rd
 determining impact of misconfigurations/vulnerabilities, external firewalls 2nd 3rd 4th 5th 6th 7th
 determining impact of misconfigurations/vulnerabilities, extranet servers 2nd
 determining impact of misconfigurations/vulnerabilities, internal firewalls 2nd 3rd 4th 5th 6th
 determining impact of misconfigurations/vulnerabilities, public Web servers 2nd
 determining impact of misconfigurations/vulnerabilities, routers 2nd 3rd 4th 5th
 determining maximum amount of network access, internal firewalls 2nd 3rd 4th 5th 6th 7th
general troubleshooting
 network log files
general-purpose CPU (NIPS)
generic proxy firewalls 2nd
geographic redundancy
 fault tolerance 2nd
GFI LANguard Network Security Scanner 2nd 3rd 4th
GIAC GCFW network security designs
 adversarial reviews
 determining attacker access, egress filters 2nd
 determining attacker access, external firewalls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 determining attacker access, extranet servers 2nd 3rd
 determining attacker access, ingress filters 2nd
 determining attacker access, internal firewalls 2nd 3rd 4th 5th
 determining attacker access, No CDP Messages filter setting 2nd
 determining attacker access, No IP Directed Broadcasts filter setting
 determining attacker access, No IP Unreachable Messages filter setting
 determining attacker access, No Source Routing filter setting
 determining attacker access, public Web servers 2nd 3rd
 determining impact of misconfigurations/vulnerabilities, external firewalls 2nd 3rd 4th 5th 6th 7th
 determining impact of misconfigurations/vulnerabilities, extranet servers 2nd
 determining impact of misconfigurations/vulnerabilities, internal firewalls 2nd 3rd 4th 5th 6th
 determining impact of misconfigurations/vulnerabilities, public Web servers 2nd
 determining impact of misconfigurations/vulnerabilities, routers 2nd 3rd 4th 5th
 determining maximum amount of network access, internal firewalls 2nd 3rd 4th 5th 6th 7th
GIACE complex e-commerce site case study 2nd
 DMZ 2nd 3rd 4th
 internal networks 2nd
 Internet 2nd 3rd
 proxy layers 2nd 3rd
 security networks 2nd 3rd 4th
GMT (Greenwich Mean Time)
 network log file analysis
Google
 Inurl search extension
 johnny.ihackstuff website
 Link search extension 2nd
Google hacking
GRE (Generic Route Encapsulation) protocol
 software architecture
 firewalls

Greenwich Mean Time (GMT)

 network log file analysis
group accounts
 memberships, controlling 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

hackers [See also adversarial reviews]
 attacks, approach to (network security design)
 discovery process (network security design)
Hackers Choice THC-Scan
 wardialing
hardening
 routers
 auditing via RAT 2nd
 auto securing 2nd
 Cisco TCP Keepalives services
 console ports 2nd
 disabling CDP
 disabling Finger services 2nd
 disabling PAD services
 disabling proxy-ARP 2nd
 disabling small services 2nd
 disabling source routing
 FTP
 ICMP blocking
 ICMP blocking, directed broadcasts
 ICMP blocking, redirects
 ICMP blocking, unreachables 2nd 3rd
 IOS updates
 NTP configuration/authentication 2nd 3rd
 RFP
 router logging 2nd 3rd 4th
 security advisories
 SNMP 2nd 3rd
 SNMP, authentication/passwords 2nd 3rd 4th
 SNMP, disabling servers 2nd
 spoofing attacks
 SSH 2nd 3rd
 Telnet 2nd 3rd
 TFTP 2nd
hardening (host)
 account passwords 2nd 3rd 4th
 administrative accounts, protecting
 UNIX root accounts 2nd
 Windows Administrator accounts 2nd
 application installation, guidelines for
 automating 2nd
 checklists 2nd
 costs of
 defining
 file permissions, restricting
 UNIX 2nd
 Windows
 Windows, NTFS
 group account memberships, controlling 2nd
 network services, controlling
 deactivating services
 deactivating services, remote access services 2nd 3rd 4th
 deactivating services, resource-sharing services 2nd
 deactivating SNMP 2nd
 disabling NetBIOS protocol 2nd
 editing Unix files
 listing ports 2nd
 null sessions 2nd
 patches, applying 2nd 3rd
 process overview
 reasons for 2nd
 Registry permissions, restricting
 Windows 2nd
 removing/disabling
 OS components
 SANS Top 20 Vulnerabilities list
 security logs

 auditing UNIX logs 2nd 3rd

 auditing Windows logs 2nd
 security versus functionality
 software, removing
 Add/Remove Programs applet (Windows)
 UNIX operating systems 2nd
 unattended user accounts, managing 2nd
hardening AP
 bridges, disabling
 firmware, updating
 MAC addresses, locking 2nd 3rd
 passwords
 SSID broadcasts, disabling 2nd 3rd 4th
 Web management, disabling
 wired management, locking 2nd
hardware accelerators
 accelerator cards
 performance bottlenecks
 network performance 2nd
hash algorithms
 defining
 MD5
 SHA-1
hashes
hiding
 network structures 2nd
HIDS (host-based intrusion detection systems)
 defining 2nd
HIPS (host-based intrusion prevention systems)
 advantages of
 application behavior, monitoring
 challenges of
 custom application dynamic rule creation 2nd
 deployment recommendations
 attacks 2nd
 document requirements/testing procedures
 role in defense-in-depth architectures
 software update installation
 update control policies
 false positives
 file integrity, monitoring
 OS shims
 real-world experience of
 system call interception
HogWash
HoneyNet Project
 incident handling
Honeynet project website
honeypots
 DTK 2nd

 Honeynet project website
hopping attacks (VLAN) 2nd
host attacks, detecting (IDS) 2nd
host command (SSH)
 router hardening
host defenses
 wireless networks
host hardening
 account passwords 2nd 3rd 4th
 administrative accounts, protecting
 UNIX root accounts 2nd
 Windows Administrator accounts 2nd
 application installation, guidelines for
 automating 2nd
 checklists 2nd
 costs of
 defining 2nd 3rd
 file permissions, restricting
 UNIX 2nd
 Windows
 Windows, NTFS
 group account memberships, controlling 2nd
 network services, controlling
 deactivating services
 deactivating services, remote access services 2nd 3rd 4th
 deactivating services, resource-sharing services 2nd
 deactivating SNMP 2nd
 disabling NetBIOS protocol 2nd
 editing Unix files
 listing ports 2nd
 null sessions 2nd

 patches, applying 2nd 3rd

 process overview
 reasons for 2nd
 Registry permissions, restricting
 Windows 2nd
 removing/disabling
 OS components
 SANS Top 20 Vulnerabilities list
 security logs
 auditing UNIX logs 2nd 3rd
 auditing Windows logs 2nd
 security versus functionality
 software, removing
 Add/Remove Programs applet (Windows)
 UNIX operating systems 2nd
 unattended user accounts, managing 2nd
host routing tables, displaying
host security logs
 auditing
 UNIX 2nd 3rd
 Windows 2nd
host-based firewalls
 IDS logs 2nd
host-based IDS (intrusion detection systems)
 file integrity checkers
 log analyzers
host-centric firewalls [See personal firewalls]
 internal network defense, role in 2nd 3rd
host-to-gateway IPSec architectures
 VPN
host-to-host IPSec architectures
 VPN
hosts
 compromised
 usage of defense components in
 defense components
 managing
 updating
 firewalls 2nd 3rd
 servers, IPSec packet-filtering 2nd
 servers, PF 2nd 3rd 4th
 servers, versus workstation firewalls 2nd
 workstations
 workstations, configuring 2nd
 workstations, Norton Personal Firewalls 2nd 3rd
 workstations, versus server firewalls 2nd
 workstations, websites
 workstations, ZoneAlarm Pro 2nd
 IDS 2nd 3rd
 deploying 2nd

 file integrity checkers 2nd
 file integrity checkers, AIDE
 file integrity checkers, Samhain
 file integrity checkers, Tripwire
 file integrity checkers, Tripwire Manager
 file integrity checkers, Winalysis
 log file monitoring utilities, Logcheck 2nd
 network connection monitoring utilities, BlackICE 2nd
 network connection monitoring utilities, PortSentry 2nd
 versus network IDS 2nd
 servers
 dedicating
 firewalls, IPSec packet-filtering 2nd
 firewalls, PF 2nd 3rd 4th
 firewalls, versus workstation firewalls 2nd
 multiuser
 sensitivity to attacks
 workstations
 firewalls
 firewalls, configuring 2nd
 firewalls, Norton Personal Firewalls 2nd 3rd
 firewalls, versus server firewalls 2nd
 firewalls, websites
 firewalls, ZoneAlarm Pro 2nd
 maintaining 2nd
 MBSA
Hosts/Networks screen (PDM)
HP OpenView system/network monitoring software 2nd
HP Virtual Vault Servers
 adversarial reviews
 determining attacker access 2nd 3rd

 determining impact of misconfigurations/vulnerabilities 2nd

 mkacct command
hping utility 2nd 3rd 4th
HTTP (Hypertext Transfer Protocol)
 interapplication communication
 state
 tracking 2nd
HTTP PUT attacks 2nd
HTTP tunneling 2nd
 IDS 2nd
HTTrack
Human Resources handbooks
 security policies, writing
hypothesis (troubleshooting process)
 forming 2nd
 testing
 analyzing results

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

IANA (Internet Assigned Numbers Authority) website
ICMP
 packet-too-big ICMP unreachable messages
 reflexive ACL
ICMP (Internet Control Message Protocol)
 packet-too-big unreachable messages 2nd
 router hardening
 directed broadcasts
 redirects
 unreachables 2nd 3rd
 state
 tracking 2nd
ICMP destination unreachable messages
ICMP echo requests
 blocking 2nd
ICMP flooding
 DDoS attacks
 network performance 2nd 3rd 4th
 network performance
 smurfing attacks
 network performance 2nd
 zombie systems
ICMP messages
 filtering 2nd
 TCP/IP network performance 2nd
ICMP scans
 network security assessments 2nd
 Nmap
ICV (integrity check values)
identification phase (incident response)
identifying risks (security policies)
identifying weaknesses (IDS)
 security auditing
 security policy violations 2nd
IDS
 Snort 2nd
IDS (intrsion detection systems)
 reasons for 2nd
IDS (intrusion detection system)
 HTTP tunneling 2nd
IDS (intrusion detection systems)
 anomaly detection 2nd
 case studies
 networks with multiple external access points 2nd
 simple network infrastructures 2nd 3rd
 unrestricted network environments 2nd 3rd
 defining 2nd
 HIDS
 defining 2nd
 host-based 2nd 3rd
 categories of
 compromised hosts
 deploying 2nd
 file integrity checkers 2nd 3rd
 file integrity checkers, AIDE
 file integrity checkers, Samhain
 file integrity checkers, Tripwire
 file integrity checkers, Tripwire Manager
 file integrity checkers, Winalysis
 log analyzers
 log file monitoring utilities, Logcheck 2nd
 network connection monitoring utilities, BlackICE 2nd
 network connection monitoring utilities, PortSentry 2nd
 versus network IDS 2nd
 logs
 network
 versus host-based 2nd

 NIDS

 defining 2nd
 role in perimeter defense
 perimeter defense components, compatibility with
 perimeter defense, role in 2nd
 reporting
 roles of
 host attack detection 2nd
 incident handling
 weakness identification
 weakness identification, security auditing
 weakness identification, security policy violations 2nd
 sensors, deploying 2nd
 encrypted network traffic
 external networks 2nd
 firewalls 2nd
 high volume network traffic
 IDS management networks 2nd
 internal networks 2nd 3rd
 packet filters
 security maintenance 2nd
 spanning ports
 switches 2nd
 services
 distributed
 outsourced monitoring
 signature detection 2nd
 alerts
 detecting evasion techniques
 false positive/negative signatures 2nd 3rd
 unwanted alerts
 software 2nd
 worms
 identifying
IDS Is Dead report 2nd
IDS logs
 host-based firewalls 2nd
IDS management networks
 IDS sensor placement 2nd
ifconfig utility
 link layer troubleshooting
 network layer troubleshooting
IIOP (Internet Inter-ORB Protocol)
 interapplication communication
IKE (Internet Key Exchange) protocol
 authentication
 digital certificates
 pre-shared keys
 phase 1 negotiations 2nd 3rd
 authentication exchanges, main mode

 example of 2nd 3rd
 phase 2 negotiations
 example of
implicit denies 2nd 3rd
implicit permits
in/out keywords (ACL) 2nd 3rd
 VLAN interfaces
incident handling
 HoneyNet Project
 IDS
 log files 2nd
 security policies, implementing 2nd
incident response (perimeter security maintenance)
 automating 2nd
 notifications 2nd
 phases of 2nd
 response guidelines 2nd
incoming rulebase (NetScreen-100 external firewall) 2nd
information
 as crown jewels 2nd
 defense in depth
 cryptography
 cryptography, PGP
 cryptography, PKI
 diffusion of information 2nd 3rd
 diffusion of information, remote controlware
 diffusion of information, WAP
infrastructure mode (wireless networks)
ingress filtering 2nd 3rd 4th
 perimeter defense, role in 2nd
ingress filters

 adversarial reviews

 determining attacker access 2nd
initiators (proxy servers)
inline firewalls
 secure perimeter design 2nd
inline security devices
 system performance
Insertion, Evasion, and Denial of Service[COLON] Eluding Network Intrusion Detection [ITAL]
insiders
 Cisco stock options exploits
 secure perimeter design 2nd
inspect statements (CBAC)
Integrity (Check Point)
intelligent switches (NIPS) 2nd
interapplication communications
 CORBA
 DCOM 2nd
 HTTP
 IIOP
 SOA
 SOAP 2nd
 Web services 2nd 3rd
interfaces
 ACL, applying to
internal firewalls
 adversarial reviews
 determining attacker access 2nd 3rd 4th
 determining impact of misconfigurations/vulnerabilities 2nd 3rd 4th 5th 6th
 determining maximum amount of network access 2nd 3rd 4th 5th 6th 7th
 Nokia IP330
 adversarial reviews 2nd 3rd
 rulebases 2nd
 rulebases
internal network
 defense in depth infrastructure, role in
 antivirus software
 auditing 2nd
 configuration management 2nd
 host hardening 2nd
 personal firewalls 2nd 3rd
internal networks
 complex e-commerce site case studies 2nd
 hiding 2nd
 IDS sensor deployment 2nd 3rd
internal protected networks
 proxy firewalls
internal subnetting
 routers
Internet
 complex e-commerce site case studies 2nd 3rd

 VPN availability
Internet connections
 broadband
 case studies 2nd 3rd 4th 5th 6th
intranet VPN
intrasite redundancy
 fault tolerance 2nd 3rd 4th 5th
 firewall redundancy 2nd 3rd
 switch redundancy 2nd
intrasystem redundancy
 fault tolerance
introductions (network security assessment documentation)
IntruShield 2nd
intrusion detection
 alerts
 anomaly detection 2nd
 case studies
 networks with multiple external access points 2nd
 simple network infrastructures 2nd 3rd
 unrestricted network environments 2nd 3rd
 host-based IDS
 file integrity checkers
 log analyzers
 logging
 network log files
 perimeter defense components, compatibility with
 reasons for 2nd
 reporting
 roles of
 host attack detection 2nd
 incident handling

 weakness identification

 weakness identification, security auditing
 weakness identification, security policy violations 2nd
 sensors, deploying 2nd
 encrypted network traffic
 external networks 2nd
 firewalls 2nd
 high volume network traffic
 IDS management networks 2nd
 internal networks 2nd 3rd
 packet filters
 security maintenance 2nd
 spanning ports
 switches 2nd
 services
 distributed
 outsourced monitoring
 signature detection 2nd
 detecting evasion techniques
 false positive/negative signatures 2nd 3rd
 unwanted alerts
 software 2nd
intrusion prevention
intrusion prevention systems (IPS)
 CSA 2nd
 Deep Packet Inspection
 development of 2nd
 false positives
 Gartner IDS Is Dead report 2nd
 HIPS
 advantages of
 challenges of
 custom application dynamic rule creation 2nd
 deployment recommendations, attacks 2nd
 deployment recommendations, document requirements/testing procedures
 deployment recommendations, role in defense-in-depth architectures
 deployment recommendations, software update installation
 deployment recommendations, update control policies
 false positives
 monitoring application behavior
 monitoring file integrity
 OS shims
 real-world experience of
 system call interception
 limitations of 2nd 3rd
 NIPS
 ASIC 2nd
 chokepoint
 chokepoint devices
 chokepoint, firewalls 2nd 3rd 4th 5th 6th

 chokepoint, IDS plus something classification 2nd 3rd 4th 5th 6th 7th 8th 9th
 general-purpose CPU
 intelligent switches 2nd
 switch-type
 switch-type, deployment recommendations 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 switch-type, detection capabilities
 switch-type, environmental anomaly analysis
 switch-type, evasion resistance
 switch-type, latency requirements
 switch-type, organizational policy enforcement
 switch-type, passive analysis 2nd
 switch-type, product development
 switch-type, protocol scrubbing
 switch-type, rate limiting
 switch-type, security 2nd
 switch-type, stability demands
 switch-type, throughput demands
 switch-type, TippingPoint UnityOne IPS 2nd
 switch-type, TopLayer Attack Mitigator
 requirements of
 accuracy
 keeping current
 keeping state 2nd
 nullifying attacks
 speed 2nd
 Shallow Packet Inspection
Inurl search extension (Google)
inverse mapping
IOS updates (routers)
IP (Internet Protocol)
 address ranges

 blocking

 addresses
 friendly net access 2nd 3rd 4th
 spoofed addresses
 blocking
 TCP/IP, role in
 TTL
 network log analysis
 versions of 2nd
IP (Internet Protocols)
 reserved/private addresess
 ingress filtering 2nd 3rd 4th
IP addresses
 network security assessments, determining for
 probes, tracking 2nd
IP protocols
 firewalls
 software architecture
ip route statements
IP-based telephony systems
 secure perimeter design
IPChains 2nd
IPChains firewalls
 Nmap ACK scans 2nd
ipconfig utility
 link layer troubleshooting
 network layer troubleshooting 2nd
IPS (intrusion prevention systems)
 CSA 2nd
 Deep Packet Inspection
 defining
 development of 2nd
 false positives
 Gartner IDS Is Dead report 2nd
 HIPS
 advantages of
 challenges of
 custom application dynamic rule creation 2nd
 deployment recommendations, attacks 2nd
 deployment recommendations, document requirements/testing procedures
 deployment recommendations, role in defense-in-depth architectures
 deployment recommendations, software update installation
 deployment recommendations, update control policies
 false positives
 monitoring application behavior
 monitoring file integrity
 OS shims
 real-world experience of
 system call interception
 limitations of 2nd 3rd

 NIPS
 ASIC 2nd
 chokepoint
 chokepoint devices
 chokepoint, firewalls 2nd 3rd 4th 5th 6th
 chokepoint, IDS plus something classification 2nd 3rd 4th 5th 6th 7th 8th 9th
 general-purpose CPU
 intelligent switches 2nd
 switch-type
 switch-type, deployment recommendations 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 switch-type, detection capabilities
 switch-type, environmental anomaly analysis
 switch-type, evasion resistance
 switch-type, latency requirements
 switch-type, organizational policy enforcement
 switch-type, passive analysis 2nd
 switch-type, product development
 switch-type, protocol scrubbing
 switch-type, rate limiting
 switch-type, security 2nd
 switch-type, stability demands
 switch-type, throughput demands
 switch-type, TippingPoint UnityOne IPS 2nd
 switch-type, TopLayer Attack Mitigator
 perimeter defense, role in
 requirements of
 accuracy
 keeping current
 keeping state 2nd
 nullifying attacks
 speed 2nd

 Shallow Packet Inspection

IPSec 2nd
 AH protocol
 ESP protocol combinations 2nd
 ICV
 packet header information 2nd 3rd
 authentication
 pre-shared keys
 configuration examples
 Cisco routers 2nd 3rd 4th 5th 6th 7th 8th 9th
 Windows XP 2nd 3rd 4th 5th 6th 7th 8th
 ESP
 UDP encapsulation
 VPN perimeter defenses
 ESP protocol
 AH protocol combinations 2nd
 IPSec transport mode
 IPSec tunnel mode 2nd
 NAT 2nd
 packet header components 2nd
 packet traces, example of 2nd
 firewalls
 VPN
 gateway-to-gateway architectures
 VPN
 host-to-gateway architectures
 VPN
 host-to-host architectures
 VPN
 IKE protocol
 authentication, digital certificates
 authentication, pre-shared keys
 phase 1 negotiations 2nd 3rd
 phase 1 negotiations, authentication exchanges
 phase 1 negotiations, example of 2nd 3rd
 phase 2 negotiations
 phase 2 negotiations, example of
 NAT-T
 PAT 2nd
 routers
 VPN
 SA 2nd 3rd
 SAD 2nd 3rd
 SPD
 transport mode
 ESP protocol
 tunnel mode
 ESP protocol 2nd
 tunneling mode
 versus L2TP 2nd

 VPN
 case studies 2nd 3rd
 perimeter defenses 2nd 3rd
 server integration 2nd
 VPN client integration 2nd
 VPN concentrators
 wireless network security
IPSec packet-filtering
 server firewalls 2nd
IPTable logs
 analyzing
IPTables
 input rules 2nd
 IPv6
 output rules 2nd 3rd
 state tables, example of 2nd
 stateful firewalls 2nd 3rd 4th 5th 6th
IPv6
 Netfilter/IPTables
IPv6 ACL (access control lists) 2nd
ISDN network connection performance case study 2nd
isolated ports (PVLAN)
ISS Internet Scanner vulnerability scanner 2nd 3rd 4th

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

JAP (Java Anonymous Proxy)
John the Ripper password-cracking software
johnny.ihackstuff.com website
Juniper Netscreen-204 firewall
 rulebase for 2nd
Juniper Networks NetScreen firewall 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

key IDs
keystroke loggers
 firewall tunnels 2nd
keyword searches (network log analysis)
Kismet
 wardriving
 wireless network signal leakage, auditing 2nd
Komodia PacketCrafter 2nd
ktrace system call trace utility

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

L0phtCrack password-cracking software 2nd
L2TP (Layer Two Tunneling Protocol)
 versus IPSec 2nd
 versus PPTP 2nd
 Windows XP client software configuration example 2nd 3rd
LaBrea Technologies Sentry 2nd
LAN
 desktops
 resource separation 2nd
LANguard Network Security Scanner (GFI) 2nd 3rd 4th
LANs
 Doom
laptops
 resource separation 2nd
LAST-ACK state (TCP connections)
latency
 defining 2nd
 gateway processing
 packet size
 ping command
 propagation 2nd
Layer 3 switching
Layer 4 dispatchers (load balancers)
 network performance 2nd
Layer 7 dispatchers (load balancers)
 network performance 2nd
ldd utility
 application layer, troubleshooting
LEAP (Lightweight Extensible Authentication Protocol) 2nd
 dictionary attacks 2nd
limited personal use policies (security policies)
link layer
 troubleshooting
 ARP 2nd 3rd
 ifconfig utility
 ipconfig utility
 Tcpdump 2nd
Link search extension (Google) 2nd
Linux
 Check Point FireWall-1 stateful firewalls 2nd 3rd 4th 5th 6th 7th
 IPChains 2nd
 Netfilter/IPTables
 state tables, example of 2nd
 stateful firewalls 2nd 3rd 4th 5th 6th
 rpm utility
 software, removing
 WU-FTPD
Lion worm
LISTEN state (TCP connections)
listener stations
 network security assessments 2nd
listeners (proxy servers)
listing
 ports 2nd
load balancers
 network performance 2nd 3rd
 Layer 4 dispatchers 2nd
 Layer 7 dispatchers 2nd
local authentication
 routers
 SNMP 2nd 3rd
Local Security Policy editor (windows)
 null sessions, limiting
Local Security Policy editor (Windows)
 security logs, auditing
locking
 MAC addresses 2nd 3rd

 wired management 2nd

log analyzers
log file monitoring utilities (host-based IDS)
 Logcheck 2nd
log files
 analyzing 2nd
 automating
 automating, Check Point Firewall-1 firewalls 2nd
 automating, data retrieval 2nd
 automating, designing reports 2nd
 automating, file formats
 automating, log volume
 automating, SIM software
 developing feel for
 finding fun in
 firewall logs, Check Point FireWall-1 logs 2nd 3rd
 firewall logs, Cisco PIX logs 2nd
 firewall logs, IPTable logs
 firewall logs, Norton Personal Firewall logs 2nd
 firewall logs, ZoneAlarm logs 2nd
 IDS logs 2nd
 keyword searches
 router logs 2nd
 router logs, Cisco router logs 2nd
 timestamps
 UNIX
 characteristics of
 occasionally recorded information 2nd
 rarely recorded information 2nd
 regularly recorded information 2nd
 DNS requests
 event correlation
 general troubleshooting
 importance of
 incident handling 2nd
 intrusion detection
 TCP flags 2nd
 timestamps
 TTL
Logcheck log file monitoring utility 2nd
loggers (keystroke)
 firewall tunnels 2nd
logging
 in IDS
 routers
 router hardening 2nd 3rd 4th
login banners (routers), creating 2nd
login local command (routers)
login local command (SSH)
 router hardening

logings
 router attacks
logistics of network security assessments, determining
logs
 detailed
 system performance 2nd
 OpenSSH connections
 protocol-aware
 proxy firewalls
 proxy firewalls, RingZero Trojan exploit 2nd
 Web proxies
lsof (list open file) utility

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

MAC addresses
 locking 2nd 3rd
 spoofing 2nd
MAC addresses, displaying 2nd
mail masquerading
mail relays 2nd 3rd 4th
 configuring 2nd 3rd 4th
 Microsoft Exchange 2000 Server Enterprise Edition 2nd
 Microsoft Windows 2003 Server Enterprise Edition 2nd
 functions of
mailing lists
 patch notifications
main mode authentication exchanges (IKE phase 1 negotiations)
maintaining perimeter security
 change management
 communicating proposed changes
 detecting/preventing unauthorized changes 2nd
 discovering systems/devices
 patches 2nd
 personnel support
 rolling back undesired changes
 testing changes
 verifying proper system operation
 incident response
 automating 2nd
 notifications 2nd
 phases of 2nd
 response guidelines 2nd
 system/network monitoring
 alerts
 Big Brother software 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 establishing procedures 2nd
 establishing procedures, defining hosts/procedures 2nd 3rd
 establishing procedures, monitoring local system attributes 2nd 3rd 4th 5th 6th
 establishing procedures, network/remote service accessibility 2nd 3rd 4th
 HP OpenView software 2nd
 remote monitoring security 2nd 3rd 4th 5th
malware
 mutations
 detecting via antivirus software
 polymorphic
 detecting via antivirus software
managing
 firewalls (network security assessments) 2nd
 host defense components
 unattended user accounts 2nd
Mantin, Itsik
 Weaknesses in the Key Scheduling Algorithm of RC4 [ITAL] 2nd
masquerading (mail)
Maxim
 CD-Universe credit card attacks 2nd
MBSA (Microsoft Baseline Security Analyzer)
MD5 (Message Digest 5) hash algorithms
message digests [See hashes]
MetaFrame (Citrix)
 reverse proxies
Metasploit exploitation library software
metrics
 performance
Microsoft
 Qaz worms
 security bulletins
 MS04-036 2nd
Microsoft Exchange 2000 Server Enterprise Edition
 mail relays, configuring 2nd
Microsoft Outlook
 email, security of

Microsoft OWA

 security of
Microsoft OWA (Outlook Web Access)
 SSL 2nd
Microsoft Windows 2000
 Secure Cache Against Pollution check box
Microsoft Windows 2003 Server Enterprise Edition
 mail relays, configuring 2nd
middleware components (multitier applications) 2nd
mkacct command (HP Virtual Vault Servers)
modems
 access, controlling
 secure perimeter design 2nd
ModemScan
 wardialing
modwall firewalls
 IPS 2nd
monitor ports
monitoring systems/networks (perimeter security maintenance)
 alerts
 Big Brother software 2nd 3rd 4th
 defining hosts/procedures 2nd
 monitoring local system attributes 2nd 3rd
 network/remote service accessibility 2nd 3rd
 HP OpenView software 2nd
 procedures, establishing 2nd
 defining hosts/procedures 2nd 3rd
 monitoring local system attributes 2nd 3rd 4th 5th 6th
 network/remote service accessibility 2nd 3rd 4th
 remote monitoring security 2nd 3rd 4th 5th
Moore's law
motives for attacks 2nd
MS04-036 security bulletin 2nd
MTU (maximum transmission units)
 TCP/IP network performance 2nd
Muffett, Alec
 Crack password-cracking software 2nd
multimedia protocols
 state
 tracking
multiple firewalls
 secure perimeter design
 inline 2nd
 parallel 2nd 3rd
multiple subnets
 security zones, creating 2nd 3rd 4th
 broadcast domains 2nd 3rd 4th 5th
multiple-session remote desktop software [See terminal servers]
multiresolution filtering
multitier applications

 component placement 2nd
 database components
 middleware components 2nd
 user interface components 2nd
multiuser servers
mutations (malware)
 detecting
 antivirus software

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

NAC (Network Admission Control), SDN 2nd 3rd 4th
name command (SSH)
 router hardening
named ACL (access control lists) 2nd
 adding/deleting entries 2nd 3rd
 reflexive ACL
NAPT [See PAT]
NASL (Nessus attack scripting language) 2nd
NAT 2nd
 application compatibility 2nd
 ESP protocol 2nd
 protocols, breaking
 routers 2nd
 configuring for 2nd
 viewing translation tables
NAT-T (NAT-Transversal)
 IPSec
NBAR (Network-Based Application Recognition) 2nd 3rd 4th
 footprints
 police command
 router performance
nc (Netcat) 2nd 3rd
NDiff differential scanning software 2nd
Nessus vulnerability scanner 2nd 3rd 4th 5th
 NASL 2nd
 plug-ins 2nd
Nessus vulnerability scanning software
Nestat
 transport layer troubleshooting 2nd 3rd
NetBIOS networks
 broadcasts, limiting
NetBIOS protocol (Windows)
 disabling 2nd
Netcat 2nd 3rd
Netfilter/IPTables
 input rules 2nd
 IPv6
 output rules 2nd 3rd
 state tables, example of 2nd
 stateful firewalls 2nd 3rd 4th 5th 6th
NetScanTools Pro
NetScreen firewall (Juniper Networks) 2nd
NetScreen-100 firewalls
 adversarial reviews
 determining attacker access 2nd 3rd 4th 5th 6th
 From DMZ rulebase 2nd
 incoming rulebase 2nd
 outgoing rulebase
 To DMZ rulebase
Netscreen-204 firewall (Juniper)
 rulebase for 2nd
NetSky worm
Netstat
 network layer troubleshooting 2nd
netstat -na command
 ports, listing 2nd
Netstumbler
 wardriving
 wireless network signal leakage, auditing
NetStumbler website
 backdoors
nettools.com Web site
nettworks
 VPN
 proprietary implementations
network architectures
 network performance

 broadcast domains 2nd

 OSPF
 RIP 2nd
 TCP/IP, MTU 2nd
 TCP/IP, socket buffer sizes 2nd
 TCP/IP, window sizes
 WAN 2nd
network bandwidth
 defining
network card teaming
network chokepoints, firewalls as
network connection monitoring utilities (host-based IDS)
 BlackICE 2nd
 PortSentry 2nd
network defense design, recommendations for 2nd
network devices
 secure perimeter design 2nd 3rd
network filtering
 routers
network filters
 network performance
 content filters 2nd
 packet filters 2nd
 proxy firewalls 2nd
 stateful firewalls 2nd
network IDS (intrusion detection systems)
 case studies
 networks with multiple external access points 2nd
 simple network infrastructures 2nd 3rd
 unrestricted network environments 2nd 3rd
 logs
 perimeter defense components, compatibility with
 roles of
 host attack detection 2nd
 incident handling
 weakness identification
 weakness identification, security auditing
 weakness identification, security policy violations 2nd
 sensors, deploying 2nd
 encrypted network traffic
 external networks 2nd
 firewalls 2nd
 high volume network traffic
 IDS management networks 2nd
 internal networks 2nd 3rd
 packet filters
 security maintenance 2nd
 spanning ports
 switches 2nd
 services

 distributed
 outsourced monitoring
 software 2nd
 versus host-based 2nd
network latency
 bandwidth availability
 defining 2nd
 gateway processing
 packet size
 ping command
 propagation
network layer
 troubleshooting 2nd
 ifconfig utility
 ipconfig utility 2nd
 Netstat 2nd
 ping utility
 Tcpdump
 Traceroute 2nd
network layer cryptography
 network performance 2nd
 VPN 2nd 3rd
network layer encryption
 VPN 2nd
network monitoring (perimeter security maintenance)
 alerts
 Big Brother software 2nd 3rd 4th
 defining hosts/procedures 2nd
 monitoring local system attributes 2nd 3rd
 network/remote service accessibility 2nd 3rd
 HP OpenView software 2nd

 procedures, establishing 2nd

 defining hosts/procedures 2nd 3rd
 monitoring local system attributes 2nd 3rd 4th 5th 6th
 network/remote service accessibility 2nd 3rd 4th
 remote monitoring security 2nd 3rd 4th 5th
Network Node Manager (OpenView) 2nd
network scanners
 fping utility
 pinger utility
 SuperScan 2nd
network security
 software architecture case studies
 customer feedback systems
 customer feedback systems, architecture recommendations
 customer feedback systems, software deployment locations 2nd
 Web-based online billing applications
 Web-based online billing applications, architecture recommendations 2nd
 Web-based online billing applications, software deployment locations 2nd
network security architectures
 evaluating
network security assessments
 exploitation phase
 penetration tests 2nd 3rd
 network service discovery phase 2nd
 service discovery
 service discovery, banner retrieval 2nd 3rd 4th
 service discovery, Nmap 2nd
 service discovery, system matrixes 2nd
 service discovery, Telnet 2nd
 system enumeration
 system enumeration, ICMP scans 2nd
 system enumeration, packet traces 2nd
 system enumeration, TCP/UDP packet scans 2nd
 technique risk levels
 perimeter device verification phase
 access control verification
 access control verification, firewall management 2nd
 access control verification, traffic restrictions 2nd 3rd
 assessment stations 2nd
 firewall validation 2nd
 listener stations 2nd
 planning phase
 assembling test resources
 assessment technique risk levels
 determining scope
 determining scope, assessment logistics
 determining scope, documentation
 written authorization
 reconnaissance phase
 determining IP address ranges

 DNS discovery 2nd
 organization-specific data searches 2nd
 organizational Web presences 2nd
 reverse lookups
 search engines 2nd
 sensitive information searches
 whois searches
 remote access phase
 VPN/remote proxies
 VPN/remote proxies, access controls 2nd
 VPN/remote proxies, authentication 2nd 3rd
 VPN/remote proxies, client restrictions 2nd
 VPN/remote proxies, encryption
 wardialing 2nd 3rd 4th
 wardriving 2nd 3rd
 results analysis/documentation phase 2nd 3rd
 best practices
 executive summaries 2nd 3rd
 introductions
 prioritizing findings by risk
 technique risk levels
 vulnerability discovery phase 2nd 3rd
 eEye Security Retina 2nd
 GFI LANguard Network Security Scanner 2nd 3rd 4th
 ISS Internet scanner 2nd 3rd 4th
 Nessus 2nd 3rd 4th 5th
 researching vulnerabilities 2nd
 technique risk levels
network security design
 adversarial reviews
 GIAC GCFW designs

 advesarial reviews 2nd

 deciding origin of attacks
 deciding what attacks to prevent
 determining attacker access 2nd 3rd
 determining attacker access, egress filters 2nd
 determining attacker access, external firewalls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 determining attacker access, extranet servers 2nd 3rd
 determining attacker access, ingress filters 2nd
 determining attacker access, internal firewalls 2nd 3rd 4th 5th
 determining attacker access, No CDP Messages filter setting 2nd
 determining attacker access, No IP Directed Broadcasts filter setting
 determining attacker access, No IP Unreachable Messages filter setting
 determining attacker access, No Source Routing filter setting
 determining attacker access, public Web servers 2nd 3rd
 determining impact of misconfigurations/vulnerabilities 2nd
 determining impact of misconfigurations/vulnerabilities, external firewalls 2nd 3rd 4th 5th 6th 7th
 determining impact of misconfigurations/vulnerabilities, extranet servers 2nd
 determining impact of misconfigurations/vulnerabilities, internal firewalls 2nd 3rd 4th 5th 6th
 determining impact of misconfigurations/vulnerabilities, public Web servers 2nd
 determining impact of misconfigurations/vulnerabilities, routers 2nd 3rd 4th 5th
 determining maximum amount of network access 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 determining maximum amount of network access, internal firewalls 2nd 3rd 4th 5th 6th 7th
 identifying additional security controls 2nd
 discovery process
network security designs
 attacks, hackers approach to
network service discovery phase (network security assessments) 2nd
 service discovery
 banner retrieval 2nd 3rd 4th
 Nmap 2nd
 system matrixes 2nd
 Telnet 2nd
 system enumeration
 ICMP scans 2nd
 packet traces 2nd
 TCP/UDP packet scans 2nd
 technique risk levels
network services, controlling
 deactivating services
 remote access services 2nd 3rd 4th
 resource-sharing services 2nd
 disabling NetBIOS protocol 2nd
 editing Unix files
 listing ports 2nd
network switches
 rate limiting
networks
 discovery of
 proxy firewalls 2nd
 HIPS

 advantages of
 challenges of
 custom application dynamic rule creation 2nd
 deployment recommendations, attacks 2nd
 deployment recommendations, document requirements/testing procedures
 deployment recommendations, role in defense-in-depth architectures
 deployment recommendations, software update installation
 deployment recommendations, update control policies
 false positives
 monitoring application behavior
 monitoring file integrity
 OS shims
 real world experience of
 system call interception
 internal
 complex e-commerce site case studies 2nd
 hiding 2nd
 role in defense in depth infrastructure
 role in defense in depth infrastructure, antivirus software
 role in defense in depth infrastructure, auditing 2nd
 role in defense in depth infrastructure, configuration management 2nd
 role in defense in depth infrastructure, host hardening 2nd
 role in defense in depth infrastructure, personal firewalls 2nd 3rd
 internal protected
 proxy firewalls
 log files
 analyzing 2nd
 analyzing, automating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 analyzing, developing feel for
 analyzing, finding fun in
 analyzing, firewall logs 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 analyzing, IDS logs 2nd

 analyzing, keyword searches
 analyzing, router logs 2nd 3rd 4th
 analyzing, timestamps
 analyzing, UNIX
 characteristics of
 characteristics of, occasionally recorded information 2nd
 characteristics of, rarely recorded information 2nd
 characteristics of, regularly recorded information 2nd
 DNS requests
 event correlation
 general troubleshooting
 importance of
 incident handling 2nd
 intrusion detection
 TCP flags 2nd
 timestamps
 TTL
 NIPS
 ASIC 2nd
 chokepoint
 chokepoint devices
 chokepoint, firewalls 2nd 3rd 4th 5th 6th
 chokepoint, IDS plus something classification 2nd 3rd 4th 5th 6th 7th 8th 9th
 general-purpose CPU
 intelligent switches 2nd
 switch-type
 switch-type, deployment recommendations 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 switch-type, detection capabilities
 switch-type, environmental anomaly analysis
 switch-type, evasion resistance
 switch-type, organizational policy enforcement
 switch-type, passive analysis 2nd
 switch-type, product development
 switch-type, protocol scrubbing
 switch-type, rate limiting
 switch-type, security 2nd
 switch-type, stability demands 2nd
 switch-type, throughput demands
 switch-type, TippingPoint UnityOne IPS 2nd
 switch-type, TopLauer Attack Mitigator
 nonswitched
 versus switched 2nd
 performance
 broadcast domains 2nd
 case studies, ISDN network connections 2nd
 case studies, satellite-based networks 2nd
 content filters 2nd
 DoS attacks, ICMP flooding 2nd 3rd 4th 5th 6th 7th
 DoS attacks, SYN flooding 2nd 3rd

 encryption
 encryption, hardware accelerators 2nd
 encryption, network layer cryptography 2nd 3rd 4th 5th
 encryption, public key cryptography
 encryption, router link encryption case study 2nd
 encryption, SSL Web server case study
 encryption, symmetric key cryptography 2nd
 encryption, transport layer cryptography 2nd 3rd
 load balancers 2nd 3rd
 load balancers, Layer 4 dispatchers 2nd
 load balancers, Layer 7 dispatchers 2nd
 OSPF
 packet filters 2nd
 proxy firewalls 2nd
 RIP 2nd
 stateful firewalls 2nd
 TCP/IP, ICMP messages 2nd
 TCP/IP, MTU 2nd
 TCP/IP, socket buffer sizes 2nd
 TCP/IP, window sizes
 WAN 2nd
 performance metrics
 performance, defining
 network bandwidth
 network latency 2nd 3rd
 response time
 throughput
 performance, importance in security 2nd
 private-only
 access lists, examples of 2nd 3rd 4th 5th
 screened subnet

 access lists, examples of 2nd 3rd 4th 5th 6th 7th

 SDN 2nd 3rd 4th
 NAC 2nd 3rd 4th
 security
 complex e-commerce site case studies 2nd 3rd 4th
 switched
 troubleshooting 2nd
 versus nonswitched networks 2nd
 VPN [See also remote desktop software]
 benefits of, cost effectiveness
 benefits of, deployment 2nd
 benefits of, security 2nd 3rd
 case study
 case study, IPSec 2nd 3rd
 case study, SSL 2nd
 case study, terminal servers 2nd 3rd
 Cisco router configurations, access list rules 2nd
 defining
 designing network security 2nd
 Diffie-Hellman asymmetric key encryption
 disadvantages of
 disadvantages of, implementation
 disadvantages of, Internet availability
 disadvantages of, packet overhead
 disadvantages of, processing overhead
 disadvantages of, troubleshooting
 encryption 2nd 3rd
 encryption, application layer
 encryption, network layer 2nd
 encryption, transport layer
 encryption, tunneling as 2nd 3rd
 handling compromised clients 2nd
 IPSec 2nd
 IPSec, AH protocol 2nd 3rd 4th 5th 6th 7th
 IPSec, client integration 2nd
 IPSec, configuration examples 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
 IPSec, ESP protocol 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 IPSec, IKE protocol 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 IPSec, perimeter defenses 2nd 3rd
 IPSec, SA 2nd 3rd
 IPSec, SAD 2nd 3rd
 IPSec, server integration 2nd
 IPSec, SPD
 IPSec, transport mode 2nd
 IPSec, tunnel mode 2nd
 IPSec, tunneling mode
 IPSec, versus L2TP 2nd
 IPSec, wireless network security
 L2TP
 L2TP, versus IPSec 2nd

 L2TP, versus PPTP 2nd
 L2TP, Windows XP client software configuration example 2nd 3rd
 network layer cryptography 2nd 3rd
 network security assessments
 network security assessments, access controls 2nd
 network security assessments, authentication 2nd 3rd
 network security assessments, client restrictions 2nd
 network security assessments, encryption
 PPTP 2nd
 PPTP, Cisco PIX VPDN configuration example 2nd 3rd 4th
 PPTP, versus L2TP 2nd
 proxy firewalls
 remote connectivity, determining type of 2nd
 requirements of, authentication
 requirements of, confidentiality
 requirements of, data integrity 2nd
 SSH, file transfers
 SSH, port forwarding
 SSH, standard connections 2nd 3rd 4th
 SSH, tunneling 2nd 3rd 4th 5th 6th
 SSH, vulnerabilities of 2nd
 SSL
 SSL, OWA 2nd
 SSL, perimeter defenses
 SSL, proxy servers 2nd 3rd
 SSL, SSL tunneling 2nd 3rd
 SSL, standard connections 2nd 3rd 4th 5th 6th 7th 8th 9th
 SSL, uses of 2nd
 tunneling 2nd
 tunneling, as encryption 2nd 3rd
 tunneling, packets

 wireless network security

 wireless
 AP
 AP, FakeAP
 AP, hardening 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 AP, segmenting
 AP, VLAN 2nd
 AP, warchalking
 AP, wardriving
 defense in depth strategies, host defenses
 defense in depth strategies, VPN/IPSec
 designing
 designing, auditing network controls
 designing, auditing signal leakage 2nd
 designing, case studies 2nd 3rd 4th 5th
 designing, network separation 2nd 3rd 4th 5th 6th 7th 8th 9th
 designing, signal leakage
 designing, WDoS defense 2nd
 infrastructure mode
 types of, 802.11a
 types of, 802.11b
 types of, 802.11g
 wireless encryption
 wireless encryption, auditing 2nd 3rd
 wireless encryption, EAP-TLS 2nd 3rd
 wireless encryption, implementing 2nd
 wireless encryption, LEAP 2nd 3rd 4th
 wireless encryption, PEAP 2nd 3rd
 wireless encryption, TinyPEAP
 wireless encryption, WEP 2nd
 wireless encryption, WPA protocol 2nd 3rd 4th
newsletters
 patch notifications
NFR BackOfficer Friendly personal firewall
NFR Sentivist 2nd
NFS (Network File System) services
 daemons
 deactivating 2nd
 RPC services
NIDS (network-based intrusion detection systems)
 defining 2nd
NIDS (network-based intrustion detection systems)
 perimeter defense, role in
Nimda worm
 defense in depth case study 2nd
 signature of 2nd
Nimda worms [See also script kiddies]
NIPS (network intrusion prevention systems)
 ASIC 2nd
 chokepoint

 firewalls 2nd
 firewalls, Check Point Firewall-1 NG 2nd
 firewalls, modwall 2nd
 IDS plus something classification
 IDS plus something classification, HogWash
 IDS plus something classification, IntruShield 2nd
 IDS plus something classification, LaBrea Technologies Sentry 2nd
 IDS plus something classification, NFR Sentivist 2nd
 IDS plus something classification, Snort-Inline
 chokepoint devices
 general-purpose CPU
 intelligent switches 2nd
 switch-type
 deployment recommendations
 deployment recommendations, auto-update mechanisms 2nd
 deployment recommendations, budgeting for
 deployment recommendations, change-management mechanisms
 deployment recommendations, documenting use/functionality 2nd
 deployment recommendations, identifying false positive/false negative test procedures
 deployment recommendations, NIPS/NIDS combinations
 deployment recommendations, report-only mode product reviews
 detection capabilities
 environmental anomaly analysis
 evasion resistance
 latency requirements
 organizational policy enforcement
 passive analysis 2nd
 product development
 protocol scrubbing
 rate limiting
 security 2nd

 stability demands

 throughput demands
 TippingPoint UnityOne IPS 2nd
 topLayer Attack Mitigator
Nmap
 ACK scans
 FIN scans
 frag option
 ICMP scans
 network security assessments 2nd
 NULL scans
 SYN scans
 version scans 2nd
Nmap ACK scans 2nd
Nmap host/port location scanning software
 NDiff differential scanners 2nd
NNM (Network Node Manager) 2nd
NNTP (Network News Transfer Protocol)
 vulnerabilities of 2nd
No CDP Messages filter setting
 adversarial reviews
 determining attacker access 2nd
No IP Directed Broadcasts filter setting
 adversarial reviews
 determining attacker access
No IP Unreachable Messages filter setting
 adversarial reviews
 determining attacker access
no password command (Telnet)
No Source Routing filter setting
 adversarial reviews
 determining attacker access
Nokia IP330 firewalls
 adversarial reviews 2nd 3rd
 rulebases 2nd
Nokia IP350
 rulebase for
Nokia IP440 firewalls
 adversarial reviews
 determining attacker access 2nd
nonswitched networks
 versus switched networks 2nd
nontransparent proxy firewalls
 request handling
Norton Personal Firewall logs, analyzing 2nd
Norton Personal firewalls 2nd 3rd
noshell utility (UNIX)
 user accounts, deactivating 2nd
notifications (incident response) 2nd
NSlookup 2nd 3rd

nslookup command
 DNS discovery
NSS (Network Name Switches)
NTFS (Windows)
 file permnissions, restricting
NTP (Network Time Protocol)
 router configuration/authentication 2nd 3rd
NULL scans
 Nmap
null sessions
 limiting 2nd
numbered ACL (access control lists)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

obvious problems (troubleshooting rules)
one change at a time (troubleshooting rules)
Onion routing
openmindedness (troubleshooting rules)
OpenSSH connections
 logging
OpenView NNM (Network Node Manager) 2nd
OPSEC Alliance
 Check Point Firewall-1 NG firewalls
Orebaugh, Angela
 GIAC GCFW network security design, adversarial review of 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th
21st 22nd 23rd
organizational rules/culture, determining (security policies)
 contracts 2nd
 directives
 unwritten policies
 written policies
OS
 removing/disabling components (host hardening)
OS shims
OSPF (Open Shortest Path First) protocol
 network performance
out keywords (ACL) 2nd 3rd
 VLAN interfaces
outgoing rulebase (NetScreen-100 external firewall)
Outlook (Microsoft)
 email, security of
Outlook (MS)
 unenforceable security policies 2nd 3rd
Outlook Web Access (OWA)
 SSL 2nd
outsiders
 secure perimeter design 2nd 3rd
outsourced IDS monitoring services
overloading [See PAT]
OWA
 security of
OWA (Outlook Web Access)
 SSL 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

packer websites
packers
 antivirus software 2nd
packet filtering
 routers 2nd
packet filters
 network performance 2nd
 static
 role in perimeter defense 2nd 3rd
packet headers
 defining
packet traces
 system enumeration assessments 2nd
packet-filtering
 ACK flags
 ACL
 deny 2nd
 extended
 extended, blocking ICMP echo requests 2nd
 extended, established keyword 2nd 3rd 4th
 extended, filtering ICMP messages 2nd
 extended, filtering ports
 extended, friendly net IP address access 2nd
 extended, FTP 2nd 3rd
 extended, PASV FTP 2nd 3rd
 extended, ports
 extended, rule order 2nd
 extended, syntax of 2nd
 implicit denies 2nd
 in/out keywords 2nd 3rd
 in/out keywords, VLAN interfaces
 IPv6 2nd
 named 2nd
 named, adding/deleting entries 2nd 3rd
 named, reflexive ACL
 numbered
 planning rule order
 reflexive 2nd
 reflexive;FTP 2nd
 reflexive;ICMP
 reflexive;named ACL 2nd
 reflexive;outbound traffic 2nd
 reflexive;PASV FTP
 reflexive;TCP flags 2nd
 reflexive;UDP
 standard, applying to interfaces
 standard, blacklisting 2nd 3rd
 standard, egress filtering 2nd
 standard, friendly net IP address access 2nd
 standard, ingress filtering 2nd 3rd 4th
 standard, syntax of
 wildcard masks 2nd 3rd 4th
 ACLs
 routers
 deny any log command
 established keyword 2nd
 DNS 2nd
 fragments 2nd 3rd
 IDS sensor deployment
 IPChains 2nd
 ports
 server firewalls 2nd
 software architecture
 source routing
 spoofing
 static packet filters
 SYN flags

packet-too-big ICMP unreachable messages 2nd 3rd

PacketCrafter (Komodia) 2nd
packets
 authentication
 AH protocol 2nd 3rd 4th
 AH protocol, ESP protocol combinations 2nd
 ESP protocol
 ESP protocol, AH protocol combinations 2nd
 ESP protocol, IPSec transport mode
 ESP protocol, IPSec tunnel mode 2nd
 ESP protocol, NAT 2nd
 ESP protocol, packet header components 2nd
 ESP protocol, packet traces 2nd
 crafted
 deep packet inspection 2nd
 Deep Packet Inspection
 deep packet inspection
 SSL
 defining
 destination addresses
 ESP protocol header components 2nd
 ESP protocol traces, example of 2nd
 fragments 2nd 3rd
 Nmap frag option
 ICV
 MTU
 network performance 2nd
 routing
 implicit permits
 Shallow Packet Inspection
 size of (network latency)
 source addresses
 source routing
 spoofing
 static filters
 VPN
 VPN tunneling
PAD (Packet Assembler/Disassembler) services
 disabling
parallel firewalls
 secure perimeter design 2nd 3rd
pass command (SSH)
 router hardening
passive interface command (routers)
password aging 2nd
password-cracking software
 Crack 2nd
 John the Ripper
 L0phtCrack 2nd
password-filtering software

passwords
 AP hardening
 assigning
 auditing
 dictionary attacks
 filtering software
 guessing tool software
 history of 2nd
 host hardening 2nd 3rd 4th
 password aging 2nd
 routers
 SNMP 2nd 3rd 4th
PASV (passive) FTP
 extended ACL 2nd 3rd
PASV FTP (
 reflexive ACL
PAT
 routers 2nd
 viewing translation tables
PAT (Port Address Translation) [See NAT]
 IPSec 2nd
patches
 change management 2nd
 constraints of 2nd
 host hardening 2nd 3rd
 notification newsletters
PBX (private branch exchange) systems
 secure perimeter design
PDM (PIX Device Manager) 2nd
 Configuration screen 2nd
 Hosts/Networks screen

 System Properties screen

 Translation Rules screen
PEAP (Protected Extensible Authentication Protocol) 2nd 3rd
 TinyPEAP
penetration tests 2nd 3rd
performance
 broadcast domains 2nd
 case studies
 ISDN network connections 2nd
 satellite-based networks 2nd
 content filters 2nd
 defining
 network bandwidth
 network latency 2nd
 network latency, bandwidth availability
 network latency, gateway processing
 network latency, packet size
 network latency, ping command
 network latency, propagation
 response time
 throughput
 DoS attacks
 ICMP flooding
 ICMP flooding, DDoS attacks 2nd 3rd 4th
 ICMP flooding, smurfing attacks 2nd
 SYN flooding 2nd 3rd
 encryption
 hardware accelerators 2nd
 network layer cryptography 2nd 3rd 4th 5th
 public key cryptography
 router link encryption case study 2nd
 SSL Web server case study
 symmetric key cryptography 2nd
 transport layer cryptography 2nd 3rd
 hardware accelerators
 accelerator cards
 load balancers 2nd 3rd
 Layer 4 dispatchers 2nd
 Layer 7 dispatchers 2nd
 metrics
 OSPF
 packet filters 2nd
 proxy firewalls 2nd
 RIP 2nd
 secure perimeter design 2nd
 detailed logs 2nd
 encryption 2nd
 inline security devices
 security, importance in 2nd
 stateful firewalls 2nd

 TCP/IP
 ICMP messages 2nd
 MTU 2nd
 socket buffer sizes 2nd
 window sizes
 troubleshooting
 WAN 2nd
perimeter
 border routers
 defining
 defense in depth infrastructure, role in
 border routers
 egress filtering 2nd
 IDS 2nd
 ingress filtering 2nd
 IPS
 proxy firewalls
 stateful firewalls 2nd
 static packet filters 2nd 3rd
 VPN 2nd
 defining
 DMZ
 defining 2nd
 DNS servers 2nd
 firewalls
 defining
 HIDS
 defining 2nd
 IDS
 defining 2nd
 IPS

 defining

 NIDS
 defining 2nd
 routers
 defining
 screened subnets
 defining 2nd
 DNS servers 2nd
 software architecture
 defining
 VPN
 defining 2nd
perimeter device verification phase (network security assessments)
 access control verification
 firewall management 2nd
 traffic restrictions 2nd 3rd
 assessment stations 2nd
 firewall validation 2nd
 listener stations 2nd
perimeter scanning software
 perimeter configuration changes 2nd
perimeter security maintenance
 change management
 communicating proposed changes
 detecting/preventing unauthorized changes 2nd
 discovering systems/devices
 patches 2nd
 personnel support
 rolling back undesired changes
 testing changes
 verifying proper system operation
 incident response
 automating 2nd
 notifications 2nd
 phases of 2nd
 response guidelines 2nd
 system/network monitoring
 alerts
 Big Brother software 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 establishing procedures 2nd
 establishing procedures, defining hosts/procedures 2nd 3rd
 establishing procedures, monitoring local system attributes 2nd 3rd 4th 5th 6th
 establishing procedures, network/remote service accessibility 2nd 3rd 4th
 HP OpenView software 2nd
 remote monitoring security 2nd 3rd 4th 5th
perimeter security policies
 access 2nd
 changing 2nd
 control
 firewalls as 2nd

 implementing
 email handling 2nd
 incident handling 2nd
 presumption of privacy
 limited personal use policies
 unenforcable policies 2nd
 backdoors 2nd
 email 2nd 3rd
 Outlook (MS) 2nd
 sneaker net
 TCP Port 80
 VLVHLP
 writing 2nd
 writing rule sets
perimeter security, developing
 attacker type, determining
 determined insiders 2nd
 determined outsiders 2nd 3rd
 script kiddies 2nd
 worms 2nd 3rd
 business requirements, determining
 business-related services 2nd
 cost 2nd 3rd
 fault tolerance
 fault tolerance, geographic redundancy 2nd
 fault tolerance, inrtasite redundancy 2nd 3rd 4th 5th
 fault tolerance, inrtasystem redundancy
 performance 2nd
 performance, detailed logs 2nd
 performance, encryption 2nd
 performance, inline security devices

 case studies

 complex e-commerce business sites 2nd
 complex e-commerce business sites, DMZ 2nd 3rd 4th
 complex e-commerce business sites, internal networks 2nd
 complex e-commerce business sites, Internet 2nd 3rd
 complex e-commerce business sites, proxy layers 2nd 3rd
 complex e-commerce business sites, security networks 2nd 3rd 4th
 small businesses with basic Internet presence 2nd 3rd 4th 5th 6th 7th
 small e-commerce business sites 2nd 3rd 4th 5th 6th 7th 8th 9th
 telecommuters using broadband connections 2nd 3rd 4th 5th 6th
 cost, determining 2nd
 design elements
 firewalls 2nd
 firewalls, access control 2nd
 firewalls, basic filtering 2nd
 firewalls, inline 2nd
 firewalls, ISP controlled routers 2nd
 firewalls, parallel 2nd 3rd
 firewalls, VPN interaction 2nd 3rd 4th 5th 6th
 routers 2nd 3rd 4th
 routers, access control 2nd
 routers, basic filtering 2nd
 routers, ISP controlled 2nd
 VPN, firewall interaction 2nd 3rd 4th 5th 6th
 network composition, determining
 potential threats, determining
 resource protection
 bridges 2nd 3rd
 copiers
 IP-based telephony systems
 modems 2nd
 PBX systems
 printers
 routers 2nd 3rd
 servers 2nd
 switches 2nd 3rd
 voice mail systems
 workstations 2nd
perimeters
 absorbent
 failover 2nd
 honeypots
 honeypots, DTK 2nd
 honeypots, Honeynet project website
 rate limiting 2nd 3rd
perimeters, configuring
 firewall tunnels 2nd 3rd
permissions (file)
 race conditions 2nd
personal firewalls 2nd 3rd

 BackOfficer Friendly (NFR)
 compromised hosts
 configuring 2nd
 internal network defense, role in 2nd 3rd
 IPSec packet-filtering 2nd
 Norton 2nd 3rd
 PF 2nd 3rd 4th
 workstations
 websites
 ZoneAlarm Pro 2nd
PF firewalls 2nd 3rd 4th
PGP (Pretty Good Privacy) 2nd
phase 1 negotiations (IKE) 2nd 3rd
 authentication exchanges
 example of 2nd 3rd
phase 2 negotiations (IKE)
 example of
phone systems
 secure perimeter design
PhoneSweep (SandStorm Enterprises)
 wardialing 2nd
ping
 application layer addresses, obtaining
ping command
 network latency
ping floods
 border routers
ping utility
pinger utility
pings
 reconnaissance by

PIX (Cisco)

 VPDN configuration example 2nd 3rd 4th
PIX stateful firewalls (Cisco)
 fixup command 2nd 3rd 4th
 FWSM 2nd
 inbound/outobund traffic connections 2nd
 PDM 2nd
 Configuration screen 2nd
 Hosts/Networks screen
 System Properties screen
 Translation Rules screen
 show conn command 2nd
pkg program
 software, removing
PKI (Public Key Infrastructure)
PKI (Public Key Infrastructures)
plain text
 defining
planning
 ACL rule order
planning perimeter security
 attacker type, determining
 determined insiders 2nd
 determined outsiders 2nd 3rd
 script kiddies 2nd
 worms 2nd 3rd
 business requirements, determining
 business-related services 2nd
 cost 2nd 3rd
 fault tolerance
 fault tolerance, geogaphic redundancy 2nd
 fault tolerance, intrasite redundancy 2nd 3rd 4th 5th
 fault tolerance, intrasystem redundancy
 performance 2nd
 performance, detailed logs 2nd
 performance, encryption 2nd
 performance, inline security devices
 case studies
 complex e-commerce business sites 2nd
 complex e-commerce business sites, DMZ 2nd 3rd 4th
 complex e-commerce business sites, internal networks 2nd
 complex e-commerce business sites, Internet 2nd 3rd
 complex e-commerce business sites, proxy layers 2nd 3rd
 complex e-commerce business sites, security networks 2nd 3rd 4th
 small businesses with basic Internet presence 2nd 3rd 4th 5th 6th 7th
 small e-commerce business sites 2nd 3rd 4th 5th 6th 7th 8th 9th
 telecommuters using broadband connections 2nd 3rd 4th 5th 6th
 cost, determining 2nd
 design elements
 firewalls 2nd

 firewalls, access control 2nd
 firewalls, basic filtering 2nd
 firewalls, inline 2nd
 firewalls, ISP controlled routers 2nd
 firewalls, parallel 2nd 3rd
 firewalls, VPN interaction 2nd 3rd 4th 5th 6th
 routers 2nd 3rd 4th
 routers, access control 2nd
 routers, basic filtering 2nd
 routers, ISP controlled 2nd
 VPN, firewall interaction 2nd 3rd 4th 5th 6th
 network composition, determining
 potential threats, determining
 resource protection
 bridges 2nd 3rd
 copiers
 IP-based telephony systems
 modems 2nd
 PBX systems
 printers
 routers 2nd 3rd
 servers 2nd
 switches 2nd 3rd
 voice mail systems
 workstations 2nd
planning phase (network security assessments)
 scope, determining
 assessment logistics
 assessment technique risk levels
 documentation
 test resources, assembling

 written authorization

plug-ins (Nessus) 2nd
poisoning attacks [See spoofing attacks]
police command (NBAR)
policy enforcement
 switch-type NIPS
polymorphic malware
 detecting
 antivirus software
port command (FTP)
 stateful firewalls
PORT command (proxy firewalls) 2nd 3rd
port forwarding (SSH)
port scanners
 Nmap
 network security assessments 2nd
 version scans 2nd
ports
 filtering
 isolated (PVLAN)
 listing 2nd
 packet-filtering
 promiscuous (PVLAN)
 router console
 hardening 2nd
 server-side
 TCP
 UDP
 spanning
 IDS sensor placement
 TCP Port 80
 unenforceable security policies
PortSentry network connection monitoring utility 2nd
PPTP (Point-to-Point Tunneling Protocol) 2nd
 Cisco PIX VPDN configuration example 2nd 3rd 4th
 versus L2TP 2nd
pre-shared key authentication
pre-shared keys
 IPSec authentication
preparation phase (incident response)
presentation components [See multitier applications;user interface components]
presumption of privacy (security policies)
print and file services [See resource-sharing services]
printers
 secure perimeter design
privacy (security policies)
private addresses 2nd
 ingress filtering
private IP addresses
 ingress filtering 2nd 3rd

private keys (asymmetric key encryption algorithms)
private VLANs 2nd
 isolated ports
 promiscuous ports
private-only networks
 access lists
 examples of 2nd 3rd 4th 5th
proc command (routers)
 CPU usage 2nd
promiscuous ports (PVLAN)
propagation (network latency)
proprietary VPN implementations
protocol scrubbing
protocol-aware logging
 proxy firewalls
 RingZero Trojan exploit 2nd
protocols
 AH
 ESP protcol combinations 2nd
 ICV
 packet header information 2nd 3rd
 ARP
 link layer troubleshooting 2nd 3rd
 CDP
 disabling
 CORBA
 interapplication communication
 DCOM
 interapplication communication 2nd
 dynamic routing 2nd
 route authentication 2nd

 update blocking 2nd 3rd

 EAP-TLS 2nd 3rd
 ESP
 AH protcol combinations 2nd
 IPSec transport mode 2nd 3rd
 NAT 2nd
 packet header components 2nd
 packet traces, example of 2nd
 FTP
 extended ACL 2nd 3rd
 port command, stateful firewalls
 reflexive ACL 2nd
 router hardening
 tracking state 2nd
 GRE
 software architecture, firewalls
 HTTP
 interapplication communication
 tracking state 2nd
 ICMP
 packet-too-big unreachable messages 2nd
 router hardening
 router hardening, directed broadcasts
 router hardening, redirects
 router hardening, unreachables 2nd 3rd
 TCP/IP network performance 2nd
 tracking state 2nd
 IIOP
 interapplication communication
 IKE
 authentication, digital certificates
 authentication, pre-shared keys
 phase 1 negotiations 2nd 3rd
 phase 1 negotiations, authentication exchanges
 phase 1 negotiations, example of 2nd 3rd
 phase 2 negotiations
 phase 2 negotiations, example of
 IP
 blocking address ranges
 blocking spoofed addresses
 friendly net access 2nd 3rd 4th
 role in TCP/IP
 software architectures, firewalls
 TTL, network log analysis
 versions of 2nd
 IPSec
 AH protocol
 AH protocol, ESP protocol combinations 2nd
 AH protocol, ICV
 AH protocol, packet header information 2nd 3rd

 authentication, pre-shared keys
 configuration examples, Cisco routers 2nd 3rd 4th 5th 6th 7th 8th 9th
 configuration examples, Windows XP 2nd 3rd 4th 5th 6th 7th 8th
 ESP protocol
 ESP protocol, AH protocol combinations 2nd
 ESP protocol, IPSec transport mode
 ESP protocol, IPSec tunnel mode 2nd
 ESP protocol, NAT 2nd
 ESP protocol, packet header components 2nd
 ESP protocol, packet traces, example of 2nd
 IKE protocol
 IKE protocol, digital certificate authentication
 IKE protocol, phase 1 negotiations 2nd 3rd 4th 5th 6th 7th
 IKE protocol, phase 2 negotiations 2nd
 IKE protocol, pre-shared key authentication
 SA 2nd 3rd
 SAD 2nd
 SPD
 transport mode
 transport mode, ESP protocol
 tunnel mode, ESP protocol 2nd
 tunneling mode
 versus L2TP 2nd
 wireless network security
 L2TP
 versus IPSec 2nd
 versus PPTP 2nd
 Windows XP client software configuration example 2nd 3rd
 LEAP 2nd
 dictionary attacks 2nd
 multimedia

 tracking state

 NAT, breaking via
 NTP
 router configuration/authentication 2nd 3rd
 OSPF
 network performance
 PASSV FTP
 reflexive ACL
 PASV FTP
 extended ACL 2nd 3rd
 PEAP 2nd 3rd
 TinyPEAP
 PPTP 2nd
 Cisco PIX VPDN configuration example 2nd 3rd 4th
 versus L2TP 2nd
 proxy firewall compatibility 2nd
 RIP
 network performance 2nd
 SNMP
 Big Brother system/network monitoring software
 exploits on
 monitoring local system attributes 2nd
 router hardening 2nd 3rd 4th 5th 6th 7th 8th 9th
 versions of
 SNMPv2p
 SNMPv3
 remote monitoring security 2nd
 SOAP
 bypassing firewalls
 interapplication communication 2nd
 SOCKS 2nd 3rd
 SOCKSv4
 SOCKSv5
 SSH
 public key authentication
 router attacks
 TCP
 CLOSE-WAIT state
 CLOSED state
 CLOSING state
 ESTABLISHED state
 filtering ports
 FIN-WAIT-1 state
 FIN-WAIT-2 state
 LAST-ACK state
 LISTEN state
 role in TCP/IP
 server-side ports
 state tables
 SYN-RCVD state

 SYN-SENT state
 TIME-WAIT state 2nd
 tracking state 2nd 3rd 4th 5th
 TCP/IP
 IP, function of
 IP, versions of 2nd
 network performance, MTU 2nd
 network performance, socket buffer sizes 2nd
 network performance, window sizes
 RFC 1323 extensions 2nd
 TCP, function of
 TFTP
 router configuration 2nd
 router hardening 2nd
 TLS
 network performance 2nd 3rd
 UDP
 filtering ports
 reflexive ACL
 server-side ports
 tracking state 2nd
 WPA 2nd
 dictionary attacks 2nd
proxies
 anonymizing
 JAP
 proxy chaining
 remote
 network security assessments
 network security assessments, access controls 2nd
 network security assessments, authentication 2nd 3rd

 network security assessments, client restrictions 2nd

 network security assessments, encryption
 reverse 2nd
 Citrix Metaframe
 Web
 logging
 Web browsing
proxy caches [See also proxy servers]
 freshness
proxy chaining
 Onion routing
 SocksChain
proxy firewalls
 advantages of 2nd
 configuring
 disadvantages of 2nd 3rd
 FTP 2nd
 FTP, bypassing via
 functions of
 FWTK 2nd
 Gauntlet 2nd
 generic proxies 2nd
 high-risk services
 internal protected networks
 market availability 2nd 3rd
 network discovery 2nd
 network performance 2nd
 network structures, hiding 2nd
 nontransparent
 request handling
 performance of
 perimeter defense, role in
 PORT command 2nd 3rd
 protocol compatibility 2nd
 protocol support
 protocol-aware logs
 RingZero Trojan exploit 2nd
 RETR command
 SOCKS protocol
 SOCKSv4 protocol
 SOCKSv5 protocol
 Squid
 transparent
 request handling, example of 2nd
 URL
 versus stateful firewalls
 VPN
proxy layers
 complex e-commerce site case studies 2nd 3rd
proxy servers [See also proxy caches]

 client awareness
 functions of
 initiators
 listeners
 SSL
 perimeter defenses
 uses of
proxy-ARP
 disabling 2nd
Ptacek, Thomas
 Insertion, Evasion and Denial of Service[COLON] Eluding Network Intrusion Detection [ITAL]
public key authentication
 SSH protocol
public key cryptography
 network performance
Public Key Infrastructures (PKI)
public keys (asymmetric key encryption algorithms)
Public Servers security zone, creating
public Web servers
 adversarial reviews
 determining attacker access 2nd 3rd
 adversarial reviews, determining impact of misconfigurations/vulnerabilities 2nd
 HP Virtual Vault
 adversarial reviews, determining attacker access 2nd 3rd
 adversarial reviews, determining impact of misconfigurations/vulnerabilities 2nd
 mkacct command
purchasing software
 demos
 evaulation checklists 2nd
 unsecurable software,handling 2nd
 user information, gathering 2nd

PUT attacks 2nd

PVLANs 2nd
 isolated ports
 promiscuous ports

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Qaz worms
Qos (Quality of Service)
 rate limiting 2nd
Quality of Service (QoS)
 rate limiting 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

r-commands (UNIX)
 deactivating
 SSH
 Telnet
RA (Registration Authorities)
 digital certificates
race conditions 2nd
RAT (Router Audit Tool) 2nd
rate limiting 2nd 3rd
 network switches
 QoS 2nd
 switch-type NIPS
realism (security policies)
recent changes, reviewing (troubleshooting process)
reconnaissance
 by fragments
 by pings
reconnaissance phase (network security assessments)
 DNS discovery 2nd
 IP address ranges, determining
 organization-specific data searches 2nd
 organizational Web presences 2nd
 reverse lookups
 search engines 2nd
 sensitive information searches
 whois searches
recovery phase (incident response)
recursive queries
Red Hat Linux
 WU-FTPD
redundancy
 firewalls 2nd 3rd
 geographic
 fault tolerance 2nd
 intrasite
 fault tolerance 2nd 3rd 4th 5th
 firewall redundancy 2nd 3rd
 switch redundancy 2nd
 intrasystem
 fault tolerance
 switches 2nd
reflexive ACL (access control lists) 2nd 3rd
 FTP 2nd
 ICMP
 named ACL 2nd
 outbound traffic 2nd
 PASV FTP
 TCP flags 2nd
 UDP
Regedit utility (Windows)
 Registry permissions, restricting 2nd
Regedit32 utility (Windows)
 Registry permissions, restricting 2nd
Registration Authorities (RA)
 digital certificates
Registry (Windows)
 permissions, restricting 2nd
remote access phase (network security assessments)
 VPN/remote proxies
 access controls 2nd
 authentication 2nd 3rd
 client restrictions 2nd
 encryption
 wardialing 2nd 3rd 4th
 wardriving 2nd 3rd
remote access services
 deactivating 2nd 3rd 4th

remote authentication

 routers
 SNMP 2nd 3rd
remote commands (UNIX)
 deactivating
 SSH
 Telnet
remote controlware
Remote Desktop service (Windows)
 deactivating
remote desktop software
 risks of 2nd
 single-session
 client integration
 perimeter defenses 2nd
 server integration 2nd
 uses of
 terminal servers
 client integration
 perimeter defenses
 server integration
 uses of 2nd
 VPN case studies 2nd 3rd
remote proxies
 network security assessments
 access controls 2nd
 authentication 2nd 3rd
 client restrictions 2nd
 encryption
Remote Registry Service (Windows)
 deactivating
remote system/network monitoring, security of 2nd 3rd 4th 5th
remote users
 null sessions 2nd
 r-commands (UNIX)
 deactivating
 Remote Desktop service (Windows)
 deactivating
 Remote Registry Service (Windows)
 deactivating
 Server service (Windows)
 deactivating
 Terminal Services (Windows)
 deactivating
removing/disabling (host hardening)
 OS components
renaming
 Administrator accounts (Windows)
 Root accounts (UNIX)
reports

 network log
 designing 2nd
reserved addresses
 ingress filtering
reserved IP addresses
 ingress filtering 2nd 3rd
resource separation
 dialup connections 2nd
 LAN-connected desktops 2nd
 laptops 2nd
 mail relays 2nd
 configuring 2nd 3rd 4th
 justifying mail server separation 2nd
 risk 2nd
 security zones
 creating via multiple subnets 2nd 3rd 4th
 creating via multiple subnets, broadcast domains 2nd 3rd 4th 5th
 creating via single subnets
 creating via single subnets, dedicated servers 2nd 3rd
 creating via single subnets, security zones within servers 2nd 3rd
 Split DNS 2nd
 configuring 2nd 3rd 4th
 justifying
 VLAN
 firewalls 2nd
 private VLANs 2nd
 routers 2nd
 switches
 VLAN-hopping attacks 2nd
 VPN 2nd
 wireless systems 2nd 3rd

resource-sharing services

 deactivating 2nd
response time (performance)
 defining
restricting
 file permissions
 UNIX 2nd
 Windows
 Windows, NTFS
 Registry permissions
 Windows 2nd
results analysis/documentation phase (network security assessments) 2nd 3rd
 best practices
 executive summaries 2nd 3rd
 introductions
 risk, prioritizing findings by
Retina vulnerability scanner (eEye Security) 2nd
RETR command (proxy firewalls)
retrieving
 network log file data 2nd
reverse lookups
Reverse Path Forwarding (RFP)
 router hardening
reverse proxies 2nd
 Citrix MetaFrame
reviewing recent changes (troubleshooting process)
RFC 1323 extensions 2nd
RFP (Reverse Path Forwarding)
 router hardening
RingZero Trojan exploit 2nd
RIP (Routing Information Protocol)
 network performance 2nd
risk
 network security assessment documentation, prioritizing findings for
 network security assessment techniques
 resource separation 2nd
 versus cost 2nd
 versus vulnerability
risk communication (security policies) 2nd
risk identification (security policies)
root accounts (UNIX)
 host hardening 2nd
Root accounts (UNIX)
 renaming
route authentication 2nd
route command (UNIX)
 host routing tables, displaying
route metrics
route print command
 host routing tables, displaying

router configurations
 auto secure command (Cisco) generated
 examples of 2nd 3rd 4th 5th 6th
router link encryption case study 2nd
router logs
 analyzing 2nd
 Cisco router logs 2nd
routers
 AAA authentication command
 ACL
 deny 2nd
 extended
 extended, blocking ICMP echo requests 2nd
 extended, established keyword 2nd 3rd 4th
 extended, filtering ICMP messages 2nd
 extended, filtering ports
 extended, friendly net IP address access 2nd
 extended, FTP 2nd 3rd
 extended, PASV FTP 2nd 3rd
 extended, ports
 extended, rule order 2nd
 extended, syntax of 2nd
 fragments 2nd
 implicit denies 2nd
 in/out keywords 2nd 3rd
 IPv6 2nd
 log keywords
 named 2nd
 named, adding/deleting entries 2nd 3rd
 named, reflexive ACL
 numbered

 planning rule order

 reflexive 2nd
 reflexive, FTP 2nd
 reflexive, ICMP
 reflexive, named ACL 2nd
 reflexive, outbound traffic 2nd
 reflexive, PASV FTP
 reflexive, TCP flags 2nd
 reflexive, UDP
 standard, applying to interfaces
 standard, blacklisting 2nd 3rd
 standard, egress filtering 2nd
 standard, friendly net IP address access 2nd
 standard, ingress filtering 2nd 3rd 4th
 standard, syntax of
 wildcard masks 2nd 3rd 4th
 administration points, locking down 2nd 3rd
 all-in-one security solutions
 ACLs
 CBAC
 CBAC, inspect statements
 CBAC, stateful inspection
 NAT 2nd
 NAT, configuring 2nd
 NAT, viewing translation tables
 PAT 2nd
 PAT, viewing translation tables
 router placement 2nd
 attacks to
 logins
 SNMP 2nd
 SSH protocol
 border
 adversarial reviews, determining impact of misconfigurations/vulnerabilities 2nd 3rd 4th 5th
 defining
 egress filters, adversarial reviews 2nd
 functions of 2nd
 ICMP destination unreachable messages
 ingress filters, adversarial reviews 2nd
 No CDP Messages filter setting, adversarial reviews 2nd
 No IP Directed Broadcasts filter setting, adversarial reviews
 No IP Unreachable Messages filter setting, adversarial reviews
 No Source Routing filter setting, adversarial reviews
 Nokia IP350
 Nokia IP350, rulebase for
 ping floods
 preventing access
 role in perimeter defense
 Cisco
 access list rules 2nd

 IPSec VPN configuration examples 2nd 3rd 4th 5th 6th 7th 8th 9th
 Cisco 3660
 Cisco shorthand
 configuring 2nd 3rd 4th
 TFTP 2nd
 CPU usage
 proc command 2nd
 default routes
 defense-in-depth security structures
 NBAR 2nd 3rd 4th 5th 6th
 packet filtering 2nd
 defining
 distribute-list command
 distribute-list out command
 dynamic routing protocols 2nd
 route authentication 2nd
 update blocking 2nd 3rd
 functions of 2nd
 hardening
 auditing via RAT 2nd
 auto securing 2nd
 Cisco TCP Keepalives services
 console ports 2nd
 disabling CDP
 disabling Finger services 2nd
 disabling PAD services
 disabling proxy-ARP 2nd
 disabling small services 2nd
 disabling source routing
 FTP
 ICMP blocking

 ICMP blocking, directed broadcasts

 ICMP blocking, redirects
 ICMP blocking, unreachables 2nd 3rd
 IOS updates
 NTP configuration/authentication 2nd 3rd
 RFP
 router logging 2nd 3rd 4th
 security advisories
 SNMP 2nd 3rd
 SNMP, authentication/passwords 2nd 3rd 4th
 SNMP, disabling servers 2nd
 spoofing attacks
 SSH 2nd 3rd
 Telnet 2nd 3rd
 TFTP 2nd
 internal subnetting
 ip route statements
 IPSec
 VPN
 key IDs
 Layer 3 switching
 logging 2nd 3rd 4th
 login banners, creating 2nd
 login local command
 network filtering
 passive interface command
 performance 2nd
 NBAR
 route metrics
 secretkeys
 secure perimeter design 2nd 3rd 4th 5th 6th 7th
 access control 2nd
 basic filtering 2nd
 ISP controlled routers 2nd
 service password encryption command
 static routes
 storage
 validate-update-source command
 VLAN
 resource separation 2nd
routing
 packets
 implicit permits
routing protocols
 OSPF
 network performance
 RIP
 network performance 2nd
routing tables
 displaying

RPC (Remote Procedure Call) services
 NFS services
rpm utility
 software, removing
rules
 troubleshooting
 compromising security
 documentation 2nd
 obvious problems
 one change at a time
 openmindedness
 second opinions
 staying focused 2nd
rules (ACL)
 rule order, planning

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

SA (security associations) 2nd 3rd
SAD (security association databases) 2nd 3rd
salt, defining
Samhain file integrity checker utility
SandStorm Enterprises PhoneSweep
 wardialing 2nd
SANS Institute
 Computer Security Incident Handling Step by Step [ITAL]
SANS ISC (Internet Storm Center)
 IP address probes, tracking 2nd
SANS Top 20 Vulnerabilities list
satellite-based network performance case study 2nd
scanners
 fping utility
 Nmap
 network security assessments 2nd
 version scans 2nd
 pinger utility
 SuperScan 2nd
 vulnerability 2nd
 eEye Security Retina 2nd
 GFI LANguard Network Security Scanner 2nd 3rd 4th
 ISS Internet scanner 2nd 3rd 4th
 limiting tests
 Nessus 2nd 3rd 4th 5th
 Nessus, NASL 2nd
 Nessus, plug-ins 2nd
scanning software
 perimeter configuration changes 2nd
scope (security policies)
scope, determining (network security assessments)
 assessment logistics
 assessment technique risk levels
 documentation
screened subnet networks
 access lists
 examples of 2nd 3rd 4th 5th 6th 7th
screened subnets
 bastion hosts
 defining
 defining 2nd
 DNS servers 2nd
script kiddies [See also Nimda worms]
 credit card exploits
 secure perimeter design 2nd
SDN (Self-Defending Networks) 2nd 3rd 4th
 NAC 2nd 3rd 4th
search engines
 Google
 inurl search extensions
 Link search extensions 2nd
 Google hacking
 johnn.ihackstuff.com website
 network security assessments 2nd
searches
 keyword (network log analysis)
 network log file data 2nd
second opinions (troubleshooting rules)
secretkeys
Secure Cache Against Pollution check box (Windows 2000)
secure perimeter design
 attacker type, determining
 determined insiders 2nd
 determined outsiders 2nd 3rd
 script kiddies 2nd
 worms 2nd 3rd
 business requirements, determining

 business-related services 2nd

 cost 2nd 3rd
 fault tolerance
 fault tolerance, geographic redundancy 2nd
 fault tolerance, intrasite redundancy 2nd 3rd 4th 5th
 fault tolerance, intrasystem redundancy
 performance 2nd
 performance, detailed logs 2nd
 performance, encryption 2nd
 performance, inline security devices
 case studies
 complex e-commerce business sites 2nd
 complex e-commerce business sites, DMZ 2nd 3rd 4th
 complex e-commerce business sites, internal networks 2nd
 complex e-commerce business sites, Internet 2nd 3rd
 complex e-commerce business sites, proxy layers 2nd 3rd
 complex e-commerce business sites, security networks 2nd 3rd 4th
 small businesses with basic Internet presence 2nd 3rd 4th 5th 6th 7th
 small e-commerce business sites 2nd 3rd 4th 5th 6th 7th 8th 9th
 telecommuters using broadband connections 2nd 3rd 4th 5th 6th
 cost, determining 2nd
 design elements
 firewalls 2nd
 firewalls, access control 2nd
 firewalls, basic filtering 2nd
 firewalls, inline 2nd
 firewalls, ISP controlled routers 2nd
 firewalls, parallel 2nd 3rd
 firewalls, VPN interaction 2nd 3rd 4th 5th 6th
 routers 2nd 3rd 4th
 routers, access control 2nd
 routers, baic filtering 2nd
 routers, ISP controlled 2nd
 VPN, firewall interaction 2nd 3rd 4th 5th 6th
 network composition, determining
 potential threats, determining
 resource protection
 bridges 2nd 3rd
 copiers
 IP-based telephony systems
 modems 2nd
 PBX systems
 printers
 routers 2nd 3rd
 servers 2nd
 switches 2nd 3rd
 voice mail systems
 workstations 2nd
securing
 routers

 auto securing 2nd
security
 compromising (troubleshooting rules)
 VPN 2nd 3rd
security advisories
 routers
security association databases (SAD) 2nd 3rd
security associations (SA) 2nd 3rd
security auditing (IDS)
security bulletins
 MS04-036 2nd
security logs
 auditing
 UNIX 2nd 3rd
 Windows 2nd
security networks
 complex e-commerce site case studies 2nd 3rd 4th
security plans, developing
 attacker type, determining
 determined insiders 2nd
 determined outsiders 2nd 3rd
 script kiddies 2nd
 worms 2nd 3rd
 business requirements, determining
 business-related services 2nd
 cost 2nd 3rd
 fault tolerance
 fault tolerance, geographic redundancy 2nd
 fault tolerance, intrasite redundancy 2nd 3rd 4th 5th
 fault tolerance, intrasystem redundancy
 performance 2nd

 performance, detailed logs 2nd

 performance, encryption 2nd
 performance, inline security devices
 case studies
 complex e-commerce business sites 2nd
 complex e-commerce business sites, DMZ 2nd 3rd 4th
 complex e-commerce business sites, internal networks 2nd
 complex e-commerce business sites, Internet 2nd 3rd
 complex e-commerce business sites, proxy layers 2nd 3rd
 complex e-commerce business sites, security networks 2nd 3rd 4th
 small businesses with basic Internet presence 2nd 3rd 4th 5th 6th 7th
 small e-commerce business sites 2nd 3rd 4th 5th 6th 7th 8th 9th
 telecommuters using broadband connections 2nd 3rd 4th 5th 6th
 cost, determining 2nd
 design elements
 firewalls 2nd
 firewalls, access control 2nd
 firewalls, basic filtering 2nd
 firewalls, inline 2nd
 firewalls, ISP controlled routers 2nd
 firewalls, parallel 2nd 3rd
 firewalls, VPN interaction 2nd 3rd 4th 5th 6th
 routers 2nd 3rd 4th
 routers, access control 2nd
 routers, basic filtering 2nd
 routers, ISP controlled 2nd
 VPN, firewall interaction 2nd 3rd 4th 5th 6th
 network composition, determining
 potential threats, determining
 resource protection
 bridges 2nd 3rd
 copiers
 IP-based telephony systems
 modems 2nd
 PBX systems
 printers
 routers 2nd 3rd
 servers 2nd
 switches 2nd 3rd
 voice mail systems
 workstations 2nd
security policies
 access 2nd
 administrative controls
 changing 2nd
 control
 defense in depth architecture, role in
 defining
 developing
 authority

 clarity
 communicating risks 2nd
 conciseness 2nd
 determining compliance
 expiration 2nd
 identifying risks
 realism
 scope
 specificity
 unwritten policies
 writing policies
 writing policies, determining corporate culture 2nd 3rd 4th 5th
 writing policies, developing policy tone
 firewalls as 2nd
 hallmarks of
 IDS 2nd
 implementing
 email handling 2nd
 incident handling 2nd
 presumption of privacy
 limited personal use policies
 unenforceable policies 2nd
 backdoors 2nd
 email 2nd 3rd
 Outlook (MS) 2nd
 sneaker net
 TCP Porrt 80
 VLVHLP
 writing 2nd
 writing rule sets
 updating

 writing

security policy databases (SPD)
Security Rule Wizard (Windows XP)
 IPSec parameters, establishing 2nd 3rd
 opening
security zones
 Corporate Servers zone, creating 2nd
 Corporate Workstations zone, creating
 multiple subnets, creating via 2nd 3rd 4th
 broadcast domains 2nd 3rd 4th 5th
 Public Servers zone, creating
 single subnets, creating via
 dedicated servers 2nd 3rd
 security zones within servers 2nd 3rd
 switches
segmenting resources
 dialup connections 2nd
 LAN-connected desktops 2nd
 laptops 2nd
 mail relays 2nd
 configuring 2nd 3rd 4th
 justifying mail server separation 2nd
 security zones
 creating via multiple subnets 2nd 3rd 4th
 creating via multiple subnets, broadcast domains 2nd 3rd 4th 5th
 creating via single subnets
 creating via single subnets, dedicated servers 2nd 3rd
 creating via single subnets, security zones within servers 2nd 3rd
 Split DNS 2nd
 configuring 2nd 3rd 4th
 justifying
 VLAN
 firewalls 2nd
 private VLANs 2nd
 routers 2nd
 switches
 VLAN-hopping attacks 2nd
 VPN 2nd
 wireless systems 2nd 3rd
segregating resources
 risk 2nd
Self-Defending Networks (SDN) 2nd 3rd 4th
 NAC 2nd 3rd 4th
sensors (IDS)
 deploying 2nd
 encrypted network traffic
 external networks 2nd
 firewalls 2nd
 high volume network traffic
 IDS management networks 2nd

 internal networks 2nd 3rd
 packet filters
 security maintenance 2nd
 spanning ports
 switches 2nd
Sentivist (NFR) 2nd
Sentry (LaBrea Technologies) 2nd
separating resources
 LAN-connected desktops 2nd
 laptops 2nd 3rd 4th
 mail relays 2nd
 configuring 2nd 3rd 4th
 justifying mail server separation 2nd
 risk 2nd
 security zones
 creating via multiple subnets 2nd 3rd 4th
 creating via multiple subnets, broadcast domains 2nd 3rd 4th 5th
 creating via single subnets
 creating via single subnets, dedicated servers 2nd 3rd
 creating via single subnets, security zones within servers 2nd 3rd
 Split DNS 2nd
 configuring 2nd 3rd 4th
 justifying
 VLAN
 firewalls 2nd
 private VLANs 2nd
 routers 2nd
 switches
 VLAN-hopping attacks 2nd
 VPN 2nd
 wireless systems 2nd 3rd

Server service (Windows)

 deactivating
server-side ports
 TCP
 UDP
servers
 cacheflow 2nd
 dedicated
 creating security zones 2nd 3rd
 dedicating
 disabling
 via routers 2nd
 DNS
 DMZ 2nd
 recursive queries
 screened subnets 2nd
 source port 53 queries
 Split DNS, configuring 2nd 3rd 4th
 Split DNS, justifying
 zone transfers
 extranet
 adversarial reviews, determining attacker access 2nd 3rd
 adversarial reviews, determining impact of misconfigurations/vulnerabilities 2nd
 rulebases
 firewalls
 IPSec packet-filtering 2nd
 PF 2nd 3rd 4th
 versus workstation firewalls 2nd
 HP Virtual Vault
 mkacct command
 IDS
 categories of
 deploying 2nd
 file integrity checkers 2nd
 file integrity checkers, AIDE
 file integrity checkers, Samhain
 file integrity checkers, Tripwire
 file integrity checkers, Tripwire Manager
 file integrity checkers, Winalysis
 log file monitoring utilities, Logcheck 2nd
 network connection monitoring utilities, BlackICE 2nd
 network connection monitoring utilities, PortSentry 2nd
 versus network IDS 2nd
 multiuser
 proxy [See also proxy caches]
 client awareness
 functions of
 initiators
 listeners
 public Web

 adversarial reviews, determining attacker access 2nd 3rd
 secure perimeter design 2nd
 security zones, creating 2nd 3rd
 sensitivity to attacks
 SSL proxy
 perimeter defenses
 uses of
 terminal
 client integration
 perimeter defenses
 server integration
 uses of 2nd
 VPN case studies 2nd 3rd
 Web
 adversarial reviews, determining impact of misconfigurations/vulnerabilities 2nd
 attacks on 2nd 3rd
 PUT attacks 2nd
 Web cache
 Squid Web Cache Proxy software
service discovery (network service discovery)
 banner retrieval 2nd 3rd 4th
 Nmap 2nd
 system matrixes 2nd
 Telnet 2nd
service password encryption command (routers)
services
 intrusion detection
 distributed
 outsourced monitoring
SGI IRIX system call trace utility
SHA-1 (Secure Hash Algorithm-1) hash algorithms

Shallow Packet Inspection

Shamir, Adi
 Weakness in the Key Scheduling Algorithm of RC4 [ITAL] 2nd
shared key encryption algorithms
 DES
shorthand
 Cisco routers
show conn command (Cisco PIX stateful firewalls) 2nd
SID (security identifiers)
 Administrator accounts (Windows)
signature detection (IDS) 2nd
 evasion techniques, detecting
 false positive/negative signatures 2nd 3rd
 unwanted alerts
signatures
 false positives/negatives 2nd 3rd
 IDS evasion techniques, detecting
 Nimda worm 2nd
 updating
 antivirus software
signatures (digital)
 defining 2nd
SIM (security information mangement) software
 network log analysis, automating
single address NAT [See PAT]
single-session remote desktop software
 client integration
 perimeter defenses 2nd
 server integration 2nd
 uses of
single-system applications
 component placement
SirCam
 security policies, writing
small businesses
 case studies
 companies with basic Internet presence 2nd 3rd 4th 5th 6th 7th
small e-commerce site case studies 2nd 3rd 4th 5th 6th 7th 8th 9th
SmartDashboard (Check Point FireWall-1 stateful firewalls)
SmartDefense (Check Point Firewall-1 stateful firewalls) 2nd
Smartline Active Ports 2nd
SmartView Tracker (Check Point Firewall-1)
Smurf attacks
smurf attacks 2nd
smurfing attacks
 network performance 2nd
sneaker net
 unenforcable security policies
sniffers
 wireless networks

SNMP
 Big Brother system/network monitoring software
 local system attributes, monitoring 2nd
 router attacks 2nd
 versions of
SNMP (Simple Network Management Protocol)
 community strings
 deactivating 2nd
 exploits on
 router hardening 2nd 3rd
 authentication/passwords 2nd 3rd 4th
 disabling servers 2nd
SNMPv2p
SNMPv3
 remote monitoring security 2nd
Snort
 vulnerability assessment
Snort IDS software 2nd
Snort-Inline
SOA (Service-Oriented Architecture)
SOAP
 firewalls, bypassing
SOAP (Simple Object Access Protocol)
 interapplication communication 2nd
SOCKS 2nd
SOCKS protocol
SocksChain
 proxy chaining
SOCKSv4 protocol
SOCKSv5 protocol
software

 active scanning

 perimeter configuration changes 2nd
 AirCrack
 auditing wireless encryption
 AirSnort
 auditing wireless encryption 2nd
 anitvirus
 compatibility of 2nd
 DoS attacks
 EICAR test files
 gateways 2nd
 limitations of 2nd 3rd 4th
 malware mutation detection
 packers 2nd
 polymorphic malware detection
 signature updates
 spyware
 strengths of 2nd
 antivirus 2nd
 compromised hosts
 role in internal network defense
 Asleap
 auditing wireless encryption
 Big Brother system/network monitoring 2nd 3rd 4th
 architecture of
 defining hosts/procedures 2nd
 monitoring local system attributes 2nd 3rd
 network/remote service accessibility 2nd 3rd
 SNMP support
 BlackWidow
 BSD Airtools
 auditing wireless encryption
 Canvas exploitation library software
 Core Impact exploitation library software
 Crack 2nd
 demos
 evaluation checklists 2nd
 fping network scanner
 Hackers Choice THC-Scan
 host hardening automation
 HP OpenView system/network monitoring 2nd
 intrusion detection 2nd
 John the Ripper
 Kismet
 auditing wireless network signal leakage 2nd
 L0phtCrack 2nd
 malware
 Metasploit exploitation library software
 ModemScan
 Nessus vulnerability scanner

 NetScanTools Pro
 Netstumbler
 auditing wireless network signal leakage
 network defense design, recommendations for 2nd
 network security case studies
 customer feedback systems, architecture recommendations
 customer feedback systems, deployment locations 2nd
 Web-based online billing applications
 Web-based online billing applications, architecture recommendations 2nd
 Web-based online billing applications, software deployment locations 2nd
 Nmap host/port location scanner
 NDiff differential scanners 2nd
 password guessing tools
 password-filtering
 pinger network scanner
 remote controlware
 remote desktop
 risks of 2nd
 single-session
 single-session, client integration
 single-session, perimeter defenses 2nd
 single-session, server integration 2nd
 single-session, uses of
 terminal servers
 terminal servers, client integration
 terminal servers, perimeter defenses
 terminal servers, server integration
 terminal servers, uses of 2nd
 terminal servers, VPN case studies 2nd 3rd
 removing (host hardening)
 Add/Remove Programs applet (Windows)

 UNIX operating systems 2nd

 SandStorm Enterprises PhoneSweep 2nd
 SIM
 automating network log analysis
 sniffers
 wireless networks
 Snort
 vulnerability assessment
 Snort IDS 2nd
 Squid Web Cache Proxy
 SuperScan network scanner 2nd
 testing
 host security 2nd
 network security 2nd
 unsecurable, handling 2nd
 user information, gathering 2nd
 VMware 2nd
 VPN proprietary
 WEP Wedgie
 auditing wireless encryption
 WEPCrack
 auditing wireless encryption 2nd
 WPACrack
 auditing wireless encryption
software architecture
 applications
 administrator access, external access 2nd
 administrator access, security
 defining
 deploying
 encryption
 evaluating security 2nd
 host security
 interapplication communications, CORBA
 interapplication communications, DCOM 2nd
 interapplication communications, HTTP
 interapplication communications, IIOP
 interapplication communications, SOA
 interapplication communications, SOAP 2nd
 interapplication communications, Web services 2nd 3rd
 internal use exclusivity 2nd
 multitier, component placement 2nd
 network compatibility, firewalls
 network compatibility, NAT 2nd
 operating system support
 performance/reliability 2nd
 security versus performance 2nd
 single-system, component placement
 defining 2nd 3rd
 firewalls

 IP protocols
 network security case studies
 customer feedback systems
 customer feedback systems, architecture recommendations
 customer feedback systems, software deployment locations 2nd
 Web-based online billing applications
 Web-based online billing applications, architecture recommendations 2nd
 Web-based online billing applications, software deployment locations 2nd
 packet-filtering
Solaris
 Check Point FireWall-1 stateful firewalls 2nd 3rd 4th 5th 6th 7th
 pkg program
 software, removing
source addresses (packets)
source port 53 queries
 DNS servers
source routing
 disabling
SPAN ports
spanning ports
 IDS sensor placement
SPD (security policy databases)
specificity (security policies)
Split DNS
 configuring 2nd 3rd 4th
 functions of 2nd
 justifying
Split Horizon DNS [See Split DNS]
spoofed IP addresses
 blocking
spoofing

 MAC addresses 2nd

 router hardening
spoofing attacks
 DNS 2nd
spyware
 antivirus software
 blocking 2nd
 firewall tunnels 2nd
Squid
Squid Web Cache Proxy software
SSH
 crypto key generate rsa command
 domain command
 exec-timeout x command
 host command
 login local command
 name command
 pass command
 router hardening 2nd 3rd
 transport input ssh command
 user command
SSH (Secure Shell)
 file transfers
 port forwarding
 standard connections
 client integration
 perimeter defenses
 server integration
 uses of
 tunneling
 client integration
 performance
 perimeter defenses
 server integration
 uses of
 vulnerabilities of 2nd
SSH protocol
 public key authentication
 router attacks
SSH tunnels
 client integration
 performance
 perimeter defenses
 server integration
 uses of
SSID (Service Set Identifiers)
 broadcasts, disabling 2nd 3rd 4th
 BSSID
 ESSID
SSL (Secure Socket Layer)

 deep packet inspection
SSL (Secure Sockets Layer) 2nd [See also protocols; TLS]
 OWA 2nd
 perimeter defenses
 proxy servers
 perimeter defenses
 uses of
 standard connections
 client integration 2nd
 perimeter defenses 2nd
 server integration 2nd
 uses of 2nd
 tunneling 2nd 3rd
 uses of 2nd
 VPN case studies 2nd
SSL proxy servers
 perimeter defenses
 uses of
SSL tunneling 2nd 3rd
SSL Web server case study
standard ACL (access control lists)
 blacklisting 2nd 3rd
 egress filtering 2nd
 ingress filtering 2nd 3rd 4th
 interfaces, applying to
 IP addresses
 friendly net access 2nd
 sytnax of
standard SSH connections
 client integration
 perimeter defenses

 server integration

 uses of
standard SSL connections
 client integration 2nd
 perimeter defenses 2nd
 server integration 2nd
 uses of 2nd
state
 CLOSE-WAIT
 TCP connections
 CLOSED
 TCP connections
 CLOSING
 TCP connections
 defining 2nd
 ESTABLISHED
 TCP connections
 FIN-WAIT-1
 TCP connections
 FIN-WAIT-2
 TCP connections
 LAST-ACK
 TCP connections
 LISTEN
 TCP connections
 SYN-RCVD
 TCP connections
 SYN-SENT
 TCP connections
 TIME-WAIT
 TCP connections 2nd
 tracking
 clustering firewalls 2nd
 FTP 2nd
 HTTP 2nd
 ICMP 2nd
 multimedia protocols
 TCP 2nd 3rd 4th 5th
 UDP 2nd
state tables
 Check Point FireWall-1 stateful firewalls 2nd 3rd
 defining
 IPTable examples 2nd
 state, tracking
 clustering firewalls 2nd
 TCP communication sessions
stateful filtering
 defining 2nd
 IPTables
stateful firewalls

 application layer commands
 application protocol inspection
 troubleshooting 2nd 3rd
 Check Point FireWall-1 2nd 3rd 4th 5th
 configuring for stateful inspection 2nd
 implied rules
 protocol support 2nd
 SmartDashboard
 SmartDefense 2nd
 state tables
 state tables, example of 2nd
 timeouts 2nd
 Cisco PIX
 fixup command 2nd 3rd 4th
 FWSM 2nd
 inbound/outbound traffic connections 2nd
 PDM 2nd
 PDM, Configuration screen 2nd
 PDM, Hosts/Networks screen
 PDM, System Properties screen
 PDM, Translation Rules screen
 show conn command 2nd
 FTP control sessions
 functions of 2nd
 Juniper Networks NetScreen 2nd
 multimedia protocols
 Netfilter/IPTables 2nd 3rd 4th 5th 6th
 input rules 2nd
 IPv6
 output rules 2nd 3rd
 state tables, example of 2nd

 network performance 2nd

 perimeter defense, role in 2nd
 port command (FTP)
 versus proxy firewalls
stateful inspection
 CBAC
 Check Point FireWall-1 stateful firewalls, configuring for 2nd
 defining
static packet filters
 perimeter defense, role in 2nd 3rd
static routes
storage
 routers
strace system call trace utility 2nd
strings utility
 application layer, troubleshooting
subnet networks
 access lists
 examples of 2nd 3rd 4th 5th 6th 7th
subnets
 multiple
 creating security zones 2nd 3rd 4th
 creating security zones, broadcast domains 2nd 3rd 4th 5th
 screened
 bastion hosts
 defining 2nd
 DNS servers 2nd
 single
 creating security zones
 creating security zones, dedicated servers 2nd 3rd
 creating security zones, within servers 2nd 3rd
SubSeven
 Trojan horse exploits
SuperScan network scanner 2nd
switch trunking
switch-type NIPS (network intrusion prevention systems)
 deployment recommendations
 auto-update mechanisms 2nd
 budgeting for
 change-mangement mechanisms
 documenting use/functionality 2nd
 identifying false positive/false negative test procedures
 NIPS/NIDS combinations
 report-only mode product reviews
 detection capabilities
 environmental anomaly analysis
 evasion resistance
 latency requirements
 organizational policy enforcement
 passive analysis 2nd

 product development
 protocol scrubbing
 rate limiting
 security 2nd
 stability demands
 throughput demands
 TippingPoint UnityOne IPS 2nd
 TopLayer Attack Mitigator
switched networks
 traces, troubleshooting 2nd
 versus nonswitched networks 2nd
switches
 IDS sensor placement 2nd
 intelligent (NIPS) 2nd
 Layer 3 switching
 network card teaming
 NSS
 redundancy 2nd
 secure perimeter design 2nd 3rd
 security zones
switches (network)
 rate limiting
Symmantec firewalls
 adversarial reviews
 determining attacker access 2nd 3rd 4th 5th 6th 7th
symmetric key cryptography
 algorithm key sizes
 network performance 2nd
symmetric key encryption [See shared key encryption]
symptoms, collecting (troubleshooting process) 2nd
SYN (synchronization) flags

SYN flooding

 network performance 2nd 3rd
SYN scans
 Nmap
SYN-RCVD state (TCP connections)
SYN-SENT state (TCP connections)
SYN/FIN attacks 2nd
Syslog facility (UNIX)
 security logs, auditing
system call interception (HIPS)
system call trace utilities 2nd
 ktrace
 SGI IRIX
 strace 2nd
system enumeration (network service discovery)
 ICMP scans 2nd
 packet traces 2nd
 TCP/UDP packet scans 2nd
system matrixes
 network security assessments 2nd
system monitoring (perimeter security maintenance)
 alerts
 Big Brother software 2nd 3rd 4th
 defining hosts/procedures 2nd
 monitoring local system attributes 2nd 3rd
 network/remote service accessibility 2nd 3rd
 HP OpenView software 2nd
 procedures, establishing 2nd
 defining hosts/procedures 2nd 3rd
 monitoring local system attributes 2nd 3rd 4th 5th 6th
 network/remote service accessibility 2nd 3rd 4th
 remote monitoring security 2nd 3rd 4th 5th
System Properties screen (PDM)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

T1 lines
 burstable
tables
 state
 Check Point FireWall-1 stateful firewalls 2nd 3rd
 defining
 IPTable examples 2nd
 TCP communication sessions
tag headers
TCP (Transmission Control Protocol)
 ports
 filtering
 server-side ports
 TCP/IP, role in
TCP (Transport Control Protocol)
 state
 CLOSE-WAIT
 CLOSED
 CLOSING
 ESTABLISHED
 FIN-WAIT-1
 FIN-WAIT-2
 LAST-ACK
 LISTEN
 SYN-RCVD
 SYN-SENT
 TIME-WAIT 2nd
 tracking 2nd 3rd 4th 5th
 state tables
TCP flags
 network log analysis 2nd
 reflexive ACL 2nd
TCP Keepalives services (Cisco)
 router hardening
TCP packet scans
 network security assessments 2nd
TCP Port 80
 unenfoceable security policies
TCP Wrappers 2nd
TCP/IP
 network performance
 ICMP messages 2nd
 MTU 2nd
 socket buffer sizes 2nd
 window sizes
 RFC 1323 extensions 2nd
TCP/IP (Transmission Control Protocol/Internet Protocol) protocols
 IP, function of
 IP, versions of 2nd
 TCP, function of
Tcpdump
 link layer troubleshooting 2nd
 network layer troubleshooting
 transport layer troubleshooting 2nd 3rd 4th
telecommuters
 case studies
 broadband connections 2nd 3rd 4th 5th 6th
telephony systems
 secure perimeter design
Telnet 2nd 3rd 4th 5th
 # command
 access lists
 VTY 2nd 3rd
 access-class command 2nd
 border router attacks
 preventing
 encryption

 exec-timeout command

 network security assessments 2nd
 no password command
 router hardening 2nd 3rd
terminal servers
 client integration
 perimeter defenses
 server integration
 uses of 2nd
 VPN case studies 2nd 3rd
Terminal Services (Windows)
 deactivating
testing
 antivirus software
 EICAR test files
 IPSec Windows XP configurations
 software
 host security 2nd
 network security 2nd
testing hypothesis (troubleshooting process)
 analyzing results
TFTP
 router configuration 2nd
 router hardening 2nd
THC-Scan (Hackers Choice)
 wardialing
three-way handshakes
throughput (performance)
 defining
Time service
 disabling 2nd
TIME-WAIT state (TCP connections) 2nd
timeouts
 Check Point FireWall-1 stateful firewalls 2nd
 exec-timeout command (Telnet)
timestamps
 network log analysis
 network log file analysis
TinyPEAP (Protected Extensible Authentication Protocol)
TippingPoint UnityOne IPS 2nd
TLS (Transport Layer Security) protocol [See also deep packet inspection; SSL]
 network performance 2nd 3rd
To DMZ rulebase (NetScreen-100 external firewall)
tone (security policies)
TopLayer Attack Mitigator
Traceroute 2nd
 network security assessments 2nd
tracert
 network security assessments 2nd
traces

 switched networks, troubleshooting 2nd
tracking
 IP address probes 2nd
transform sets
Translation Rules screen (PDM)
translation tables, viewing
 NAT
 PAT
transparent proxy firewalls
 request handling, example of 2nd
transport input ssh command (SSH)
 router hardening
transport layer
 troubleshooting
 Active Ports (Smartline) 2nd
 Ethereal
 Fport (Foundstone)
 hping utility 2nd 3rd
 lsof utility
 Netcat 2nd 3rd
 Netstat 2nd 3rd
 PacketCrafter (Komodia) 2nd
 Tcpdump 2nd 3rd 4th
 Telnet 2nd 3rd 4th
transport layer cryptography
 network performance 2nd 3rd
transport layer encryption
 VPN
transport mode (IPSec)
 ESP protocol
Tripwire file integrity checker utility

Tripwire Manager file integrity checker utility

Trojan horses
 SubSeven exploits
trojans
 RingZero Trojan exploit 2nd
troubleshooting
 application layer
 BinText utility 2nd
 Dig
 ldd utility
 Nslookup 2nd 3rd
 strings utility
 system call trace utilities 2nd
 application protocol inspection via stateful firewalls 2nd 3rd
 firewalls
 FW Monitor 2nd
 Telnet
 link layer
 ARP 2nd 3rd
 ifconfig utility
 ipconfig utility
 Tcpdump 2nd
 network layer 2nd
 ifconfig utility
 ipconfig utility 2nd
 Netstat 2nd
 ping utility
 Tcpdump
 Traceroute 2nd
 network log files
 performance
 process of
 analyzing hypothesis test results
 collecting symptoms 2nd
 forming hypothesis 2nd
 reviewing recent changes
 testing hypothesis
 rules of
 compromising security
 documentation 2nd
 obvious problems
 one change at a time
 openmindedness
 second opinions
 staying focused 2nd
 switched networks
 traces 2nd
 tools 2nd
 Active Ports (Smartline) 2nd
 ARP 2nd 3rd

 BinText utility 2nd
 Dig
 Ethereal
 Fport (Foundstone)
 FW Monitor 2nd
 hping utility 2nd 3rd 4th
 ifconfig utility 2nd
 ipconfig utility 2nd 3rd
 ldd utility
 lsof utility
 Netcat 2nd 3rd
 Netstat 2nd 3rd 4th 5th
 Nslookup 2nd 3rd
 PacketCrafter (Komodia) 2nd
 ping utility
 strings utility
 system call trace utilities 2nd
 Tcpdump 2nd 3rd 4th 5th 6th 7th
 Telnet 2nd 3rd 4th
 Traceroute 2nd
 UNIX versus Windows
 transport layer
 Active Ports (Smartline) 2nd
 Ethereal
 Fport (Foundstone)
 hping utility 2nd 3rd
 lsof utility
 Netcat 2nd 3rd
 Netstat 2nd 3rd
 PacketCrafter (Komodia) 2nd
 Tcpdump 2nd 3rd 4th

 Telnet 2nd 3rd 4th

 VPN
trust relationships
 UNIX
TTL (time to live)
 network log analysis
tunnel mode (IPSec)
 ESP protocol 2nd
tunneling
 as encryption
 VPN 2nd 3rd
 L2TP
 versus IPSec 2nd
 versus PPTP 2nd
 Windows XP client software configuration example 2nd 3rd
 PPTP 2nd
 Cisco PIX VPDN configuration example 2nd 3rd 4th
 versus L2TP 2nd
 through firewalls
 HTTP tunneling 2nd
 insider threats, employees/contractors 2nd
 insider threats, spyware/keystroke loggers 2nd
 perimeter configuration changes 2nd 3rd
 SOAP
 Web server attacks 2nd 3rd
 VPN 2nd
 packets
tunneling (SSH)
 client integration
 performance
 perimeter defenses
 server integration
 uses of
tunneling (SSL) 2nd 3rd
tunneling mode (IPSec)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

UDP (
 reflexive ACL
UDP (Transmission Control Protocol)
 ports
 filtering
UDP (User Datagram Protocol)
 server-side ports
 state
 tracking 2nd
UDP encapsulation
UDP packet scans
 network security assessments 2nd
unattended user accounts
 deleting versus deactivating
 managing 2nd
unenforceable security policies 2nd
 backdoors 2nd
 email 2nd 3rd
 Outlook (MS) 2nd
 rule sets, writing
 sneaker net
 TCP Port 80
 VLVHLP
 writing 2nd
Unicast Reverse Path Forwarding (RFP)
 router hardening
unified perimeter security architectures, developing
 design elements
 firewalls 2nd
 firewalls, access control 2nd
 firewalls, bsaic filtering 2nd
 firewalls, inline 2nd
 firewalls, ISP controlled routers 2nd
 firewalls, parallel 2nd 3rd
 firewalls, VPN interaction 2nd 3rd 4th 5th 6th
 routers 2nd 3rd 4th
 routers, access control 2nd
 routers, basic filtering 2nd
 routers, ISP controlled 2nd
 VPN, firewall interaction 2nd 3rd 4th 5th 6th
 determining attacker type, determined insiders 2nd
 determining attacker type, determined outsiders 2nd 3rd
 determining attacker type, script kiddies 2nd
 determining attacker type, worms 2nd 3rd
 determining business requirements, business-related services 2nd
 determining business requirements, cost 2nd 3rd
 determining business requirements, fault tolerance 2nd 3rd 4th 5th 6th 7th 8th 9th
 determining business requirements, performance 2nd 3rd 4th 5th 6th 7th
 resource protection
 bridges 2nd 3rd
 copiers
 IP-based telephony systems
 modems 2nd
 PBX systems
 printers
 routers 2nd 3rd
 servers 2nd
 switches 2nd 3rd
 voice mail systems
 workstations 2nd
UnityOne IPS (TippingPoint) 2nd
Unix
 /etc/inetd.conf files
 editing
 /etc/xinetd.conf files
 editing
UNIX

 btmp files

 auditing security logs
 Crack password-cracking software 2nd
 file permissions, restricting 2nd
 fping network scanner
 group account memberships, controlling
 Lion worm
 network log analysis
Unix
 NFS (Network File System) services
 deactivating daemons 2nd
 RPC services
UNIX
 NSS
 pinger network scanner
 r-commands
 deactivating
 SSH
 Telnet
 root accounts
 host hardening 2nd
 Root accounts
 renaming
 route command
 displaying host routing tables
 security logs
 auditing 2nd 3rd
 software, removing
 pkg program
 rpm utility
 Syslog facility
 auditing security logs
 TCP Wrappers 2nd
 Traceroute
 network security assessments 2nd
 troubleshooting tools
 Dig
 hping utility 2nd 3rd 4th
 ifconfig utility 2nd
 ldd utility
 strings utility
 versus Windows tools
 trust relationships
 user accounts
 deactivating 2nd
 utmp files
 auditing security logs
 wtmp files
 auditing security logs
unknown vulnerabilities, defining 2nd

unsecurable applications, handling 2nd
unwritten policies (corporate culture)
updates
 AP firmware
 IOS
updating
 host defense components
 security policies
 signatures
 antivirus software
URL
 proxy firewalls
user accounts
 deactivating
 UNIX 2nd
 deleting versus deactivating
 group accounts
 controlling memberships 2nd
 passwords 2nd 3rd 4th
 unattended accounts
 managing 2nd
user awareness
 defense in depth architecture, role in
user command (SSH)
 router hardening
user interface components (multitier applications) 2nd
users
 remote
 null sessions 2nd
 remote users
 deactivating r-commands (UNIX)

 deactivating Remote Desktop service (Windows)

 deactivating Remote Registry Service (Windows)
 deactivating Server service (Windows)
 deactivating Terminal Services (Windows)
utmp files (UNIX)
 security logs, auditing

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

validate-update-source command (routers)
validating
 firewalls (network security assessments) 2nd
verifying perimeter devices phase (network security assessments)
 access control verification
 firewall management 2nd
 traffic restrictions 2nd 3rd
 assessment stations 2nd
 firewall validation 2nd
 listener stations 2nd
version scans (Nmap) 2nd
viewing
 NAT translation tables
 PAT translation tables
Virtual Vault Servers (HP)
 adversarial reviews
 determining attacker access 2nd 3rd
 determining impact of misconfigurations/vulnerabilities 2nd
 mkacct command
VisualZone utility
VLAN
 AP 2nd
 resource separation
 firewalls 2nd
 private VLANs 2nd
 routers 2nd
 switches
 VLAN-hopping attacks 2nd
 tag headers
VLAN interfaces
 ACL, in/out keywords
VLAN-hopping attacks 2nd
VLVHLP (ver large, very high-latency packets)
 unenforceable security policies
VMware software 2nd
voice mail systems
 secure perimeter design
VPDN (Virtual Private Dial-Up Networks)
 Cisco PIX configuration example 2nd 3rd 4th
VPN
 resource separation 2nd
 secure perimeter design
 firewall interaction 2nd 3rd 4th 5th 6th
VPN (Virtual Private Network)
 intranet VPN
VPN (virtual private networks) [See also remote desktop software]
VPN (Virtual Private Networks)
 benefits of
 cost effectiveness
 deployment 2nd
 security 2nd 3rd
 case study
 IPSec 2nd 3rd
 SSL 2nd
 terminal servers 2nd 3rd
 Cisco router configurations
 access list rules 2nd
 compromised clients, handling 2nd
VPN (virtual private networks)
 defining
VPN (Virtual Private Networks)
 defining
VPN (virtual private networks)
 defining
VPN (Virtual Private Networks)
 Diffie-Hellman asymmetric key encryption algorithms
 disadvantages of

 implementation

 Internet availability
 packet overhead
 processing overhead
 troubleshooting
 encryption 2nd 3rd
 application layer
 network layer 2nd
 transport layer
 tunneling as 2nd 3rd
 IPSec
VPN (virtual private networks)
 IPSec
VPN (Virtual Private Networks)
 IPSec
 AH protocol
 AH protocol, ESP protocol combinations 2nd
 AH protocol, ICV
 AH protocol, packet header information 2nd 3rd
VPN (virtual private networks)
 IPSec
 client integration 2nd
VPN (Virtual Private Networks)
 IPSec
 configuration examples, Cisco routers 2nd 3rd 4th 5th 6th 7th 8th 9th
 configuration examples, Windows XP 2nd 3rd 4th 5th 6th 7th 8th
 ESP protocol
 ESP protocol, AH protocol combinations 2nd
 ESP protocol, IPSec transport mode
 ESP protocol, IPSec tunnel mode 2nd
 ESP protocol, NAT 2nd
 ESP protocol, packet header components 2nd
 ESP protocol, packet traces 2nd
 IKE protocol
 IKE protocol, digital certificate authentication
 IKE protocol, phase 1 negotiations 2nd 3rd 4th 5th 6th 7th
 IKE protocol, phase 2 negotiations 2nd
 IKE protocol, pre-shared key authentication
 NAT-T
 PAT 2nd
VPN (virtual private networks)
 IPSec
 perimeter defenses 2nd 3rd
VPN (Virtual Private Networks)
 IPSec
 SA 2nd 3rd
 SAD 2nd 3rd
VPN (virtual private networks)
 IPSec
 server integration 2nd

VPN (Virtual Private Networks)
 IPSec
 SPD
 transport mode
 transport mode, ESP protocol
 tunnel mode, ESP protocol 2nd
 tunneling mode
 versus L2TP 2nd
 wireless network security
 L2TP
 versus IPSec 2nd
 versus PPTP 2nd
 Windows XP client software configuration example 2nd 3rd
 network layer cryptography 2nd 3rd
 network security assessments
 access controls 2nd
 authentication 2nd 3rd
 client restrictions 2nd
 encryption
 network security, designing 2nd
VPN (virtual private networks)
 perimeter defense, role in 2nd
VPN (Virtual Private Networks)
 PPTP 2nd
 Cisco PIX VPDN configuration example 2nd 3rd 4th
 versus L2TP 2nd
 proprietary implementations
 proxy firewalls
 remote connectivity, determining type of 2nd
 requirements of
 authentication

 confidentiality

 data integrity 2nd
VPN (virtual private networks)
 SSH
 file transfers
 port forwarding
 standard connections, client integration
 standard connections, perimeter defenses
 standard connections, server integration
 standard connections, uses of
 tunneling
 tunneling, client integration
 tunneling, performance
 tunneling, perimeter defenses
 tunneling, server integration
 tunneling, uses of
 vulnerabilities of 2nd
 SSL
 OWA 2nd
 perimeter defenses
 proxy servers
 proxy servers, perimeter defenses
 proxy servers, uses of
 standard connections
 standard connections, client integration 2nd
 standard connections, perimeter defenses 2nd
 standard connections, server integration 2nd
 standard connections, uses of 2nd
 tunneling 2nd 3rd
 uses of 2nd
VPN (Virtual Private Networks)
 tunneling 2nd
 as encryption 2nd 3rd
 packets
 wireless network security
VPN concentrators
VPN passthrough
VSX (Virtual System Extension)
VTY (virtual terminal lines) 2nd 3rd
vulnerabilities
 false positives
 researching 2nd
 unknown vulnerabilities, defining 2nd
vulnerability
 versus risk
vulnerability discovery phase (network security assessments) 2nd 3rd
 eEye Security Retina 2nd
 GFI LANguard Network Security Scanner 2nd 3rd 4th
 ISS Internet scanner 2nd 3rd 4th
 Nessus 2nd 3rd 4th 5th

 technique risk levels
 vulnerabilities, researching 2nd
vulnerability scanners 2nd
 eEye Security Retina 2nd
 GFI LANguard Network Security Scanner 2nd 3rd 4th
 ISS Internet scanner 2nd 3rd 4th
 Nessus 2nd 3rd 4th 5th
 NASL 2nd
 plug-ins 2nd
 tests, limiting
vulnerability scanning software
 Nessus

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

WAN
 network performance 2nd
WAP (wireless access points)
 data diffusion
warchalking
 FakeAP
wardialing
 Hackers Choice THC-Scan
 ModemScan
 network security assessments 2nd 3rd 4th
 SandStorm Enterprises PhoneSweep 2nd
wardriving
 FakeAP
 Kismet
 Netstumbler
 network security assessments 2nd 3rd
Washington University [See Linux;WU-FTPD]
WDoS (Wireless Denial of Service) 2nd
weakness identification (IDS)
 security auditing
 security policy violations 2nd
Weaknesses in the Key Scheduling Algorithm of RC4 [ITAL] 2nd
Web cache servers
 Squid Web Cache Proxy software
Web caches [See also proxy servers]
 freshness
Web management
 disabling
Web proxies
 logging
 Web browsing
Web servers
 attacks on 2nd 3rd
 public
 external;adversarial reviews, determining attacker access 2nd 3rd
 HP Virtual Vault, adversarial reviews 2nd 3rd 4th 5th
 HP Virtual Vault, mkacct command
 public Web
 adversarial reviews, determining impact of misconfigurations/vulnerabilities 2nd
 PUT attacks 2nd
Web services 2nd 3rd
websites
 executable packers
 packers
 workstation firewalls
WEP (Wired Equivalent Privacy) 2nd
WEP Wedgie
 wireless encryption, auditing
WEPCrack
 wireless encryption, auditing 2nd
wget
whois searches
wildcard masks 2nd 3rd 4th
Will, Rita
 GIACE complex e-commerce site case study 2nd
 DMZ 2nd 3rd 4th
 internal networks 2nd
 Internet 2nd 3rd
 proxy layers 2nd 3rd
 security networks 2nd 3rd 4th
Winalysis file integrity checker utility
Windows
 Add/Remove Programs applet
 removing programs
 Administrator accounts
 host hardening 2nd
 renaming

 SID

 Check Point FireWall-1 stateful firewalls 2nd 3rd 4th 5th 6th 7th
 Computer Management applet
 creating/deletiung file shares
 Event Viewer
 auditing security logs
 file shares
 creating/deleting
 Local Security Policy editor
 auditing security logs
 null sessions, limiting
 MAC addresses
 spoofing 2nd
 NetBIOS protocol
 disabling 2nd
 NTFS
 file permission restrictions
 Regedit utility
 restricting Registry permissions 2nd
 Regedit32 utility
 restricting Registry permissions 2nd
 Registry
 restricting permissions 2nd
 Remote Desktop service
 deactivating
 Remote Registry Service
 deactivating
 security logs
 auditing 2nd
 Server service
 deactivating
 SuperScan network scanner 2nd
 Terminal Services
 deactivating
 tracert
 network security assessments 2nd
 troubleshooting tools
 BinText utility 2nd
 ipconfig utility 2nd 3rd
 PacketCrafter (Komodia) 2nd
 versus UNIX tools
Windows (MS)
 NNTP, vulnerabilities of 2nd
Windows 2000 (Microsoft)
 Secure Cache Against Pollution check box
Windows 2003 Server Enterprise Edition (Microsoft)
 mail relays, configuring 2nd
Windows XP
 Filter Action Wizard
 enforcing IPSec parameters 2nd 3rd

 IPSec VPN configuration examples 2nd 3rd 4th 5th 6th 7th 8th
 Security Rule Wizard
 establishing IPSec parameters 2nd 3rd
 opening
wired management
 locking 2nd
wireless DMZ 2nd
wireless encryption
 auditing 2nd 3rd
 EAP-TLS 2nd 3rd
 implementing 2nd
 LEAP 2nd
 dictionary attacks 2nd
 PEAP 2nd 3rd
 TinyPEAP
 WEP 2nd
 WPA protocol 2nd
 dictionary attacks 2nd
wireless networks
 AP
 FakeAP
 hardening, disabling bridges
 hardening, disabling SSID broadcasts 2nd 3rd 4th
 hardening, disabling Web management
 hardening, locking MAD addresses 2nd 3rd
 hardening, locking wired management 2nd
 hardening, passwords
 hardening, updating firmware
 segmenting
 VLAN 2nd
 warchalking

 wardriving

 defense in depth strategies
 host defenses
 VPN/IPSec
 designing
 auditing network controls
 auditing signal leakage 2nd
 case studies 2nd 3rd 4th 5th
 network separation
 network separation, AP segmentation
 network separation, Layer 3 access controls 2nd 3rd
 network separation, VLAN 2nd
 network separation, wireless DMZ 2nd
 signal leakage
 WDoS defense 2nd
 infrastructure mode
 types of
 802.11a
 802.11b
 802.11g
 wireless encryption
 auditing 2nd 3rd
 EAP-TLS 2nd 3rd
 implementing 2nd
 LEAP 2nd 3rd 4th
 PEAP 2nd 3rd
 TinyPEAP
 WEP 2nd
 WPA protocol 2nd
 WPA protocol, dictionary attacks 2nd
wireless systems
 resource separation 2nd 3rd
wizards
 Filter Action (Windows XP)
 enforcing IPSec parameters 2nd 3rd
 Security Rule (Windows XP)
 establishing IPSec parameters 2nd 3rd
 opening
workstations
 firewalls
 configuring 2nd
 Norton Personal Firewalls 2nd 3rd
 versus server firewalls 2nd
 websites
 ZoneAlarm Pro 2nd
 IDS
 categories of
 deploying 2nd
 file integrity checkers 2nd
 file integrity checkers, AIDE

 file integrity checkers, Samhain
 file integrity checkers, Tripwire
 file integrity checkers, Tripwire Manager
 file integrity checkers, Winalysis
 log file monitoring utilities, Logcheck 2nd
 network connection monitoring utilities, BlackICE 2nd
 network connection monitoring utilities, PortSentry 2nd
 versus network IDS 2nd
 maintaining 2nd
 MBSA
 secure perimeter design 2nd
worms
 Beagle
 Code Red
 SANS Institute exploit
 identifying
 Lion
 NetSky
 Nimda
 defense in depth case study 2nd
 signature of 2nd
 Qaz
 secure perimeter design 2nd 3rd
WPA (Wi-Fi Protected Access) protocol 2nd
 dictionary attacks 2nd
WPACrack
 wireless encryption, auditing
Wright, Joshua
 dictionary attacks 2nd
writing
 rule sets

 for unenforceable security policies

 security policies 2nd
 determining corporate culture 2nd 3rd 4th 5th
 developing policy tone
 unwritten policies
 unenforceable security policies 2nd
written authorization of network security assessments
wtmp files (UNIX)
 security logs, auditing
WU-FTPD (Washington University File Transport Protocol Daemon)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

zero-day exploits
zombie systems
 ICMP flooding
zone transfers
ZoneAlarm
 VisualZone utility
 ZoneLog Analyser
ZoneAlarm logs, analyzing 2nd
ZoneAlarm Pro firewalls 2nd
ZoneLog Analyser

	Inside Network Perimeter Security
	Table of Contents
	Copyright
	About the Authors
	About the Technical Editors
	Acknowledgments
	We Want to Hear from You!
	Reader Services
	Preface
	Rickety Planes
	Fires in the West
	Rapid Advances in Technology
	Decline in Personal Service
	Continuous Inspections
	Defense in Depth
	Core Business Sector

	Introduction
	Who Should Read This Book
	Why We Created This Book's Second Edition
	Overview of the Book's Contents
	Conventions

	Part I: The Essentials of Network Perimeter Security
	Chapter 1. Perimeter Security Fundamentals
	Terms of the Trade
	Defense in Depth
	Case Study: Defense in Depth in Action
	Summary

	Chapter 2. Packet Filtering
	TCP/IP Primer: How Packet Filtering Works
	TCP and UDP Ports
	TCP's Three-way Handshake
	The Cisco Router as a Packet Filter
	An Alternative Packet Filter: IPChains
	The Cisco ACL
	Effective Uses of Packet-Filtering Devices
	Egress Filtering
	Tracking Rejected Traffic
	Problems with Packet Filters
	Dynamic Packet Filtering and the Reflexive Access List
	Summary
	References

	Chapter 3. Stateful Firewalls
	How a Stateful Firewall Works
	The Concept of State
	Stateful Filtering and Stateful Inspection
	Summary
	References

	Chapter 4. Proxy Firewalls
	Fundamentals of Proxying
	Pros and Cons of Proxy Firewalls
	Types of Proxies
	Tools for Proxying
	Summary

	Chapter 5. Security Policy
	Firewalls Are Policy
	How to Develop Policy
	Perimeter Considerations
	Summary
	References

	Part II: Fortifying the Security Perimeter
	Chapter 6. The Role of a Router
	The Router as a Perimeter Device
	The Router as a Security Device
	Router Hardening
	Summary

	Chapter 7. Virtual Private Networks
	VPN Basics
	Advantages and Disadvantages of VPNs
	IPSec Basics
	Other VPN Protocols: PPTP and L2TP
	Summary
	References

	Chapter 8. Network Intrusion Detection
	Network Intrusion Detection Basics
	The Roles of Network IDS in a Perimeter Defense
	IDS Sensor Placement
	Case Studies
	Summary

	Chapter 9. Host Hardening
	The Need for Host Hardening
	Removing or Disabling of Unnecessary Programs
	Limiting Access to Data and Configuration Files
	Controlling User and Privileges
	Maintaining Host Security Logs
	Applying Patches
	Additional Hardening Guidelines
	Summary

	Chapter 10. Host Defense Components
	Hosts and the Perimeter
	Antivirus Software
	Host-Based Firewalls
	Host-Based Intrusion Detection
	Challenges of Host Defense Components
	Summary
	References

	Chapter 11. Intrusion Prevention Systems
	Rapid Changes in the Marketplace
	What Is IPS?
	IPS Limitations
	NIPS
	Host-Based Intrusion Prevention Systems
	Summary

	Part III: Designing a Secure Network Perimeter
	Chapter 12. Fundamentals of Secure Perimeter Design
	Gathering Design Requirements
	Design Elements for Perimeter Security
	Summary
	References

	Chapter 13. Separating Resources
	Security Zones
	Common Design Elements
	VLAN-Based Separation
	Summary
	References

	Chapter 14. Wireless Network Security
	802.11 Fundamentals
	Securing Wireless Networks
	Auditing Wireless Security
	Case Study: Effective Wireless Architecture
	Summary
	References

	Chapter 15. Software Architecture
	Software Architecture and Network Defense
	How Software Architecture Affects Network Defense
	Software Component Placement
	Identifying Potential Software Architecture Issues
	Software Testing
	Network Defense Design Recommendations
	Case Study: Customer Feedback System
	Case Study: Web-Based Online Billing Application
	Summary
	References

	Chapter 16. VPN Integration
	Secure Shell
	Secure Sockets Layer
	Remote Desktop Solutions
	IPSec
	Other VPN Considerations
	VPN Design Case Study
	Summary
	References

	Chapter 17. Tuning the Design for Performance
	Performance and Security
	Network Security Design Elements That Impact Performance
	Impact of Encryption
	Using Load Balancing to Improve Performance
	Mitigating the Effects of DoS Attacks
	Summary
	References

	Chapter 18. Sample Designs
	Review of Security Design Criteria
	Case Studies
	Summary

	Part IV: Maintaining and Monitoring Perimeter Security
	Chapter 19. Maintaining a Security Perimeter
	System and Network Monitoring
	Incident Response
	Accommodating Change
	Summary
	References

	Chapter 20. Network Log Analysis
	The Importance of Network Log Files
	Log Analysis Basics
	Analyzing Router Logs
	Analyzing Network Firewall Logs
	Analyzing Host-Based Firewall and IDS Logs
	Summary

	Chapter 21. Troubleshooting Defense Components
	The Process of Troubleshooting
	Troubleshooting Rules of Thumb
	The Troubleshooter's Toolbox
	Summary
	References

	Chapter 22. Assessment Techniques
	Roadmap for Assessing the Security of Your Network
	Planning
	Reconnaissance
	Network Service Discovery
	Vulnerability Discovery
	Verification of Perimeter Components
	Remote Access
	Exploitation
	Results Analysis and Documentation
	Summary

	Chapter 23. Design Under Fire
	The Hacker Approach to Attacking Networks
	Adversarial Review
	GIAC GCFW Student Practical Designs
	Summary
	References

	Chapter 24. A Unified Security Perimeter: The Importance of Defense in Depth
	Castles: An Example of Defense-in-Depth Architecture
	Absorbent Perimeters
	Defense in Depth with Information
	Summary

	Part V: Appendixes
	Appendix A. Cisco Access List Sample Configurations
	Complete Access List for a Private-Only Network
	Complete Access List for a Screened Subnet Network That Allows Public Server Internet Access
	Example of a Router Configuration as Generated by the Cisco Auto Secure Feature

	Appendix B. Crypto 101
	Encryption Algorithms
	References

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

